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Die auf dem Intervall [—x;,;, —({] definierte Funktion g;(x):=g,(—x) erfillt
ebenfalls die Voraussetzungen des Hilfssatzes, also ist {(x+x;, 1) g3 (x)| —x;; ;<x<
—{} ein Intervall, folglich nach (4) auch v ([, x;,1]).

Die Intervalle v([x;_1,{)) und v([¢, x;,]) enthalten nach (4) beide die Null. Damit
ist ihre Vereinigung v([x;_, x;, ;]) ebenfalls ein Intervall, also der Satz bewiesen.

A. Mrose, FU Berlin, I. Math. Inst.
W. Ripka, Lorrach
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Berandete 2-Mannigfaltigkeiten aus zwei ebenen Polygonen

Geschlossene nichtorientierbare 2-Mannigfaltigkeiten wie z.B. projektive Ebene
oder Kleinsche Flasche lassen sich bekanntlich nicht durchdringungsfrei in den drei-
dimensionalen euklidischen Raum E? einbetten, wihrend dies fiir berandete wie das
Mobiusband ohne weiteres moglich ist.

Abb.1
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Berandete 2-Mannigfaltigkeiten lassen sich sogar in zwei sich schneidende Ebenen
des E3 einbetten. Fiir orientierbare 2-Mannigfaltigkeiten scheint diese ebenso ein-
fache wie iiberraschende Eigenschaft schon linger bekannt zu sein; fiir nichtorien-
tierbare offenbar nicht.

Satz. Jede berandete topologische 2-Mannigfaltigkeit ldsst sich durch zwei ebene Poly-
gone (durchdringungsfrei) im E3 darstellen.

D.h. fiir die Mannigfaltigkeit M und die Polygone P,, P, gilt: set(P;UP,) homoo-
morph zu M. Dabei ist ein ebenes Polygon eine zusammenhingende kompakte Teil-
menge der euklidischen Ebene, deren Randmenge aus endlich vielen Strecken be-
steht.

Beweis: Es geniigt offenbar, Mannigfaltigkeiten mit einer Randkomponente zu be-
trachten. Wie iiblich seien y bzw. g die Eulercharakteristik bzw. das Geschlecht der
2-Mannigfaltigkeit M. Der Beweis erfolgt durch Angabe einer Konstruktion mit den
erforderlichen Eigenschaften.
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1. Sei M nichtorientierbar (Abb.1 mit g=2). Das obere Polygon in Abb.1 ist ein
Dreieck, bei dem an der Seite ab g Dreiecke ausgespart sind.

Das untere Polygon besteht aus g+ 1 lings der Strecke ab zueinander versetzten
Dreiecken. Beide Polygone haben je 3g+ 3 Ecken und Kanten.

Werden beide Polygone lings der Strecke ab verheftet, so fallen 2g+ 2 Ecken und
g+ 1 Kanten zusammen. Man erhélt eine nichtorientierbare 2-Mannigfaltigkeit mit
einer Randkomponente, 4 g+ 4 Ecken, 5 g+ 5 Kanten und zwei Polygonen.

Mit dem Satz von Euler folgt wie verlangt:

rM)=4g+4—(5g+5)+2=1—g.

2. Sei M orientierbar und g>0 (Abb.2 mit g=2). Das untere Polygon in Abb.2 be-
steht aus 2g Sechsecken, die lings der Strecke ab zueinander versetzt sind. Das
obere Polygon ist ein Dreieck, das mit dem unteren lings ab verheftet wird.

Man erhélt eine orientierbare 2-Mannigfaltigkeit mit einer Randkomponente,
8g+2 Ecken, 12g+2 Kanten und 2g+ 1 Polygonen (von denen 2g in einer Ebene
liegen). Mit dem Satz von Euler folgt wie verlangt:

x(M)=8g+2—(12g+2)+2g+1=1-2g.
J.M. Wills, Math. Inst. GH Siegen, BRD

Aufgaben
Aufgabe 801. Unter den Voraussetzungen
0O<A<a<b<B, 1
O<m<1, )
am-bl=m=4m . Bl-m 3)
gilt die Ungleichung
ma+(1-m)b<m’A+(1—-m’")B. @)

Dies ist zu beweisen.
R. Boutellier, Ziirich



	Kleine Mitteilungen

