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Die auf dem Intervall [ —x,+ i, — C] definierte Funktion g3(x):=g2(-jc) erfüllt
ebenfalls die Voraussetzungen des Hilfssatzes, also ist {(x + xx+x)g3(x)\ -xx+x<>x<>
—Q ein Intervall, folglich nach (4) auch v ([(,*,+ {]).
Die Intervalle v([xl_1,0) und v([C,xx+x]) enthalten nach (4) beide die Null. Damit
ist ihre Vereinigung v([x,_ x, xx+ x]) ebenfalls ein Intervall, also der Satz bewiesen.

A. Mrose, FU Berlin, I. Math. Inst.
W. Ripka, Lörrach

Kleine Mitteilungen

Berandete 2-Mannigfaltigkeiten aus zwei ebenen Polygonen

Geschlossene nichtorientierbare 2-Mannigfaltigkeiten wie z.B. projektive Ebene
oder Kleinsche Flasche lassen sich bekanntlich nicht durchdringungsfrei in den
dreidimensionalen euklidischen Raum E3 einbetten, während dies für berandete wie das
Möbiusband ohne weiteres möglich ist.

Abb.l



38 Kleine Mitteilungen

Berandete 2-Mannigfaltigkeiten lassen sich sogar in zwei sich schneidende Ebenen
des E3 einbetten. Für orientierbare 2-Mannigfaltigkeiten scheint diese ebenso
einfache wie überraschende Eigenschaft schon länger bekannt zu sein; für nichtorien-
tierbare offenbar nicht.

Satz. Jede berandete topologische 2-Mannigfaltigkeit lässt sich durch zwei ebene Polygone

(durchdringungsfrei) imE3 darstellen.

D.h. für die Mannigfaltigkeit M und die Polygone Px, P2 gilt: set(Pxl)Pf) homöomorph

zu M. Dabei ist ein ebenes Polygon eine zusammenhängende kompakte
Teilmenge der eukhdischen Ebene, deren Randmenge aus endlich vielen Strecken
besteht.

Beweis: Es genügt offenbar, Mannigfaltigkeiten mit einer Randkomponente zu
betrachten. Wie üblich seien / bzw. g die Eulercharakteristik bzw. das Geschlecht der
2-Mannigfaltigkeit M. Der Beweis erfolgt durch Angabe einer Konstruktion mit den
erforderhchen Eigenschaften.

Abb
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1. Sei M nichtorientierbar (Abb. 1 mit g 2). Das obere Polygon in Abb. 1 ist ein
Dreieck, bei dem an der Seite ab g Dreiecke ausgespart sind.
Das untere Polygon besteht aus g+l längs der Strecke ab zueinander versetzten
Dreiecken. Beide Polygone haben je 3 g+3 Ecken und Kanten.
Werden beide Polygone längs der Strecke ab verheftet, so fallen 2g+ 2 Ecken und
g+ 1 Kanten zusammen. Man erhält eine nichtorientierbare 2-Mannigfaltigkeit mit
einer Randkomponente, 4g+4 Ecken, 5g + 5 Kanten und zwei Polygonen.
Mit dem Satz von Euler folgt wie verlangt:

*(M) 4g + 4-(5g+5) + 2=l-g.
2. Sei M orientierbar und g>0 (Abb.2 mit g=2). Das untere Polygon in Abb.2
besteht aus 2 g Sechsecken, die längs der Strecke ab zueinander versetzt sind. Das
obere Polygon ist ein Dreieck, das mit dem unteren längs ab verheftet wird.
Man erhält eine orientierbare 2-Mannigfaltigkeit mit einer Randkomponente,
8g4-2 Ecken, 12g4-2 Kanten und 2g +1 Polygonen (von denen 2g in einer Ebene
hegen). Mit dem Satz von Euler folgt wie verlangt:

*(M)=8g + 2-(12g + 2) + 2g+l l-2g.
J. M. Wüls, Math. Inst. GH Siegen, BRD

Aufgaben

Aufgabe 801. Unter den Voraussetzungen

0<A<a<b<B, (1)

0<m<l, (2)

am.bl-m^Äm> ßl-m' (3)

gilt die Ungleichung

ma + (l-m)b<m'A + (l-m')B. (4)

Dies ist zu beweisen.
R. Boutellier, Zürich
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