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m=2 ist). Also gibt es ein h, so dass M (hx*#0, ebenso gibt es ein k, so dass
M (k2%)#0 ist (da die Folge (2*) nicht gleicliverteilt mod 5 ist). Deshalb gilt nicht
fur jedes Paar (h,k)eJ?, dass M (hx?+ k2%)=0ist (II, III).

L. Kuipers, Mollens
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Die Intervalleigenschaft der Ober- und Untersummenmengen
einer beschrankten Funktion

Zur Definition der Riemann-Integrierbarkeit einer auf einem Intervall [a,b] be-
schrinkten, reellwertigen Funktion f/ geht man gewohnlich von Untersummen

ii(-xi—xi—l) inf  f(x)

Xi-1SX< X,

und den entsprechend mit den Suprema gebildeten Obersummen aus. Werden
hierbei alle endlichen Zerlegungen {x;=a<x,<-:- <x,=b} (n=2) zugelassen, so
erhidlt man die Mengen U aller Untersummen bzw. O aller Obersummen beziiglich
fund [a, b].

Fiir die Frage nach der Riemann-Integrierbarkeit werden U und © bekanntlich
nur auf die Ubereinstimmung von supU und inf© hin untersucht. Es soll im
folgenden die Beschaffenheit der Mengen U und © unabhingig von der Existenz
des Riemann-Integrals untersucht werden. Betrachtet man einpunktige Mengen als
(entartete) Intervalle, so gilt ndmlich:

Satz. Sei f eine auf dem Intervall [a,b] reellwertige, nach unten beschrinkte Funktion.
Dann bildet die Menge aller zugehiorigen Untersummen ein Intervall.

Entsprechendes gilt fiir © im Falle einer nach oben beschrinkten Funktion. Die
Beschrianktheit von f nach unten bzw. oben wurde vorausgesetzt, weil andernfalls
die Mengen U bzw. O leer wiren.

Zum Beweis des Satzes benstigen wir den
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Hilfssatz. Sei g eine auf [a,b] monoton fallende Funktion mit g(b)=0. Dann ist
{(x—a)g (x)|xe[a,b]} ein Intervall.

Beweis des Hilfssatzes: O.B.d.A. kann a=0, b=1 angenommen werden. Dann ist
zu zeigen, dass & (x):=x g (x) das Intervall [0, 1] auf ein Intervall abbildet.

Fiir konstantes 4 ist nichts zu zeigen. Wir nehmen also an, ein Wert ¢ im Inneren
des Intervalls [infh, supk] werde von h nicht angenommen und fithren dies auf
einen Widerspruch.

Sei

A:={x|h(x)<t},

K die Vereinigung aller Intervalle [0,a], a >0, die ganz in 4 liegen. Wegen A (0)=0
und ¢>01ist 0e 4, also K+ @. Es sei m:=sup K.

Falls m=0, also K= {0} ist, liegen wegen der Definition von 4 in jeder Umgebung
von 0 Punkte x mit 4 (x)=¢, so dass aus >0 die Unstetigkeit von 4 in x=0 folgen
wiirde. Wegen der Beschrinktheit von g ist 4 (x)= x g (x) aber in x =0 stetig, so dass
der Fall m=0 nicht eintreten kann; m ist demnach positiv.

Nach Definition von m ist

[0,m)cA. (D

Fiir jedes x € (0, m) ist daher wegen der Monotonie von g

h(x)

g(m<g(r)=—""<

L
x bl
so dass auch g(m)st/m folgt. Es muss sogar g(m)<t/m gelten, da sonst t=h(m)

im Widerspruch zur Annahme iiber ¢ folgen wiirde. Somit ist fiir ein geniigend
kleines positives &

t
8 <rs

Dabher gilt fiir alle x € [m,m+ 4]

{ t
gx)<g(m)< P

also [m,m+4] < A.

Zusammen mit (1) folgt [0,m + 6] = A, im Widerspruch zur Definition von m. Unsere
obige Annahme ist demnach falsch, so dass 4 jeden Wert im Inneren des Intervalls
[inf A, sup h] annehmen muss. Hiermit ist der Hilfssatz bewiesen.

Zum Beweis des obigen Satzes betrachten wir fiir n>2 die Menge U, derjenigen
Untersummen von f, die man erhélt, wenn man nur Zerlegungen mit hochstens n
Teilpunkten zuldsst. Wegen

u=U u,, e, @=2)

nx2



36 A. Mrose, W. Ripka: Die Intervalleigenschaft der Ober- und Untersummenmengen

geniigt es offenbar zu zeigen, dass U, fiir jedes n=2 ein Intervall ist. Dies beweisen
wir durch vollstindige Induktion beziiglich n.

Fiir n=2 ist die Behauptung trivialerweise richtig; denn man hat dann nur die aus
den beiden Intervallendpunkten a und b bestehende Zerlegung, also ist U, das
Intervall {(b— a)inff}.

Nehmen wir also an, fiir ein n>2 sei U, ein Intervall. Sei P eine beliebige, aber
feste Zerlegung des Intervalls [a, bl mit genaun+ 1 Teilpunktena=x;<x,< -+ <X,
=b und uell,,; die zugehdrige Untersumme beziiglich /. Wegen n>2 enthalt P
einen von a und b verschiedenen Teilpunkt x;, also sind x;_y, x;, € P. Wir be-
trachten fir x;,_;<x<wx;,, die Zerlegung P,, die aus P dadurch entsteht, dass
x; durch x ersetzt wird.

Wir definieren
gi(x):= inf f()— inf  f($)
x;—1<¢<x X 1S ES X4
g (x)= inf f(&)— inf  f()
x<E< x4 X;1<E<x,4
und

v(x):=(x—2x;_1) g1 (X)+ (xi+1—X) 82(x).
Dann gilt fiir die zu P, gehorige Untersumme u (x)
u(x)=u(x)—v(x)+v(x). )

Wir werden jetzt durch Anwendung des Hilfssatzes zeigen, dass v([x;_, x;,;]) ein
Intervall ist. Da dann nach (2) auch u([x;_, x;;]) ein Intervall ist, welches
u(x;—)el, und u(x;)e U, enthilt, ist dann der Beweis des Satzes erbracht.

Nach Definition von g; und g, folgt

min {g, (x), 8> (x)}=0 X 1=x<Xx;41), (3)

also existiert, da g; monoton fallend und g, monoton steigend ist, ein { mit
Xx;_1S{<Xx;,150,dass

g1(x)=0 C<x<xi41),
8(x)=0  (x;-1=x<{).

Wegen (3) ist wenigstens einer der beiden Werte g;({),g,(¢) Null. O.B.d.A.
kann g;(()=0 angenommen werden - sonst betrachte man die Funktion
J(x;—1+x;41— x) anstelle von f. Somit gilt

_ Jx=x_1)gi(x) (xi—1=x<{)
V&) {(x,-+1—x)g2(x) C<x<x1s1). @

Nun muss I:=v([x;_,,{)) ein Intervall sein; denn sonst gibe es ein 7¢I und ein
n*=v(*)el mit 0O=min/<n<n*<supl. Nach dem Hilfssatz folgt aber [0,7*)

cv ([xi- 1s C*])
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Die auf dem Intervall [—x;,;, —({] definierte Funktion g;(x):=g,(—x) erfillt
ebenfalls die Voraussetzungen des Hilfssatzes, also ist {(x+x;, 1) g3 (x)| —x;; ;<x<
—{} ein Intervall, folglich nach (4) auch v ([, x;,1]).

Die Intervalle v([x;_1,{)) und v([¢, x;,]) enthalten nach (4) beide die Null. Damit
ist ihre Vereinigung v([x;_, x;, ;]) ebenfalls ein Intervall, also der Satz bewiesen.

A. Mrose, FU Berlin, I. Math. Inst.
W. Ripka, Lorrach
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Berandete 2-Mannigfaltigkeiten aus zwei ebenen Polygonen

Geschlossene nichtorientierbare 2-Mannigfaltigkeiten wie z.B. projektive Ebene
oder Kleinsche Flasche lassen sich bekanntlich nicht durchdringungsfrei in den drei-
dimensionalen euklidischen Raum E? einbetten, wihrend dies fiir berandete wie das
Mobiusband ohne weiteres moglich ist.

Abb.1
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