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ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

El. Math. . Band 35 Nr.1 Seiten 1-24 Basel, 10.Januar 1980

Le chasseur perdu dans la forét

(Un probléme de géométrie plane)

1. Un chasseur erre dans la forét, ayant perdu ’orientation. Aprés quelque temps,
il trouve un indicateur I'informant qu’une route passe & un kilometre de 1a. Mal-
heureusement, ’arbre auquel I’indicateur est cloué, git par terre, privant le chasseur
de tout renseignement sur la direction & suivre pour trouver cette route. Il
décide de marcher droit un kilométre en direction arbitraire, et de continuer ensuite
sur le pourtour du cercle ayant ’emplacement de l'indicateur comme centre.
Ainsi, il est stir de trouver la route aprés au plus 1+ 2z km de marche.

Cette situation était décrite dans un probléme d’un de ces concours mathématiques
pour collégiens, populaires aux Etats-Unis. La question: Supposant que la route est
droite, quel est le chemin plus court qu’aurait pu prendre le chasseur s’il avait
réfléchi un peu plus longtemps? La réponse attendue était probablement: «Au lieu
de parcourir le cercle entier, il remplace le dernier quart par un chemin droit
d’un kilométre, tangent au cercle (fig. 1), gagnant n /2 — 10,57 km.»

Mais il est possible de raccourcir encore plus le parcours en continuant d’abord
dans la direction du rayon au-deld du cercle et en revenant ensuite sur le cercle
tangentiellement (fig.2). Cela donne le chemin A BCDEF, de longueur

Figure 1
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+iga+ow+1=

3n
P cosa +tga+-—2-———2a+l—-l(a).

I (a) atteindra son minimum pour a =30°=7 /6,

1(%)=—Z—n+1+\/?. 1)

2. Abstraction faite de forét et chasseur, en termes de géométrie plane, on est
amené A formuler le probléme (P):

Donné un cercle de rayon 1, trouver le chemin le plus court qui intersecte toutes les
tangentes du cercle, et qui prend son départ au centre.

On a le théoréme suivant:

Théoréme 1. Une solution de (P) est le chemin de la figure 2, avec a=rn/6.
Toute autre solution s’obtient d’elle par des rotations et réflexions du plan qui laissent
le cercle en place.

Silon supprime, dans (P), la condition sur le point de départ, on a le
Théoréme 2. Le chemin le plus court qui intersecte toutes les tangentes d’un cercle

donné consiste en une moitié du cercle donné prolongé de chaque cété par un
segment tangent de la longueur du rayon (fig. 3).

Figure 3

(Si le rayon est de longueur 1, la longueur du chemin est z +2.)

Aussi €élémentaires et plausibles que ces théorémes, en particulier le second, puissent
paraitre, je n’ai pas réussi & trouver des démonstrations simples et complétement
¢lémentaires. Ceci est di au fait que 'on doit prendre en considération toutes
les courbes continues et rectifiables qui satisfont aux conditions, bien que les
solutions soient des courbes composés de segments droits et d’arcs circulaires.

3. Dans ce qui suit, nous allons démontrer les deux théorémes précédents. La
méthode consiste & montrer que chaque courbe minimale est une de celles décrites
dans les théorémes. Nous démontrons d’abord ’existence de courbes minimales.
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Soit m P'infimum des longueurs des courbes qui rencontrent toutes les tangentes,
©, une suite minimale de telles courbes, donc /(€,)= (longueur de €,)— m. Chaque
€, peut étre paramétrisée par f,: [0, 1] E,, le paramétre étant proportionnel a la
longueur de I'arc. Les I(€,) sont bornées, donc toutes les ¢, sont dans un carré
fermé, et

distance (fn(t2)9fn(tl)) < Itl_t2'l@n)< ]tl—tzl -M,

pour tous #,,¢,,n, M étant une constante. On est donc en droit d’appliquer le
théoréme de Arzela-Ascoli: il existe un chemin &, donné par f: [0, 1] = E,, tel que
f,,—f uniformément. Alors /(€)<m, et € rencontre chaque tangente. Car autrement,
si € ne rencontre pas f, € a une distance positive de ¢, et & cause de 'uniformité
de f,—f, €, aura aussi une distance positive de ¢t pour n> N, ce qui n’est pas
possible. Donc, on a un minimum pour le théoré¢me 2. Pour le théoréme 1, chaque
€, débutera au centre du cercle, donc aussi €.

4. Notations: Si A,B,C,D ... sont des points du plan, AB sera le segment droit
entre A et B, | AB| la distance entre A et B; ABCD ... sera le chemin ABUBCuUCD
U....S1 A# B, d(AB) sera la droite qui relie 4 et B, r(4B) la demi-droite de
d(AB) qui commence en A et passe par B. Si A# B#C et si r(BA) n’est pas la
demi-droite opposée & r(BC), a(ABC) sera la région angulaire convexe fermée
délimitée par r(BA) et r(BC) et XABC la mesure angulaire de a(4BC). Donc
0< ¥ABC< = toujours.

L’enveloppe convexe d’un ensemble S sera k(S). En particulier, si 4, B, C,... sont
des points, k(ABC...) sera le polygone convexe le plus petit qui contient 4,B,C...;
k (ABC) sera le triangle ayant 4, B, C comme sommets.

Le cercle que nous considérons sera K, son intérieur et extérieur int (K) et ext (K).

Si un chemin est donné par f: [a,b]— E,, et X=f(t), Y=f(s), on écrira X< Y si
t<s.

5. Soit d’abord € un chemin quelconque, donné par c: [a,b]— E,. [a,b] est union
de c71(K), c7!(int(K)) et c~!(ext(K)); la topologie nous enseigne que ¢! (int(K))
et ¢"!(ext(K)) sont composés d’intervalles ouverts dans [a,b], ¢~!(K) est composé
d’intervalles fermés dans [a,b], et en plus, §’il y a une infinité de tels intervalles,
des points d’accumulation. Je dénoterai les chemins correspondants aux intervalles de
¢~ 1K), c1(int(K)) et ¢~ (ext(K)), par ji,jj; respectivement, aprés avoir ajouté a
chacun d’eux son point initial et terminal, si nécessaire.

6. Considérons maintenant un j; d’une courbe minimale €. j, est un arc sur K, pas
tout K. Si les extrémités de I’arc ne sont pas le point initial et le point terminal de
J1, une partie de l’arc est parcourue deux fois, ce qui permet un raccourcisse-
ment par une corde. Donc pour € minimale, les j, sont des arcs de K parcourus
simplement. Les j,, étant & Pintérieur du cercle, ou il n’y a pas de tangentes, sont
clairement des cordes ou des segments de cordes.

7. 1l nous reste les j; 2 considérer. Soit d’abord X e ext (K); soient 7, et ¢_ les deux
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X
i)
t,
P.(X)
Figure 4 t_

tangentes de X 4 K, telles que vu de X, K soit & gauche de 7,. Soient P, (X) et
P_(X) les points ou ¢z, et t_ touchent K (fig. 4). Pour XeKX, on écrit P (X)
=P_(X)=X. Alors P et P_ sont des applications continues de Ku ext(K) sur K.
Chaque P (j;) et P_(j;) est un arc fermé sur K, et si j; a un point sur K,
P, (j3)UP_(j;) est un arc fermé sur K. Soit maintenant X e € next(K), et ¢ une
tangente qui sépare K de X, proprement, donc X ¢¢. Supposons, pour simplifier,
que X, n’est pas terminal ou initial sur €. Il existe Y,Z sur €, Y<X;,<Z tels
que pour YS X< Z, X soit aussi séparé de K par ¢ proprement. Soient X, X,, X3, X,
quatre points, Y<X,<X,<X3;<X,<Z, pour lesquels minimum et maximum de
P, et P_ sur le chemin {Xe@| Y<X<Z} sont atteints. Alors le chemin segmen-
taire Y X,X,X;X4Z rencontre les mémes tangentes et est strictement plus court
que tout autre chemin contenant Y, X, X,, X3, X4, Z dans le méme ordre. Donc il suit
que chaque ji est une succession de segments. Nous appelons AB un segment
maximal de G, si AB ne fait pas partie d’un segment A’B’ de € contenant 4B
proprement.

8. Il est utile de considérer le probléme d’une fagon différente. Soit D un domaine
compact et convexe dans le plan E,. Les droites de soutien de D sont les droites /
qui intersectent D de telle fagon que D se trouve complétement dans I'un des deux
demi-plans fermés définis par /. Soit S un ensemble connexe. Alors D est dans
k(S) si et seulement si § intersecte toutes les droites de soutien de D. En parti-
culier si D est bordé d’une courbe lisse, les droites de soutien sont les tangentes
a la courbe du bord.

Notre probléme se raméne a trouver le chemin € le plus court tel que K< k (8).
Rappelons que k (S,US,) est 'union des segments XY avec Xek (S)) et Yek (S,).
On dira que Parc & du chemin € est répétitif si ou bien K<k (EG\&) ou bien
@\& intersecte toutes les tangentes de K. En particulier & est répétitif si S < k (C\S).
Un arc répétitif est toujours un segment droit parcouru simplement.

9. Soit Pe KN @, ¢ la tangente en P, et soit Q€@ proprement séparé de K par t,
c’est-a-dire Q est a lintérieur du demi-plan défini par t qui ne contient pas K. Alors
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Figure 6

Figure §

prés de P, € est un segment droit. Car si & est un arc de ¢ contenant P, et
contenu dans P'intérieur du triangle k (P, (Q)Q P_(Q)) (fig. 5), il doit y avoir des
points X,Y dans les régions hachurées, avec X, Yek (E\S). Alors Sk (Y QX)
Sk (C\S), donc © est répétitif, donc un segment.

10. Les considérations du § 8 nous permettent d’exclure les situations impossibles
suivantes:

Imp. a): Deux segments AB et CD non colinéaires qui s’intersectent en un point
intérieur & au moins Pun des segments 4B et CD..Car dans la figure 6, k(4B DC)
=k(DBuU AC). On obtient un raccourcissement en remplagant 4B et CD par CA
et DB et en changeant la direction d’une partie de €.

G

Figure 7

Imp. b): Deux segments consécutifs A BC formant un angle tel que la région
angulaire opposée contient un point X de K ou de k(G\4BC), X# B. Car dans
la figure 7 soit S=(C\ABC)VAUC, €=ABCuUS. 1l existe Qek(S) tel que
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XePQ, Pek(ABC); alors ABC<k (QAC), ABC est répétitif et doit étre remplacé
par le segment AC, plus court que ABC.

Imp. c): Un segment AC tel que C est point terminal ou initial de @, tel que
r(4C) intersecte K au-dela de C. Seule exception: C est le point initial imposé du
probléeme (P).

Imp. d): Deux segments qui coincident, dont au moins l’'un est suivi par un seg-
ment de direction différente (fig. 8).

€

—

/4
\ \
) /
Figure 8

Imp. e): Deux segments consécutifs 4’ B C’ tels que K est contenu dans a (4’ B C’).
Car si 4 et C sont 4 l'intérieur de 4’B et C’B resp., assez prés de B, I'on voit
facilement que d(A4C) sépare B proprement de K et que ABC peut étre remplacé
par AC, plus court.

Imp. f): Deux segments consécutifs 4BC, tels que K soit contenu dans une des
régions angulaires supplémentaires a a (4 BC), resp. demi-plans définis par d(A4B) si
r(BA)=r(BC). Seule exception: 4 = CeK, et d(4B) est tangente 4 K. Nous traitons
ici le cas non dégénéré ou r(BA)#r(BC), et ABC<ext(K) (fig. 9). On suppose
que BA et BC soient maximaux et que d(BA) sépare K et BC. Soient les tangentes

D, C,
\
A G
LN P

]

t Figure 9
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t) et t, de A et B comme dans la figure. Pour C on a les possibilités Cy, C;, C,.
BC, est répétitif, donc C#C,. Si C=C,, BA’ est répétitif, donc B4 n’est pas
maximal. Donc: C=C,. Si C est point terminal de €, BC est superflu (car le seul
point terminal de € imposé est le centre de K). Regardons la suite de € au-dela
de C. Si C’est un segment CD,, avec D, proprement séparé de K par ¢;,, BA ne peut
pas étre maximal. Si par contre la suite est CD, avec D, dans le méme demi-plan
fermé (défini par ¢,) que K, BCD, est répétitif, ce qui n’est pas possible.

11. On est maintenant en mesure de déterminer la forme qu’un j; peut avoir.
Soit AB un segment maximal de j; tel que d(4B) n’intersecte pas K. D’aprés
imp.b, imp.e et imp.f, ou bien B est point terminal ou bien € se poursuit
au-deld de B par un segment dirigé vers K. De méme pour 4. Si ABSj, est tel
que d(AB) intersecte K [disons que r (4 B) intersecte K], alors par imp.c et imp.b,
B doit étre sur K. Si de plus d(4B) n’est pas tangent & K en B, le segment 4B
doit se prolonger dans Int(K) (d’aprés le § 9), au-dela de B. A peut étre terminal.
Si A n’est pas terminal, € se poursuit au-deld de 4 par AC, CeK, ou par un AC
tel que d (A4 C) < ext (K), le cas considéré plus haut.

On trouve les sept possibilités suivantes pour les j, (fig. 10):




8 H. Joris: Le chasseur perdu dans la forét

Les prolongations dans l'intérieur de K sont indiquées. Des angles identiques sont
indiqués par des lettres identiques. On a aussi indiqué les angles droits.

L’égalité¢ des deux angles § dans le cas V, pour prendre un exemple, est dii au
fait élémentaire suivant: si X, Y sont deux points du méme c6té de la droite d,
le chemin le plus court entre X et Y, qui passe par d, consiste en deux segments
XZ, YZ avec Zed, tel que XZ et YZ forment le méme angle avec d. (L’explica-
tion des angles droits indiqués est encore plus simple.) Dans le cas IV, nous pouvons
avoir ¢ =0 comme cas limite. On voit facilement que

a<p+d6, PB<a+y. 2)
On peu aussi montrer 2 £+ 2a + ¢ > #, mais on n’utilisera pas ce fait.

12. On a montré que les j;,j;,j3 sont des arcs trés simples de €; il nous reste a
montrer que des configurations compliquées ne peuvent se produire par des
accumulations dej,j,,j3 sur Kn €. Nous montrons d’abord:

Si AB est un j, de @, c’est-d-dire une corde ou un morceau de corde de K,
et Be K, alors B n’est pas point terminal de €, et la continuation de ¢ se fait sur
un segment BC; Ceext(K), BeAC, c’est-a-dire € continue droit en avant sur
d(AB). D’abord, si B était terminal, soit A’e ABnint(K), S=(E\4’B)u A’. &
rencontre toutes les tangentes, sauf peut-étre celle de B. Mais comme & est fermé,
elle rencontre aussi celle de B par continuité, donc 4’ B serait superflu. De la méme
fagon la suite de € ne se fait pas par un autre j,. Les considérations qui suivent
se référent 3 la figure 11, ¢ est la tangente en B, que nous supposons horizontale.
S’ily a un Ye @, proprement séparé de K par ¢, Paffirmation découle du § 9. Autre-
ment il y aura un Z> B, tel que &={Xe@|Z> X> B} se trouve dans le rectangle
k(POQRW), ou R, WeK et P,Qet, |QB| et |PB| petits. On suppose ¥X(A’BP)
<n /2. Pour passer de k(QBTR) A k(PBTW), & devra passer par B, car & ne
peut pas croiser A’ B a l'intérieur d’aprés imp.a. Si & passe indéfiniment des deux
cOtés de A’ B, il doit y avoir une infinité de boucles b, avec départ et arrivée en B,

3 |
t Q Vv B S P
. oL
v / t "
{
R T W

Figure 11
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dans k (PBTW). Soit b une telle boucle avec élongation horizontale | BS|. Pour BP
assez petit, le chemin 4’ SB est plus court que les chemins 4’ B et b ensemble, car

A'B A’'B
IA,Sl+|BS|<I | +|BS|<| I—IBS|+longueur(b)
cosy cosy
|4’ B| .
S cosy |A’ B|siny + longueur (b) < | A" B| + longueur (b)

si y est assez petit. Donc si b est la boucle d’élongation horizontale maximale,
on peut remplacer 4’B par A’SB et omettre toutes les boucles dans k (PBTW).
On peut donc supposer que & se trouve entierement du méme cdté de 4’ B, disons
dans k (QBTR). Mais dans ce cas ©< k (QBR). Car si X est un point dans le triangle
k (BTR) sans RB, X est sur une corde j, qui doit forcément intersecter RW ou BT
a l'intérieur, sauf si € <j,, un cas que nous avons déja exclu. Soit maintenant Ue &,
le plus & gauche pour tout &. Nous remplagons A’Bu{Xe&S| U= X> B} par A’ VU,
qui rencontre toutes les tangentes rencontrées par A’Bu{XeS|U=2X>B}, qui a
une longueur > |4’ B| + | BV], tandis que, avec w = X (4’ BV),
|[AA’V|+ | VU|=|A’"B|cosd+ | VB|cos(n—w—3)+ | VU
< |A’Blcosd+ | VB||cos(w+d)| + | VB|tga< |A'B| + | VB|

sia et J sont assez petits. Cela démontre I'affirmation.

13. Chaque j=j, ou j; «couvre» un ensemble de tangentes, dont les points d’inter-
section avec K forment un arc P_ (j)u P_(j) sur le cercle K. Appelons cet arc P (j).
On prétend: P(j) n’a pas de points intérieurs en commun avec P(j’) si j#j'. Cela
est clair si j ou j’ est un j,, donc un arc de K, car on peut remplacer une partie
de ce j, par une corde plus courte. Donc soient j et j/ des j; Clairement
P()Z P(j’), autrement j est répétitif. Donc on a une situation comme dans la
figure 12. Si j est un j; de type V, figure 10, on peut raccourcir en coupant i

P(]) N

M
;/l?(}m

Figure 12

travers I’angle formé par € en C. Si j; est du type IV, figure 10, on peut faire
descendre C le long de la tangente gauche, ce qui donne un raccourcissement,
sauf si f=a+7y. Et ainsi de suite. On obtient la situation suivante, comme seule
possibilité (fig. 13): j contient le segment b=BD, avec f<n/2, et j/ contient le
segmenta=AC aveca<n /2. Comme dans les démonstrations du § 10, si S=E\a\b,
on trouve des points X,Y, Wek(S) dans les régions angulaires indiquées, pour
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Figure 13

qu’on ait R, Q, P respectivement dans & (&). Mais alors a,bSk (ABWXY), et a\A et
b\B sont répétitifs, aussi bien que leurs prolongements jusqu’aux tangentes ¢, et #,
resp., ce qui entrainera forcément un croisement non permis. Observons qu’on a,
pour la premiére fois, utilisé le fait que K est un cercle, ou plutét que les normales
aux tangentes en Q et P se rencontrent en Zeint(K). Jusqu’d présent, tout pou-
vait se faire pour des K lisses, convexes et ne contenant pas de segments droits.

14. On voit facilement, de ce que nous venons d’énoncer, que si j=j; ou j;, €V
se trouve complétement du méme c6té que K par rapport & chaque tangente qui
touche K en P (j), c’est-a-dire dans la partie non hachurée du plan dans la figure 14.

Figure 14 Figure 15



H. Joris: Le chasseur perdu dans la forét 11

Il s’ensuit que si ABS ¢ est un segment maximal contenant une corde PQ de K,
alors ni 4 ni B n’est terminal, et la continuation de & partir de 4 et & partir de B
ne se fait pas dans le méme demi-plan défini par d(4B). Autrement, on aura la
situation de la figure 15.

La rencontre de € avec la tangente 7| AB doit se faire dans la région hachurée,
que ¢ ne peut atteindre ni de X ni de Y sans un croisement avec 4 B.

15. Nous montrons que ¢ consiste en un nombre fini de j,,j,,j;3. Dans le cas
contraire, il existe un Xe Kn(, tel que pour tout Y,Ze¢, Y<X<Z, il y a une
infinité de j,,j,,j; entre Y et Z, disons entre Y et X. Supposons qu’il n’y a pas
de cordes j, dans ce nombre. Alors les j; sont du type II’ de la figure 10. Mais
chacun de ceux-1a a la longueur 2, donc il n’y en a qu’un nombre fini, donc, si Y
est assez prés de X, il n’y aurait que des j;, donc {We@|Y< W<X] serait un
arc sur K et appartiendrait 4 un seul j;. Donc, il y a un nombre infini de cordes
j» S’approchant de X. D’apreés le § 14, cette approche doit se faire en zig-zag, comme
en la figure 16. Les j, ont une direction presque identique a celle de la tangente ¢ en
X. A chaque j, on aurait attaché un j; de la forme III, IV ou V, figure 10.

Figure 16

Figure 17

Pour un j, de la forme V, on aurait en figure 17, 2n=¢+d+n—a+n—4J, donc
a+B=¢c+05. Mais a+f=n—3, donc d=rn/2—¢/2; pour |¢| petit, s~ 7 /2, et P(j,)
aurait une longueur ~ /2, donc trop grande. De méme on aura des contradictions
pour des j, de type III et IV. On a donc trouvé: € est réunion finie de chemins j,,j,js.

16. On peut maintenant démontrer les théorémes 1 et 2. Dans le théoréme 1 on a
un point terminal libre, dans le théoréme 2 les deux points terminaux sont libres.
On voit sans autre qu’un arc j; sur K ne peut étre chemin terminal de €. On sait
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déja que les j, ne sont pas terminaux, sauf pour le point terminal fixé du théoréme 1.
Des j; du type I ne sont pas terminaux, selon le § 14. Donc, il reste pour terminal
libre: les j; de type II ou VI.

Soit le segment terminal libre un j; type II, donc une tangente de longueur 1.
Il peut étre suivi d’un j,, type III, ou d’un arc j,. Pour le premier cas on a la
figure 18. Mais ici on voit que 4BC peut étre remplacé par BAC, plus court et
d’enveloppe convexe égale. Le méme argument est valable si € se termine par un
j3 de type VI. La seule possibilité est donc une tangente de longueur 1 suivie d’un

A C A R B

=

——

Y 1
4
B "
A/ ¥
3B
o
PEN M
D
Figure 18 Figure 19

arc. On montre que € ne comporte pas de cordes enti¢res. Autrement on prend la
premiére aprés I’arc. On doit obtenir la figure 19. Soit a + w <7 /2. Si

4
RE -
| |<7z-2 4 °

on vérifie que le cercle de centre E et de rayon | ER| +(n/2)— 1 passe par V (sur
le diameétre RM), donc

|ED|>]ER|+%——]. 3)

Cela permet de remplacer le chemin A BCDE (BC un arc) par DCBRE, avec CBR
un arc sur K. La longueur du premier est 1+ w+tga+ |DE|>1+w+tga+ | ER|
+(2)-1=w+tga+(n /2)+ | ER| qui est la longueur du deuxi¢me.

Si

\RE|»>—— ™22
nT—2 4

on considére le théoréme 2 d’abord. La longueur du chemin sera au moins
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n—2
n—2 4

|AB|+ |BE|>2+ |RE| 22+ >n+2,

donc plus long que le chemin du théoréme.

Pour le théor¢me 1, la courbe doit revenir sur le centre a partir de E. Donc le
chemin sera plus long que |AB|+ |BE|+ |EZ|>2(1+ |RE|)>2+2nr, donc plus
long que le chemin du théoréme 1.

Soit maintenant w +a > /2. Pour le théoréme 1, on voit que DE barre la route & €
pour revenir sur le centre. Pour le théoréme 2, on commence de ’autre point
terminal, mais on aura forcément w’+a’< 7:/2, d’aprés le § 14, donc on sera
ramené au cas précédent.

Maintenant que l’on sait que le seul j, ne peut étre que la demi-corde menant au
centre, pour le théoréme 1, on ne peut donc obtenir autre chose que les chemins
décrits dans les théorémes.

Remarques: a) Le probléme qui a été considéré peut étre largement généralisé
en remplagant par exemple K par un convexe quelconque, ou les tangentes par
des cercles tangents, etc. L’énoncé général du probléme: Dans un espace métrique
connexe par arcs, on donne une famille % de fermés F, et un ensemble connexe compact
K qui intersecte tout Fe 3. Trouver le chemin le plus court qui intersecte tous les F.

b) En dimensions plus hautes, si E, est 'espace euclidien d¢ n dimensions, §,_,
la sphére unité, /, la longueur du chemin le plus court qui rencontre tous les
hyperplans tangents a S,_;, ou du chemin ¢ le plus court avec S,_;Sk (E),
alors par induction on trouve

7 2
132\/(2+ V3+ —6—7:) +4~7,6628
l,>const.+2n.

Par construction de chemins particuliers on trouve:
l,< const. n3/2
1
I;<4+ —2——\/ 2 -3-7x10,6643.

Les bornes supérieures me semblent étre plus prés de la réalité,

¢) En espace de Hilbert de dimension infinie, disons H= /2 le cas se présente un
peu différemment. Si S est la sphére unité, il n’existe pas de chemin de longueur
finie, pas méme un chemin compact quelconque € tel que Sk (€), car k() est
compact, mais S ne l’est pas. Il faut donc considérer des ensembles convexes
compacts K< H. Dans ce cas, il existe certainement un chemin compact ¢, que
Pon peut construire facilement, tel que k (€)2 K. [D’aprés un théoréme de Hahn
et Mazurkiewicz, il existe méme une application continue f: [0, 1] H, avec Imf= K
(voir [1])]. Mais cette courbe ne sera généralement pas de longueur finie. Si

[e o]
K={(x1,x2,...)lzlljx}< l} ,
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K est compact et convexe, mais toute courbe € avec k(6)=2K est de longueur
infinie. Si

K= {(xl,xz,...)lz]j'mszs 1} ,

il existe € de longueur finie avec k(€)= K. En plus, on peut démontrer que si
K est convexe compact et € de longueur finie avec k(€)= K, alors il existe
une courbe minimale. Cela se fait comme dans le § 3. Il faut simplement montrer
que si {€,} est une suite minimale de courbes, alors U,°C ¢, est relativement com-
pacte. H. Joris, Genéve
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Parabeln mit gemeinsamem isotropem Kritmmungskreis

Nach Kickinger [2] liegen die Brennpunkte der Parabeln mit gemeinsamem
Krimmungskreis k auf einem Kreis, der £k im Oskulationspunkt von innen
berithrt und dessen Durchmesser gleich dem halben Radius von k ist. Im fol-
genden zeigen wir, dass dieser Sachverhalt sinngemiss auch in der isotropen
Geometrie zutrifft.

1. Wir gehen von einem isotropen Kreis j aus, dessen Darstellung 0.B.d.A.zu

72

y=Tl'1+ “i‘l’z (1)

gewihlt sei, wobei r),r, linear unabhingige reelle Vektoren sind und 7 ein reeller
Parameter von j sei. Der Vektor r, gibt dabei die isotrope Richtung der sich -
im Sinne von F. Kleins «Erlanger Programm» - auf die Gruppe Gs der isotropen
Ahnlichkeiten stiitzenden isotropen Ebene an. Fiir eine Einfiihrung in die isotrope
Geometrie sei auf die elementare Darstellung von Strubecker [4] verwiesen.

Im affinen Koordinatensystem {o; r;,r,} haben wir gemiss (1) fir das j im Punkte
7=0 oskulierende Kegelschnittnetz

x3+ax3+28x,x,—2x,=0, a,BeR, Q)

dessen Parabeln P (B) sich fiir a = #? ergeben.
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