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140 Elementarmathematik und Didaktik

Das rechte Glied verschwindet genau dann, wenn 4, auf dem Umkreis von A,
liegt: dann ist /=0 nach dem Satz von Wallace. O. Bottema, Delft
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Uber zwei besondere Eigenschaften von Dreiecksfliichnernetzen

1. Als Dreiecksflichner sollen im folgenden Polyeder bezeichnet werden, deren
Seitenflichen gleichseitige Dreiecke sind. Bekannte Vertreter dieser Klasse von
Polyedern sind z.B. Tetraeder und Oktaeder. Von ihnen kann man sich ein Papier-
modell herstellen, indem man die in Abb. 1a und 1b wiedergegebenen Figuren auf
ein Stiick Papier zeichnet, sie entlang der Randstrecken ausschneidet, sie lings der
inneren Strecken faltet und je zwei Randstrecken geeignet miteinander verklebt.
Aus diesem Grund heissen die Figuren Tetraedernetz bzw. Oktaedernetz.

a) b)

Abb. 1

In [1] bewies M. Jeger, dass es bei Verwendung von Papier mit ununterscheidbaren
Seiten elf verschiedene Oktaedernetze gibt. Er nutzte dabei die Tatsache aus, dass es
ebenso viele solche Netze gibt wie (in bezug auf die volle Symmetriegruppe)
indquivalente Geriiste des Eckpunkt-Kanten-Graphen des Oktaeders. Im folgenden
wird gezeigt, dass ein solch eindeutiger Zusammenhang nicht bei allen Dreiecks-
flichnern gegeben ist, denn es gibt Dreiecksflichner, bei denen Schnitte entlang den
Kanten indquivalenter Geriiste zu demselben Netz (als Figur betrachtet) fithren. Bei
solchen Netzen ist daher - wie auch in der Literatur iiblich - eine zusitzliche
Angabe erforderlich, welche Kanten (bzw. Ecken) beim Zusammenkleben zu
identifizieren sind.

Weiterhin wird gezeigt, dass diese Forderung auch noch aus einem anderen Grund
sinnvoll sein kann: Es gibt ndmlich Netze von Dreiecksflichnern, die zu verschiede-
nen Korpern zusammengeklebt werden konnen.

2. Wir untersuchen zunichst Netze des Tetraederzwillings, d.h. der aus zwei
Tetraedern zusammengesetzten Doppelpyramide. Diese ist - bis auf Ahnlichkeit -
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der einzige Dreiecksflichner mit sechs Flichen. Man kann nun wie folgt vorgehen:
Bezeichnet man - wie iiblich - alle Figuren aus sechs (jeweils mit einer ganzen Seite)
aneinanderhidngenden gleichseitigen Dreiecken als Dreieckssechslinge, dann ist
jedes Tetraederzwillingsnetz ein solcher Dreieckssechsling. Das Umgekehrte ist
nicht der Fall: Von den zwolf in Abb.2 dargestellten Dreieckssechslingen scheiden

r %
10 11 \/ 19

Abb. 2
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vier (Nrn. 1-4) aus, da sie Ecken enthalten, an denen mehr als vier Dreiecke zusam-
menstossen. Die restlichen acht lassen sich zu einem Tetraederzwilling zusammen-
bauen.

Bei der anderen - in [1] benutzten - Methode, bei der man zu einem gegebenen
Korper ein Korpernetz bekommt, schneidet man ein Flichenmodell des Korpers
entlang seinen Kanten geeignet auf, bis man die Oberfliche in der Ebene ausbreiten
kann. Der aus den Schnittkanten bestehende Teilgraph des Eckpunkt-Kanten-
Graphen des Korpers ist ein Geriist dieses Graphen (vgl.[1]). Die verschiedenen
Geriiste des Tetraederzwillingsgraphen sind in Abb. 3 durch dick gezeichnete Linien
angegeben und jeweils darunter in der iiblichen Baumdarstellung (die Ecken sind
nur durch ihre Eckengrade bezeichnet, da aufgrund der Symmetrie Ecken mit
gleichem Grad nicht unterschieden zu werden brauchen).

Bemerkenswert ist das unterschiedliche Ergebnis beider - aufgrund der Erfahrung
mit Wiirfelnetzen als gleichwertig erscheinenden - Vorgehensweisen: acht von den
Sechslingen kommen als Netze in Frage, aber neun verschiedene Schnitte gibt es.
Der Grund liegt darin, dass zwei verschiedene Schnitte (Nrn.2, 6) denselben
Sechsling ergeben bzw. - was dasselbe ist - dass derselbe Sechsling auf zwei

Abb. 4
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verschiedene Arten zum Tetraederzwilling gefaltet werden kann. Dabei gibt es ein
Kantenpaar, das in beiden Fillen zusammengeklebt wird. Nur fiir das Aneinander-
fiigen der restlichen vier freien Kanten gibt es zwei Moglichkeiten, die aber densel-
ben Korper ergeben (Abb.4). Es ist daher nétig, die als Netze gezeichneten Figuren
um eine Bezeichnung zu ergidnzen, aus der hervorgeht, welche Strecken (oder
Ecken) beim Falten identifiziert werden.

3. Als nichstes betrachten wir Dreiecksflichner mit acht Seitenflichen. Da es hier
zwei wesentlich verschiedene gibt - Oktaeder und Tetraederdrilling -, bietet sich bei
dieser Flachenzahl erstmals die Moglichkeit, einen Dreiecksachtling zu finden, aus
dem beide Korper gefaltet werden konnen. Es stellt sich heraus, dass von den elf
Dreiecksachtlingen, die Oktaedernetze sind, die sieben in Abb.5 dargestellten auch

Abb. 5

zu einem Tetraederdrilling gefaltet werden konnen. Eine Sonderstellung nimmt der
in Abb.6 gezeigte Dreiecksachtling ein: Heftet man erst die mit 1, dann die mit 2
bezeichneten Strecken zusammen, so gibt es zwei Fortsetzungsmoglichkeiten, die in
diesem Fall zu zwei verschiedenen Korpern fithren: 3/3a zum Oktaeder, 3/3b zum
Tetraederdrilling. Fingt man aber an, indem man die mit A bzw. B bezeichneten
Strecken aneinanderheftet, so lidsst sich dieser Anfang auf zwei verschiedene Arten
zum Tetraederdrilling fortsetzen. Man sieht auch, dass zwei verschiedene Schnitte
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dazugehoren: In einem Fall ist die Kante, die allen drei Tetraedern angehort, nicht

aufgeschnitten.

Wir haben also folgende Erkenntnisse gewonnen, die sich beide an der Figur der

Abb.6 demonstrieren lassen: Kann man aus einer Figur einen Korper falten, so

— ist dies nicht immer nur auf eine Art moglich,

— gibt es moglicherweise noch andere Korper, die man aus der gleichen Figur
falten kann.

Das Netz der Abb.6 ist nicht das einzige, das auf verschiedene Weise zum Tetra-

ederdrilling gefaltet werden kann. Abb.7 zeigt ein weiteres mit dieser Eigenschaft,

das aufgrund seiner besonderen Form «Parallelogrammnetz» genannt werden soll.

Abb. 7

4. Die bisherigen Ergebnisse konnen Ausgangspunkt einer Reihe neuer Fragestel-
lungen sein, so z.B.: Welche Dreiecksflichner mit zehn Dreiecken lassen sich aus
dem entsprechenden Parallelogrammnetz falten? Als Antwort findet man folgenden
bemerkenswerten Sachverhalt: Es lassen sich aus ihm genau alle nichtkonvexen
Dreieckszehnflichner, die vier Tetraedervierlinge, falten, nicht aber der einzige
konvexe Dreieckszehnflichner, die pentagonale Doppelpyramide. Hier schliessen
sich u.a. zwei weitere Fragen an, mit denen wir unsere Ausfithrungen schliessen
wollen, ohne auf die Antwort einzugehen:
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Aufgaben

a) Gibt es ein Netz, aus dem man alle Dreieckszehnflichner falten kann?
b) Konnen alle Tetraedermehrlinge aus Parallelogrammnetzen gefaltet werden?
Roland Powarzynski und Hartmut Spiegel, Worms, BRD
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Aufgaben

Aufgabe 813. Man beweise, dass fiir alle natiirlichen n>2
212 y—3 2n—1 3
=5 2n—v ( v ) Ban—y=n—3+ 2

Dabei bezeichnet B, die k-te Bernoullizahl.

Losung: Verwenden wir der Reihe nach
1
Bo=1, Bi=—7, By-=0 (n>2)

und

1 2n—1 1 /2n
2n~v( v )uﬁ(v) O<vs2n-1),

die bekannte Rekursionsformel der Bernoullizahlen

Z(':')B,,,_v=o (m=2) fir m=2n und m=2n-1

y= ]

und endlich noch

v(2")=2n(2”"1) (1<v<2n),

v v—1

so ist fiir beliebige reelle Zahlen a,b

P. Addor, Bern
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