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Das rechte Glied verschwindet genau dann, wenn A4 auf dem Umkreis von A4
hegt: dann ist F4=0 nach dem Satz von Wallace. O. Bottema, Delft
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Über zwei besondere Eigenschaften von Dreiecksflächnernetzen

1. Als Dreiecksflächner sollen im folgenden Polyeder bezeichnet werden, deren
Seitenflächen gleichseitige Dreiecke sind. Bekannte Vertreter dieser Klasse von
Polyedern sind z.B. Tetraeder und Oktaeder. Von ihnen kann man sich ein Papiermodell

herstellen, indem man die in Abb. la und lb wiedergegebenen Figuren auf
ein Stück Papier zeichnet, sie entlang der Randstrecken ausschneidet, sie längs der
inneren Strecken faltet und je zwei Randstrecken geeignet miteinander verklebt.
Aus diesem Grund heissen die Figuren Tetraedernetz bzw. Oktaedernetz.

a)
Abb. 1

b)

In [1] bewies M. Jeger, dass es bei Verwendung von Papier mit ununterscheidbaren
Seiten elf verschiedene Oktaedernetze gibt. Er nutzte dabei die Tatsache aus, dass es

ebenso viele solche Netze gibt wie (in bezug auf die volle Symmetriegruppe)
inäquivalente Gerüste des Eckpunkt-Kanten-Graphen des Oktaeders. Im folgenden
wird gezeigt, dass ein solch eindeutiger Zusammenhang nicht bei allen Dreiecks-
flächnern gegeben ist, denn es gibt Dreiecksflächner, bei denen Schnitte entlang den
Kanten inäquivalenter Gerüste zu demselben Netz (als Figur betrachtet) fuhren. Bei
solchen Netzen ist daher - wie auch in der Literatur üblich - eine zusätzliche
Angabe erforderlich, welche Kanten (bzw. Ecken) beim Zusammenkleben zu
identifizieren sind.
Weiterhin wird gezeigt, dass diese Forderung auch noch aus einem anderen Grund
sinnvoll sein kann: Es gibt nämlich Netze von Dreiecksflächnern, die zu verschiedenen

Körpern zusammengeklebt werden können.

2. Wir untersuchen zunächst Netze des Tetraederzwillings, d.h. der aus zwei
Tetraedern zusammengesetzten Doppelpyramide. Diese ist - bis auf Ähnlichkeit -
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der einzige Dreiecksflächner mit sechs Flächen. Man kann nun wie folgt vorgehen:
Bezeichnet man - wie üblich - alle Figuren aus sechs (jeweils mit einer ganzen Seite)
aneinanderhängenden gleichseitigen Dreiecken als Dreieckssechslinge, dann ist
jedes Tetraederzwillingsnetz ein solcher Dreieckssechsling. Das Umgekehrte ist
nicht der Fall: Von den zwölf in Abb. 2 dargestellten Dreieckssechslingen scheiden

10
12

Abb 2
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vier (Nrn. 1-4) aus, da sie Ecken enthalten, an denen mehr als vier Dreiecke zusam-
menstossen. Die restlichen acht lassen sich zu einem Tetraederzwilhng zusammenbauen.

Bei der anderen - in [1] benutzten - Methode, bei der man zu einem gegebenen
Körper ein Körpernetz bekommt, schneidet man ein Flächenmodell des Körpers
entlang seinen Kanten geeignet auf, bis man die Oberfläche in der Ebene ausbreiten
kann. Der aus den Schnittkanten bestehende Teilgraph des Eckpunkt-Kanten-
Graphen des Körpers ist ein Gerüst dieses Graphen (vgl. [1]). Die verschiedenen
Gerüste des Tetraederzwillingsgraphen sind in Abb. 3 durch dick gezeichnete Linien
angegeben und jeweils darunter in der üblichen Baumdarstellung (die Ecken sind
nur durch ihre Eckengrade bezeichnet, da aufgrund der Symmetrie Ecken mit
gleichem Grad nicht unterschieden zu werden brauchen).
Bemerkenswert ist das unterschiedliche Ergebnis beider - aufgrund der Erfahrung
mit Würfelnetzen als gleichwertig erscheinenden - Vorgehensweisen: acht von den
Sechslingen kommen als Netze in Frage, aber neun verschiedene Schnitte gibt es.

Der Grund liegt darin, dass zwei verschiedene Schnitte (Nrn. 2, 6) denselben
Sechsling ergeben bzw. - was dasselbe ist - dass derselbe Sechsling auf zwei

\ 3

Abb. 4
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verschiedene Arten zum Tetraederzwilling gefaltet werden kann. Dabei gibt es ein
Kantenpaar, das in beiden Fällen zusammengeklebt wird. Nur für das Aneinanderfügen

der restlichen vier freien Kanten gibt es zwei Möglichkeiten, die aber denselben

Körper ergeben (Abb. 4). Es ist daher nötig, die als Netze gezeichneten Figuren
um eine Bezeichnung zu ergänzen, aus der hervorgeht, welche Strecken (oder
Ecken) beim Falten identifiziert werden.

3. Als nächstes betrachten wir Dreiecksflächner mit acht Seitenflächen. Da es hier
zwei wesentlich verschiedene gibt - Oktaeder und Tetraederdrilling -, bietet sich bei
dieser Flächenzahl erstmals die Möglichkeit, einen Dreiecksachtling zu finden, aus
dem beide Körper gefaltet werden können. Es stellt sich heraus, dass von den elf
Dreiecksachtlingen, die Oktaedernetze sind, die sieben in Abb. 5 dargestellten auch

Abb. 5

zu einem Tetraederdrilling gefaltet werden können. Eine Sonderstellung nimmt der
in Abb. 6 gezeigte Dreiecksachtling ein: Heftet man erst die mit 1, dann die mit 2

bezeichneten Strecken zusammen, so gibt es zwei Fortsetzungsmöglichkeiten, die in
diesem Fall zu zwei verschiedenen Körpern führen: 3/3a zum Oktaeder, 3/3b zum
Tetraederdrilling. Fängt man aber an, indem man die mit A bzw. B bezeichneten
Strecken aneinanderheftet, so lässt sich dieser Anfang auf zwei verschiedene Arten
zum Tetraederdrilling fortsetzen. Man sieht auch, dass zwei verschiedene Schnitte
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Abb. 6

dazugehören: In einem Fall ist die Kante, die allen drei Tetraedern angehört, nicht
aufgeschnitten.
Wir haben also folgende Erkenntnisse gewonnen, die sich beide an der Figur der
Abb. 6 demonstrieren lassen: Kann man aus einer Figur einen Körper falten, so

— ist dies nicht immer nur auf eine Art möglich,
— gibt es möglicherweise noch andere Körper, die man aus der gleichen Figur

falten kann.
Das Netz der Abb. 6 ist nicht das einzige, das auf verschiedene Weise zum
Tetraederdrilling gefaltet werden kann. Abb. 7 zeigt ein weiteres mit dieser Eigenschaft,
das aufgrund seiner besonderen Form «Parallelogrammnetz» genannt werden soll.

Abb. 7

4. Die bisherigen Ergebnisse können Ausgangspunkt einer Reihe neuer Fragestellungen

sein, so z.B.: Welche Dreiecksflächner mit zehn Dreiecken lassen sich aus
dem entsprechenden Parallelogrammnetz falten? Als Antwort findet man folgenden
bemerkenswerten Sachverhalt: Es lassen sich aus ihm genau alle nichtkonvexen
Dreieckszehnflächner, die vier Tetraedervierlinge, falten, nicht aber der einzige
konvexe Dreieckszehnflächner, die pentagonale Doppelpyramide. Hier schhessen
sich u.a. zwei weitere Fragen an, mit denen wir unsere Ausführungen schhessen

wollen, ohne auf die Antwort einzugehen:
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a) Gibt es ein Netz, aus dem man alle Dreieckszehnflächner falten kann?
b) Können alle Tetraedermehrlinge aus Parallelogrammnetzen gefaltet werden?

Roland Powarzynski und Hartmut Spiegel, Worms, BRD

LITERATURVERZEICHNIS

1 M. Jeger: Über die Anzahl der inkongruenten ebenen Netze des Würfels und des regulären
Oktaeders. El. Math. 30, Heft 4, 73-96 (1975).

Aufgaben

Aufgabe 813. Man beweise, dass für alle naturhchen n^l
2^2 v-3 /2n-l\ n o

3
Z ~ B2n^v^n-3 + —-.
v-2 ln-v \ v / In

Dabei bezeichnet Bk die k-te Beraoullizahl.

Lösung: Verwenden wir der Reihe nach

£0=1, *i--y, *2»-i-0 (n > 2)

und

1 /2n-l\ 1 (ln\

die bekannte Rekursionsformel der Bernoullizahlen

m /m\Z( )^m~vÄ0 (m>l) für m ln und m^ln-l
v-lV v /

und endlich noch

-OK2;:,') <'«'<">•

so ist für beHebige reelle Zahlen a, b

P. Addor, Bern
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