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Einige Bemerkungen zu einer Arbeit von G. J. Rieger

In [1] beweist G.J. Rieger den folgenden Satz.

Satz 1. Es sei seN, a;e Z(1<j<s), bjeZ(1<j<s),0#aecZ, meN, (m,b;...b,a)=1,
h(m)=[g(by;m), ..., g(bs; m)]; fiir xeZ mit 0<x<[m,h(m)] liefert a; b3+ ---a b*
+ax jeden Rest modm gleich oft und damit genau [m, h (m)]/m-mal. [Hier ist g (b;; m)
die kleinste Zahl aus N mit 55¢:™=1 (mod m)].

In der vorliegenden Arbeit beweisen wir einen dhnlichen Satz:

Satz 2. Es sei seN, a;eZ(1<j<s), bjeZ(1<j<s), 0#acZ, meN mit m>2,
(m,h(by;m)...h(bg; m)ai = 1. Dann ist fur j=1, ..., s die Folge (ax+a;b}), x=1,2,...
gleichverteilt modm. Sind iiberdies die Zahlen h (by; m), ..., h(by;, m) relativ prim, dann
ist die Folge (ax+a b+ ---+a,b}), x=1,2,... gleichverteili modm. [Hier ist
h(b;; m) die (kleinste) Periode der Folge der Reste mod m der Folge (5}).]

Beispiel: Es sei m=14. Dann hat man fiir b=2, ..., 13 bzw. h(b*; m)=3,4,2,6,2,1,1,
3,6,3,6,2. Satz 1 impliziert die Gleichverteilung mod14 jeder der Folgen
(ax+a;b}), b;=3,5,7,8,9,11,13. Satz 2 gibt die Gleichverteilung mod 14 jeder der
Folgen (ax+a;b}), b;=2,7,8,9,11. In den Fillen b;=4,6,10,12 kann man nicht
entscheiden auf Grund der Sédtze 1 und 2 [jedoch sind diese Folgen gleichverteilt
mod14 (1)]. Satz 1 impliziert auch noch die Gleichverteilung mod 14 der Folgen
(@ax+a;3*+ay 5+ a3 7"+ a, 9"+ a5 11* + a5 13¥), und kraft des Satzes 2 hat man die
Gleichverteilung mod 14 der Folgen (@ x+ a; 2"+ a, 7"+ a; 8* + a, 9%).

" Fiir den Beweis des Satzes 2 benutze ich die nachfolgenden Behauptungen (I, ..., V).
Zuerst seien einige Definitionen formuliert.

Es sei meN mit m>2, (f(n)), n=1,2,... eine Folge von ganzen rationalen Zahlen.
Die Menge {0, 1,...,m— 1} wird mit J bezeichnet. Man definiert fiir je J:

1
a(j):E(ﬂj)=13i_1’1}o.ﬁKard{nllsnsN, f(n)=j(modm)},

falls dieser Grenzwert existiert. Es existiere auch der entsprechende Grenzwert £ (j)
relativ einer zweiten Folge (g (n)) . Weiter sei y (, k)= E (f,j; 8, k)

1
=13im *]—V~Kard{n|1~<\n<N; f(n)=j, g(n)=k (modm)},

angenommen, dass der Grenzwert existiert.

Ist fur alle jeJ (alle(j,k)eJ?) a()=1/m (y(j,k)=1/m?), dann heisst die Folge
(fm) [(f(n),g(n)) ] gleichverteilt mod m in Z (Z?).

Die Folgen (f(n)) und (g (n)) heissen unabhdngig mod m in Z, wenn fiir alle j, ke J

E(f.j;:8K)=E(FfNE@kK)  (odery(,k)=a()p (k)

ist.
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Schliesslich setze man fiir heJ:

M(hf)=M (¥ ™W/m)= |im — Z e2mihf(m)jm

Noox N

falls dieser Grenzwert existiert ([2], Chap. 5).
Jetzt folgen die oben angekiindigten Behauptungen.

I. Die Folgen (f(n)) und (g(n)) sind unabhéngig mod m genau dann, wenn fiir alle
hkelJ:

Mhf+kg)=MMhfH)MKkg) (3], Prop.2.2).

I1. Die Folge (f(n)) ist gleichverteilt modm in Z genau dann, wenn M (hf)=0 fiir
h=1,2,...,m—1([2), Chap. 5, Th. 1.2).

III. Die Folge (f(n),g(n)) ist gleichverteilt modm in Z? genau dann, wenn
M (hf+kg)=0 fir alle b, ke J? mit (h, k) # (0,0).

IV. Es seien die Folgen (f(n)) und (g(n)) unabhingig modm, und es sei die Folge
(f(n)) gleichverteilt modm. Dann ist auch die Folge (f(n)+g(n)) gleichverteilt
mod m ([3], Prop. 2.3).

V. Es seien die Folgen (f(n)) und (g(n)) unabhingig mod m. Dann sind fiir jedes
Paar (h,k)eZ? die Folgen (Af(n)) und (kg(n)) unabhingig modm ([3], Prop. 1.7,
oder [4], Th. 2).

Beweis von Satz 2: Erstens sind unter der Bedingung (m,h(b;; m)) =1 die Folgen

(x) und (b7) unabhingig mod m, denn fiir jedes Paar (#,u) € Z* hat man
E(x,t;bf,u)y=E(x,0) E(b},u). *)

Gibt es kein u, fiir welches b} = u (mod m) fiir irgendein xe N, dann sind die beiden

Glieder von (*) gleich 0; 1st fr irgendein x die Kongruenz bf=u (modm) erfillt,

dann ist jede Seite von (*) gleich 1/(mh (b;; m)).

Zweitens sind auch die Folgen (a x) und (a b") unabhingig mod m (V).

Drittens ist fiir (a,m)=1 die Folge (ax) glelchverteﬂt mod m. Deshalb hat auch die

Folge (ax+a;b}) diese Eigenschaft (IV). Die Periode (modm) der letztgenannten

Folge ist gleich mh(bj;m), und da (mh(b;; m),h (b, m)) =1 ist fiir j#k, sind auch

die Folgen (ax+a b") und (a; b%) unabhanglg modm; deshalb ist auch die Folge

(ax+a;bf +a; by) glelchvertellt mod m usw.

Bemerkung 1: Die Bedingungen in Behauptung IV, dass (f(n)) und (g(n)) unab-

hidngig mod m sind, ist keineswegs eine notwendige.

Beispiel: Die Folgen (x) und (5%), x=1, 2,... sind nicht unabhéngig mod 6. Dennoch

ist die Folge (x + 5*) gleichverteilt mod 6 (Satz 1).

Bemerkung 2 ([1], Schluss): Die Folge (x2+2%) ist nicht gleichverteilt modS5.
Erstens sind die Folgen (x2) und (2*) unabhingig mod 5. Zweitens ist die Folge (x?)
nicht gleichverteilt mod 5 (die Folge (x?) ist genau dann gleichverteilt mod m, wenn
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m=2 ist). Also gibt es ein h, so dass M (hx*#0, ebenso gibt es ein k, so dass
M (k2%)#0 ist (da die Folge (2*) nicht gleicliverteilt mod 5 ist). Deshalb gilt nicht
fur jedes Paar (h,k)eJ?, dass M (hx?+ k2%)=0ist (II, III).

L. Kuipers, Mollens
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Die Intervalleigenschaft der Ober- und Untersummenmengen
einer beschrankten Funktion

Zur Definition der Riemann-Integrierbarkeit einer auf einem Intervall [a,b] be-
schrinkten, reellwertigen Funktion f/ geht man gewohnlich von Untersummen

ii(-xi—xi—l) inf  f(x)

Xi-1SX< X,

und den entsprechend mit den Suprema gebildeten Obersummen aus. Werden
hierbei alle endlichen Zerlegungen {x;=a<x,<-:- <x,=b} (n=2) zugelassen, so
erhidlt man die Mengen U aller Untersummen bzw. O aller Obersummen beziiglich
fund [a, b].

Fiir die Frage nach der Riemann-Integrierbarkeit werden U und © bekanntlich
nur auf die Ubereinstimmung von supU und inf© hin untersucht. Es soll im
folgenden die Beschaffenheit der Mengen U und © unabhingig von der Existenz
des Riemann-Integrals untersucht werden. Betrachtet man einpunktige Mengen als
(entartete) Intervalle, so gilt ndmlich:

Satz. Sei f eine auf dem Intervall [a,b] reellwertige, nach unten beschrinkte Funktion.
Dann bildet die Menge aller zugehiorigen Untersummen ein Intervall.

Entsprechendes gilt fiir © im Falle einer nach oben beschrinkten Funktion. Die
Beschrianktheit von f nach unten bzw. oben wurde vorausgesetzt, weil andernfalls
die Mengen U bzw. O leer wiren.

Zum Beweis des Satzes benstigen wir den
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