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ELEMENTE DER MATHEMATIK
Revue de mathematiques Elementaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Förderung des mathematisch-physikalischen Unterrichts

El. Math. Band 35 Nr.l Seiten 1-24 Basel, 10. Januar 1980

Le chasseur perdu dans la foret

(Un probteme de g6om£trie plane)

1. Un chasseur erre dans la forSt, ayant perdu l'orientation. AprEs quelque temps,
il trouve un indicateur l'informant qu'une route passe ä un kilomdtre de lä. Mal-
heureusement, l'arbre auquel l'indicateur est clouE, git par terre, privant le chasseur
de tout renseignement sur la direction ä suivre pour trouver cette route. II
dEcide de marcher droit un kilomdtre en direction arbitraire, et de continuer ensuite
sur le pourtour du cercle ayant Pemplacement de l'indicateur comme centre.
Ainsi, il est sür de trouver la route aprEs au plus l + ln km de marche.
Cette Situation Etait döcrite dans un probteme d'un de ces concours math&natiques
pour collEgiens, populaires aux Etats-Unis. La question: Supposant que la route est
droite, quel est le chemin plus court qu*aurait pu prendre le chasseur s'il avait
reflechi un peu plus longtemps? La rEponse attendue 6tait probablement: «Au lieu
de parcourir le cercle entier, il remplace le dernier quart par un chemin droit
d'un kilomdtre, tangent au cercle (fig. 1), gagnant n/l— 1 «0,57 km.»
Mais il est possible de raccourcir encore plus le parcours en continuant d'abord
dans la direction du rayon au-delä du cercle et en revenant ensuite sur le cercle
tangentiellement (fig. 2). Cela donne le chemin ABCDEF, de longueur

IrO

Figure 1 Figure 2
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_

1 3tt ^+ tga + ö>+l + tga + —--la+l l(a).
cosa cosa 2

l(a) atteindra son minimum pour a 30°=n/6,

l(j)'h+l+VJ- (1)

2. Abstraction faite de forEt et chasseur, en termes de gEomEtrie plane, on est
amenE ä formuler le problEme (P):
Donne un cercle de rayon 1, trouver le chemin le plus court qui intersecte toutes les

tangentes du cercle, et quiprend son dipart au centre.
On a le thEorEme suivant:

ThEor&me 1. Une Solution de (P) est le chemin de la figure 2, avec a n/ö.
Toute autre Solution s'obtient d'elle par des rotations et reflexions du plan qui laissent
le cercle en place.

Si l'on supprime, dans (P), la condition sur le point de dEpart, on a le

Th£or&me 2. Le chemin le plus court qui intersecte toutes les tangentes d'un cercle
donni consiste en une moitie' du cercle donni prolongi de chaque cöte par un
segment tangent de la longueur du rayon (fig. 3).

Figure 3

(Si le rayon est de longueur 1, la longueur du chemin est n + 2.)
Aussi 616mentaires et plausibles que ces thEorEmes, en particulier le second, puissent
paraitre, je n'ai pas rEussi k trouver des dEmonstrations simples et complEtement
ElEmentaires. Ceci est du au fait que l'on doit prendre en considEration toutes
les courbes continues et rectifiables qui satisfont aux conditions, bien que les

Solutions soient des courbes composEs de segments droits et d'arcs circulaires.

3. Dans ce qui suit, nous allons dEmontrer les deux thEorEmes prEcEdents. La
mEthode consiste ä montrer que chaque courbe minimale est une de celles dEcrites
dans les thEorEmes. Nous dEmontrons d'abord l'existence de courbes minimales.
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Soit m Finfimum des longueurs des courbes qui rencontrent toutes les tangentes,
©n une suite minimale de telles courbes, donc /(©„)=(longueur de (£„)-? m. Chaque
gw peut etre paramEtrisEe par/w: [0, l)-+E2, le parametre Etant proportionnel ä la
longueur de l'arc. Les /(©„) sont bornEes, donc toutes les (£„ sont dans un carre
ferme, et

distance (fn(t2),fn(tx)) ^ \tx-t2\l&n)^\tx-t2\ • M,

pour tous tx,t2,n, M etant une constante. On est donc en droit d'appliquer le
theoreme de Arzela-Ascoli: il existe un chemin S, donne par/: [0,1] -+E2, tel que
/„-?/uniformement. Alors l((&)^m, et 6 rencontre chaque tangente. Car autrement,
si © ne rencontre pas t, S a une distance positive de t, et k cause de l'uniformite
de /„-*/, E„ aura aussi une distance positive de t pour n^N, ce qui n'est pas
possible. Donc, on a un minimum pour le theorEme 2. Pour le theorEme 1, chaque
(£„ debutera au centre du cercle, donc aussi &.

4. Notations: Si A,B,C,D... sont des points du plan, AB sera le segment droit
entre A etB, \AB\ la distance entre A et B; ABCD... serale chemin ABuBCu CD
u....Si A + B, d(AB) sera la droite qui relie A et B, r(AB) la demi-droite de

d(AB) qui commence en A et passe par B. Si A + B+C et si r(BA) n'est pas la
demi-droite opposee ä r(BC), a(ABC) sera la region angulaire convexe fermee
deiimitee par r(BA) et r(BC) et XABC la mesure angulaire de a(ABC). Donc
0< <ABC< n toujours.
L'enveloppe convexe d'un ensemble S sera k(S). En particulier, si A,B,C,... sont
des points, k(ABC.) sera le polygone convexe le plus petit qui contient A,B, C...;
k(ABC) sera le triangle ayant A,B, C comme sommets.
Le cercle que nous considerons sera K, son interieur et exterieur int(ü_) et ext(Jt).
Si un chemin est donne par/: [a,b]-+E2, et X=f(t), Y=f(s), on ecrira X< Y si

t<s.

5. Soit d'abord & un chemin quelconque, donne par c: [a,b]-+E2. [a,b] est union
de c~l(K), c~l(int(K)) et c~l(ext(K)); la topologie nous enseigne que c~l(int(K))
et c~l(ext(K)) sont composes d'intervalles ouverts dans [a,b], c~x(K) est composE
d'intervalles fermes dans [a,b], et en plus, s'il y a une infinite de tels intervalles,
des points d'accumulation. Je denoterai les chemins correspondants aux intervalles de

c~l(K), c~l (int(AT)) et c~l(ext(K)),parjx,j2J3 respectivement, aprEs avoir ajoutE ä
chacun d'eux son point initial et terminal, si nEcessaire.

6. ConsidErons maintenant unjx d'une courbe minimale &.jx est un are sur K, pas
tout K. Si les extrEmitEs de l'arc ne sont pas le point initial et le point terminal de
jx, une partie de l'arc est parcourue deux fois, ce qui permet un raecourcisse-
ment par une corde. Donc pour 6 minimale, les jx sont des arcs de K parcourus
simplement. Les j2, Etant k 1'intErieur du cercle, oü il n'y a pas de tangentes, sont
clairement des cordes ou des segments de cordes.

7. II nous reste les j3 k considErer. Soit d'abord Xeext(K); soient t+ et t_ les deux
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Figure 4

tangentes de X k K, telles que vu de X,K soit k gauche de t+. Soient P+(X) et

P„(X) les points oü t+ et t__ touchent K (fig. 4). Pour XeK, on Ecrit P+(X)
P„(X)=X. Alors _P+ et P_ sont des apphcations continues de Kuext(K) sur K.

Chaque P+ (j3) et P_ (J3) est un are fermE sur K, et si j3 a un point sur K,
P+(j3)uP_(j3) est un are fermE sur K. Soit maintenant X0e&next(K), et t une
tangente qui sEpare K de X0 proprement, donc XQ$t. Supposons, pour simplifier,
que X0 n'est pas terminal ou initial sur S. II existe Y,Z sur S, Y<X0<Z tels

que pour Y^X^Z, X soit aussi sEparE de Kpar t proprement. Soient XX,X2,X3,X4
quatre points, Y^XX^X2^X3^X4^Z, pour lesquels minimum et maximum de

P+ et P_ sur le chemin {Xe(£,\ Y^X^Z} sont atteints. Alors le chemin segmen-
taire YXXX2X3X4Z rencontre les mEmes tangentes et est strictement plus court
que tout autre chemin contenant Y,XX,X2,X3, X4,Z dans le mEme ordre. Donc il suit

que chaque j3 est une succession de segments. Nous appelons AB un segment
maximal de 6, si AB ne fait pas partie d'un segment A'B' de © contenant AB
proprement.

8. II est utile de considErer le problEme d'une fa^on diffErente. Soit D un domaine
compact et convexe dans le plan E2. Les droites de soutien de D sont les droites /
qui intersectent D de teile fa£on que D se trouve complEtement dans l'un des deux
demi-plans fermEs dEfinis par /. Soit S un ensemble connexe. Alors D est dans

k(S) si et seulement si S intersecte toutes les droites de soutien de D. En
particulier si D est bordE d'une courbe lisse, les droites de soutien sont les tangentes
ä la courbe du bord.
NotreprobUme se ramine ä trouver le chemin ß leplus court tel que K^ k (S).
Rappelons que k (SxuS2) est l'union des segments XY avec Xe k (Sx) et Ye k (S2).
On dira que l'arc @ du chemin S est ripititif si ou bien JC_= k (g\@) ou bien
©\@ intersecte toutes les tangentes de K. En particulier @ est rEpEtitif si @ _= k (©\@).
Un are ripetitifest toujours un segment droitparcouru simplement.

9. Soit PeÄ'ng, t la tangente en P, et soit ßeg proprement separi de K par t,
c'est-ä-dire Q est ä Vintirieur du demi-plan defini par t qui ne contient pas K. Alors
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Figure 5

prEs de P, © est un segment droit. Car si @ est un are de © contenant P, et
contenu dans PintErieur du triangle k(P+(Q)QP~(Q)) (fig- 5), il doit y avoir des

points X, Y dans les rEgions hachurEes, avec X, Yek(&\(S). Alors (B(^k(YQX)
_= k (S\@), donc S est rEpEtitif, donc un segment.

10. Les considErations du § 8 nous permettent d'exclure les situations impossibles
suivantes:
Imp. a): Deux segments AB et CD non colinEaires qui s'intersectent en un point
intErieur ä au moins l'un des segments AB et CD. Car dans la figure 6, k (AB u DC)

k(DBuAC). On obtient un raecourcissement en remplasant AB et CD par CA
et DB et en changeant la direction d'une partie de 6.

*

a
Figure 7

Imp. b): Deux segments consEcutifs ABC formant un angle tel que la rEgion
angulaire opposEe contient un point X de K ou de k((£\ABC), X+B. Car dans
la figure 7 soit S=(&\ABC)vAvC9 ©=^5Cu5. II existe Qek(S) tel que
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XePQ, Pek(ABC); alors ABC^k(QAC), ABC est rEpEtitif et doit Etre remplacE
par le segment A C, plus court que ABC.
Imp. c): Un segment AC tel que C est point terminal ou initial de ©, tel que
r(AC) intersecte K au-delä de C. Seule exception: C est le point initial imposE du
problEme (P).
Imp. d): Deux segments qui coincident, dont au moins l'un est suivi par un
segment de direction diffErente (fig. 8).

w

V

V

Figure 8

Imp. e): Deux segments consEcutifs A'BC tels que K est contenu dans a(A'BC).
Car si A et C sont k 1'intErieur de A'B et CB resp., assez prEs de B, l'on voit
facilement que d(AC) sEpare B proprement de K et que ABC peut Etre remplacE

par _4C, plus court.
Imp. f): Deux segments consEcutifs ABC, tels que K soit contenu dans une des

rEgions angulaires supplEmentaires ka(ABC), resp. demi-plans dEfinis par d(AB) si

r(BA)=*r(BC). Seule exception: A CeK, et d(AB) est tangente ä K. Nous traitons
ici le cas non dEgEnErE oü r(BA)+r(BC), et ABC=ext(K) (fig. 9). On suppose
que BA et BC soient maximaux et que d(BA) sEpare K et BC. Soient les tangentes

<_

\

Figure 9
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tx et t2 de A et B comme dans la figure. Pour C on a les possibilitEs Cq,Cx,C2.
BC2 est rEpEtitif, donc C+C0. Si C=CX, BA' est rEpEtitif, donc BA n'est pas
maximal. Donc: C=C2. Si C est point terminal de ©, BC est superflu (car le seul
point terminal de © imposE est le centre de K). Regardons la suite de © au-delä
de C. Si c'est un segment CDX, avec Dx proprement sEparE de K par tx, BA ne peut
pas Etre maximal. Si |>ar contre la suite est CD2 avec D2 dans le mEme demi-plan
fermE (dEfini par tx) que K, BCD2 est rEpEtitif, ce qui n'est pas possible.

11. On est maintenant en mesure de dEterminer la forme qu'un j3 peut avoir.
Soit AB un segment maximal de j3 tel que d(AB) n'intersecte pas K. D'aprEs
imp.b, imp.e et imp.f, ou bien B est point terminal ou bien © se poursuit
au-delä de B par un segment dirigE vers K. De mEme pour A. Si AB^j3 est tel
que d(AB) intersecte K [disons que r(AB) intersecte K], alors par imp.c et imp.b,
B doit Etre sur K. Si de plus d(AB) n'est pas tangent ä K en B, le segment AB
doit se prolonger dans lnt(K) (d'aprEs le § 9), au-delä de B. A peut Etre terminal.
Si A n'est pas terminal, © se poursuit au-delä de A par AC, CeK, ou par un AC
tel que d(AC)^ ext (K), le cas considErE plus haut.
On trouve les sept possibilitis suivantespour lesj3 (fig. 10):

IVa' JEI
^

V
VI

Figure 10
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Les prolongations dans 1'intErieur de K sont indiquEes. Des angles identiques sont
indiquEs par des lettres identiques. On a aussi indiquE les angles droits.
L'EgaütE des deux angles ß dans le cas V, pour prendre un exemple, est du au
fait ElEmentaire suivant: si X, Y sont deux points du mEme cötE de la droite d,
le chemin le plus court entre X et Y, qui passe par d, consiste en deux segments
XZ, YZ avec Zed, tel que XZ et YZ forment le mEme angle avec d. (L'explica-
tion des angles droits indiquEs est encore plus simple.) Dans le cas IV, nous pouvons
avoir e 0 comme cas limite. On voit facilement que

a^ß + 8, ß^a + y. (2)

On peu aussi montrer 2ß + 2a + e^n, mais on n'utilisera pas ce fait.

12. On a montrE que les jx,jt,j3 sont des arcs trEs simples de ©; il nous reste ä

montrer que des configurations compliquEes ne peuvent se produire par des
accumulations dejxJ2,j3 sur Kn 6. Nous montrons d'abord:
Si AB est un j2 de ß, c'est-ä-dire une corde ou un morceau de corde de K,
et BeK, alors B n'est pas point terminal de ©, et la continuation de © se fait sur
un segment BC; Ceext(K), BeAC, c'est-ä-dire © continue droit en avant sur
d(AB). D'abord, si B Etait terminal, soit A'eABnint(K), @ (G\_4'jE?)u A'. @

rencontre toutes les tangentes, sauf peut-etre celle de B. Mais comme @ est fermE,
eile rencontre aussi celle de B par continuitE, donc_4'2? serait superflu. De la meme
fa<jon la suite de ß ne se fait pas par un autre j2. Les considErations qui suivent
se rEfErent ä la figure 11, t est la tangente en B, que nous supposons horizontale.
S'ily a un 7g 6, proprement sEparE de K par t, l'affirmation dEcoule du§ 9. Autre-
ment il y aura un Z>B, tel que @ {_Ye6|Z^Ar^_5} se trouve dans le rectangle
k(PQRW), oü R, WeK et P,Qet, \QB\ et \PB\ petits. On suppose *(A'BP)
^n/2: Pour passer de k(QBTR) k k(PBTW), © devra passer par B, car @ ne

peut pas croiser_4'2? ä 1'intErieur d'aprEs imp.a. Si @ passe indEfiniment des deux
cötEs de A'B, il doit y avoir une infinitE de boucles b, avec dEpart et arrivEe en B,

VGL

ft vr

Ä
Figure 11
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dans k(PBTW). Soit b une teile boucle avec Elongation horizontale \BS\. Pour BP
assez petit, le chemin A'SB est plus court que les chemins A'B et b ensemble, car

\A'S\ + \BS\ <- --h |_S_S'I <- -- \BS\ + longueur (6)
cosy cosy

\A'B\
cosy

¦- \A'B\ siny + longueur (b) < \A'B\ + longueur (b)

si y est assez petit. Donc si b est la boucle d'Elongation horizontale maximale,
on peut remplacer A'B par A'SB et omettre toutes les boucles dans k(PBTW).
On peut donc supposer que @ se trouve entiErement du meme cötE de A'B, disons
dans k (QBTR). Mais dans ce cas @ ___ k (QBR). Car si X est un point dans le triangle
k(BTR) sans RB, X est sur une corde j2 qui doit forcEment intersecter RW ou BT
k 1'intErieur, sauf si S__-y2, un cas que nous avons dEjä exclu. Soit maintenant t/e@,
le plus ä gauche pour tout @. Nous remplasons A'Bu{Xe&\ U^X^B} par A' VU,
qui rencontre toutes les tangentes rencontrEes par A'B\j{Xe(B\ U^X^B}, qui a

une longueur ^ \A'B\ + \BV\, tandis que, avec co ^(A'BV),

\AA'V\ + | VU\ \A'B\cosö+ | VB\cos(n-co-ö)+ | VU\
^ \A'B\cosö+ | VB\ \cos(co + ö)\ + | VB\\ga<\A'B\ + \ VB\

si a et 8 sont assez petits. Celä dEmontre l'affirmation.

13. Chaque j=jx ouj3 «couvre» un ensemble de tangentes, dont les points d'intersection

avec K forment un are P+(j)vP_(j) sur le cercle K. Appelons cet are P(j).
On prEtend: PQ) n'a pas de points interieurs en commun avec PQ') si j+f. Celä
est clair sij ou/ est uny'j, donc un are de K, car on peut remplacer une partie
de ce jx par une corde plus courte. Donc soient j et / des j3. Clairement
P(j)£P(j'), autrement j est rEpEtitif. Donc on a une Situation comme dans la
figure 12. Si j est un j3 de type V, figure 10, on peut raecourcir en coupant ä

?<i

Vi

Figure 12

travers l'angle formE par © en C. Si j3 est du type IV, figure 10, on peut faire
descendre C le long de la tangente gauche, ce qui donne un raecourcissement,
sauf si ß a + y. Et ainsi de suite. On obtient la Situation suivante, comme seule

possibilitE (fig. 13): j contient le segment b=BD, avec ß^n/2, et f contient le

segment a=AC avec a ^n/2. Comme dans les dEmonstrations du § 10, si S— &\a\b,
on trouve des points X, Y, We k (S) dans les rEgions angulaires indiquEes, pour
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_.GLt.

Figure 13

qu'on ait R,Q,P respectivement dans k(ß). Mais alors a,b^k(ABWXY), et a\A et
b\B sont rEpEtitifs, aussi bien que leurs prolongements jusqu'aux tangentes tx et t2

resp., ce qui entrainera forcEment un croisement non permis. Observons qu'on a,

pour la premiEre fois, utilisE le fait que K est un cercle, ou plutöt que les normales
aux tangentes en Q et P se rencontrent en Zeint(K). Jusqu'ä prEsent, tout pou-
vait se faire pour des K lisses, convexes et ne contenant pas de segments droits.

14. On voit facilement, de ce que nous venons d'Enoncer, que sij=jx ouj3, ©V
se trouve complEtement du mEme cötE que K par rapport ä chaque tangente qui
touche K en P(j), c'est-ä-dire dans la partie non hachurEe du plan dans la figure 14.

t

P( ^

3

x

Figure 14 Figure 15
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II s'ensuit que si y__9_=© est un segment maximal contenant une corde PQ de K,
alors ni A ni B n'est terminal, et la continuation de © ä partir de A et k partir de B
ne se fait pas dans le meme demi-plan dEfini par d(AB). Autrement, on aura la
Situation de la figure 15.

La rencontre de © avec la tangente t\\AB doit se faire dans la rEgion hachurEe,

que © ne peut atteindre ni de X ni de Y sans un croisement avec AB.

15. Nous montrons que © consiste en un nombre fini de jx,j2,j3. Dans le cas

contraire, il existe un XeKniS, tel que pour tout Y,Zei£, Y<X<Z, il y a une
infinitE de jx,j2,j3 entre Y et Z, disons entre Y et X. Supposons qu'il n'y a pas
de cordes j2 dans ce nombre. Alors lesy3 sont du type II' de la figure 10. Mais
chacun de ceux-lä a la longueur 2, donc il n'y en a qu'un nombre fini, donc, si Y
est assez prEs de X, il n'y aurait que desjx, donc {WeÜ\Y^W^X} serait un
are sur K et appartiendrait ä un seu^. Donc, il y a un nombre infini de cordes

j2 s'approchant de X. D'aprEs le § 14, cette approche doit se faire en zig-zag, comme
en la figure 16. Lesy2 ont une direction presque identique ä celle de la tangente / en
X. A chaque j2 on aurait attachE un j3 de la forme III, IV ou V, figure 10.

X
____£^<2/ X

Figure 16

Figure 17

Pour unj3 de la forme V, on aurait en figure 17, 2n e + ö + n — a + n — ö, donc

a+ß e + ö. Mais a+ß=n-S, donc ö n/2-s/2; pour |e| petit, ö^n/2, etP(j3)
aurait une longueur ätt/2, donc trop grande. De mEme on aura des contradictions

pour desj3 de type III et IV. On a donc trouvE: © est reunionfinie de cheminsjhj2J3.

16. On peut maintenant demontrer les thioremes 1 et 2. Dans le thEorEme 1 on a

un point terminal libre, dans le thEorEme 2 les deux points terminaux sont hbres.
On voit sans autre qu'un arc^ sur K ne peut Etre chemin terminal de ©. On sait
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dEjä que lesj2 ne sont pas terminaux, sauf pour le point terminal fixE du thEorEme 1.

Des y3 du type I ne sont pas terminaux, selon le § 14. Donc, il reste pour terminal
libre: lesy3 de type II ou VI.
Soit le segment terminal libre uny3, type II, donc une tangente de longueur 1.

II peut etre suivi d'uny3, type III, ou d'un arcy,. Pour le premier cas on a la
figure 18. Mais ici on voit que ABC peut Etre remplacE par BAC, plus court et
d'enveloppe convexe Egale. Le mEme argument est valable si © se termine par un
j3 de type VI. La seule possibilitE est donc une tangente de longueur 1 suivie d'un

3

Figure 18

K *
V

O*

ni«k

Figure 19

arc. On montre que © ne comporte pas de cordes entiEres. Autrement on prend la
premiEre aprEs l'arc. On doit obtenir la figure 19. Soit a + co ^ n/2. Si

\RE\<
n-2

n-2

on vErifie que le cercle de centre E et de rayon \ER\ +(n/2)— 1 passe par V (sur
le diamEtre RM), donc

|i_7>|>|£l?|+y-l. (3)

Cela permet de remplacer le chemin ABCDE (BC un arc) par DCBRE, avec CBR
un arc sur K. La longueur du premier est 1 + co + tga + | DE | > 1 + co + tga + \ ER |

+ (n/2)- 1 co + tga + (n/2)+ \ ER | qui est la longueur du deuxiEme.
Si

\RE\>-
n-2

n-2 4 '

on considEre le thEorEme 2 d'abord. La longueur du chemin sera au moins
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\AB\ + \BE\>1+\RE\>1+ --^-^>n + 2,
n — 2 4

donc plus long que le chemin du thEorEme.
Pour le thEorEme 1, la courbe doit revenir sur le centre ä partir de E. Donc le
chemin sera plus long que \AB\ + \BE\ + \EZ\ >2(1+ \RE\)>2 + 2n, donc plus
long que le chemin du thEorEme 1.

Soit maintenant co + a>n/2. Pour le thEorEme 1, on voit que DE barre la route ä ©

pour revenir sur le centre. Pour le thEorEme 2, on commence de l'autre point
terminal, mais on aura forcEment co'+a'<n/2, d'aprEs le § 14, donc on sera
ramenE au cas prEcEdent.
Maintenant que l'on sait que le seuly2 ne peut Etre que la demi-corde menant au
centre, pour le thEorEme 1, on ne peut donc obtenir autre chose que les chemins
dEcrits dans les thEorEmes.

Remarques: a) Le problEme qui a EtE considErE peut Etre largement gEnEralise
en remplacjant par exemple K par un convexe quelconque, ou les tangentes par
des cercles tangents, etc. L'enonce general du problEme: Dans un espace metrique
connexepar arcs, on donne unefamille $ defermes F, et un ensemble connexe compact
Kqui intersecte tout Fe 3. Trouver le chemin leplus court qui intersecte tous les F.

b) En dimensions plus hautes, si En est l'espace euclidien de n dimensions, Sn„x
la sphere unitE, /„ la longueur du chemin le plus court qui rencontre tous les

hyperplans tangents ä Sn_x, ou du chemin © le plus court avec £„_ !_=&(©),
alors par induction on trouve

l3>yJ\2 + VT+jn) +4«7,6628

/w^const. + 2w.

Par construction de chemins particuhers on trouve:

ln^ const.«3/2

/3^4+ yVT • 3 • n% 10,6643.

Les bornes supErieures me semblent Etre plus prEs de la rEalite
c) En espace de Hilbert de dimension infinie, disons if=/2, le cas se prEsente un
peu diffEremment. Si S est la sphEre unitE, il n'existe pas de chemin de longueur
finie, pas mEme un chemin compact quelconque © tel que S___/c(ß), car k(&) est

compact, mais S ne l'est pas. II faut donc considErer des ensembles convexes
compacts K^H. Dans ce cas, il existe certainement un chemin compact ß, que
l'on peut construire facilement, tel que ^(ß)^^. p'aprEs un thEorEme de Hahn
et Mazurkiewicz, il existe mEme une application continue/: [0,1] -> H, avec Im/= K
(voir [1])]. Mais cette courbe ne sera gEnEralement pas de longueur finie. Si

K~\(xx,x2,...)\f,jxj^l},
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K est compact et convexe, mais toute courbe ß avec /c(ß)__.AT est de longueur
infinie. Si

K={(xx,x2,...)\tjmx2<l},

il existe ß de longueur finie avec k(ü)^K. En plus, on peut dEmontrer que si

K est convexe compact et ß de longueur finie avec k(ü)^K, alors il existe
une courbe minimale. Cela se fait comme dans le § 3. II faut simplement montrer
que si {ßw} est une suite minimale de courbes, alors (Jf ß„ est relativement
compacte. H. Joris, GenEve
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Parabeln mit gemeinsamem isotropem Krümmungskreis

Nach Kickinger [2] liegen die Brennpunkte der Parabeln mit gemeinsamem
Krümmungskreis k auf einem Kreis, der k im Oskulationspunkt von innen
berührt und dessen Durchmesser gleich dem halben Radius von k ist. Im
folgenden zeigen wir, dass dieser Sachverhalt sinngemäss auch in der isotropen
Geometrie zutrifft.

1. Wir gehen von einem isotropen Kreisy aus, dessen Darstellung o. B. d. A. zu

x2

y=tr\+-^r2 (1)

gewählt sei, wobei rx,r2 hnear unabhängige reelle Vektoren sind und r ein reeller
Parameter von j sei. Der Vektor r2 gibt dabei die isotrope Richtung der sich -
im Sinne von F. Kleins «Erlanger Programm» - auf die Gruppe G5 der isotropen
Ähnlichkeiten stützenden isotropen Ebene an. Für eine Einführung in die isotrope
Geometrie sei auf die elementare Darstellung von Strubecker [4] verwiesen.
Im affinen Koordinatensystem {o;rx,r2} haben wir gemäss (1) für das j im Punkte
t=0 oskulierende Kegelschnittnetz

x2x + ax\ + lßxxx2-lx2=0, a,ßeR, (1)

dessen ParabelnP(ß) sich füra—ß2 ergeben.
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