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Diophantine representation of generahzed Fibonacci numbers

Let A and B be integers such that either _4>0 and B= -1 or A>3 and B= 1.

We define a sequence R {Rn}n=o by the integers R0= 0,RX 1 and the recurrence

Rn=ARn__x-BRn_2, n>l.

When A= — B= 1 the positive terms of sequence R are the Fibonacci numbers;
when_4= — B l, R0= 2, Rx= l they are the Lucas numbers.
Jones [1,2] has proved that the set of all Fibonacci (respectively Lucas) numbers
is identical with the set of positive values of the polynomial

y(2-(y2-yx-x2)2),

respectively

y(l-((y2-yX-X2)2-25)2),

as the variables jc and y ränge over the positive integers.
The purpose of this paper is to extend the results of Jones on Fibonacci numbers
to the generahzed sequence. We prove two theorems and a lemma.

Theorem 1. For non-negative integers x, y
\x2-Axy+By2\=l (1)

ifand only ifx andy are consecutive terms ofsequence R.

Theorem 2. The set of all terms of sequence R is identical with the set of all
non-negative values of the polynomial

f(x,y)^y(l-(x2"Axy+By2)2)

as the variables x andy ränge over the non-negative integers.
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Lemma. For every non-negative integer n,
\R2n+l-ARn+lRn+BR2\ l.

Proof of the lemma: The lemma is obviously true for n 0. And by definition
of sequence R,

\R2 + l-ARn+xRn+BR2\ \(ARn-BRn_x)2-A(ARn-BRn_x)Rn + BR2\

\B(R2-ARnRn_x + BR2n^) | \R2-ARnRn.x + BR2_x\

for n>0, since \B\ 1.

Proof of theorem 1: Equality (1) holds for x Rn+x, y=Rn by the lemma. Thus
we must prove that if (1) holds for integers x,y=0, then x and y are consecutive
terms of sequence R.

Suppose that for integers x0,yQ> 0 we have

xl-Ax0y0+Byl=e, (2)

where e=l or e= — 1. If x0,j0>0, we may assume x0^y0. Indeed, for B= 1

condition (1) is Symmetrie in x and y; and for B — 1, (2) gives

xl-y2=Ax0y0-1 0

* (because x0y0+0).

Furthermore, if x0i__j/0>0, then

x0=j(Ay0+^A2y2-4By2+4e).

Forif

*o= y (Ay0- VA2y2-4By20+4e)

and y0>0, then in case B- — 1, A>0 we would get x0^0; and in case B=l,
A > 3 the condition x0^y0 would imply the inequahty

Ay0-2y0^VA2y2-4y2 + 4s

equivalent to the inequality

(1-A)fee9

which is impossible for A > 3, y0 > 0 and s ± 1.
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It follows from (2) that the integers xx=y0, yx=ABy0—Bx0 also satisfy equation
(1) since B2= 1 gives

x2-Axlyl + By2=y2-Ay0(ABy0-Bx0)+B(ABy0-Bx0)2
Bx2-ABx0y0+y2 B(x2-Ax0y0 + By2)=Be.

Butifx0>0 andy0>0, thenxx>0 and

yx=ABy0-Bx0=ABy0-j(Ay0+\/A2y2-4By2 + 4e)

*(Ay0-^A2y2-4By2+4s=0 (3)

(y1 Oonlyifj0=l).
We show next that yx<yo, except perhaps when A= — B=l, y0=l. In case B=l,
A>3, using the form ofyx given in (3), we get

y\ y (Ayo~ ^A2y2-4y2 + 4e) < — (Ay0- VA2y2-4Ay2 + 4y2) =y0
since A2yl~4y2+4e>A2yl-4Ayl + 4y2, i.e. (A-2)yl>-e, clearly holds for
y0>0 And ifB=-l, then

y\=^{^A2y2 + 4y2 + 4e -Ay0) <j((A + 2)y0-Ay0) =y0

since 4e<4 Ay%, except perhaps if^4 l,y0=l.
Continuing this procedure we construct the strictly decreasing sequences
Jo^b.y* ••• and xQ,xx,x2,..., where

xt=yt_i and yl=AByl_x — Bxl_x for i>0 (4)

and xt>yt^0, if yt_x>0 (except perhaps if yt_x=l in case _4= -2?= 1). Furthermore

equality (1) holds for x xt,y=yt.
The construction comes to an end when an index j is reached such that j; 0
(or yj= 1 in case A —B= 1). If .ty —0, then x}= 1, so that yj=Ro and Xj=Rx. But
by (4) we can show that if yt Rk and xl=Rk+x for some indices i and k, then

yl„x Rk+x and xl.x=Ayl^x-Byl=ARk^x-BRk=Rk+2 (since _92=1); this shows
that y0, x0 are also consecutive terms of sequence R. If _4=-_9— 1 and >>7=1

for some index jf, then x=2, 1 or 0. But (yJ,xJ)=(l,2)=(R2,R3), (ypXj)=(l, 1)

(_Ri,_R2) andjy l, jc7 0 imply that ^_1 0=Ä0, Xj_x=l Rx; therefore we get
as above that j>0, jc0 are also consecutive terms of sequence R.
This completes the proof of theorem 1.

Proof of theorem 2: Because of the conditions imposed on_4 and B, we have
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x2-Axy+By2=*0

for integers x and y if and only ifx=y=0. Therefore by theorem 1 for non-negative
integers x, y, we havef(x,y)=*0 if and only if y=0,f(x,y)=y>0 if and only if x
and y>0 are two consecutive terms of the sequence _R, and/(jc,j>)<0 in any other
cases.

Remark: One can easily see that theorem 1 is vahd for cases A l, B=l and
_4 2, 2?=1, but sequence R is degenerate in these cases. In case A 3, B=l
theorem 1 is false since x 2, y=l is a Solution of equation (1) and 2 is not
a term of sequence R.

P^ter Kiss, Teachers' Training College, Eger, Hungary
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Kleine Mitteilungen

Eine merkwürdige Familie von beweglichen Stabwerken

1. Sei ABAfB' ein gelenkiges Antiparallelogramm mit den Seitenlängen
_4_9=_4'_9'=a und AB'=A'B=d>a. Wird es in seiner Ebene so bewegt, dass der
Schnittpunkt O der Langseiten und die Symmetrieachse z festbleiben (Fig. 1), dann
rollt bekanntlich eine Ellipse e mit den Brennpunkten A,B und der Hauptachse d
auf einer kongruenten Ellipse e' mit den Brennpunkten A\B' gleitungslos ab, wie
die Betrachtung des gemeinsamen Linienelements (0,-0 lehrt; diese Tatsache bildet
die kinematische Grundlage für elliptische Zahnräder [2]. Alle vier Gelenke des

Antiparallelogramms wandern dabei auf einer gemeinsamen, aus zwei kongruenten
Ovalen bestehenden Bahnkurve 6. Ordnung, wie in [5] gezeigt wurde.
Bezeichnet r— OA den Radiusvektor des Punktes A und y/ den Richtungswinkel,
gemessen von der zur z-Achse normalen jc-Achse aus, so hat A die kartesischen
Koordinaten jc r cosy/,z**r siny/ und 2? die Koordinatenx — (d— r) cosy/,z=(r—d)
sin^. Die aufAB*=a bezügliche Distanzformel liefert dann für die Bahnsextik k die

Polargleichung

r(</-r)cosV m2 mit 4m2=*d2-a2, (1)

welche auf die kartesische Gleichung

(x2+z2)(x2+m2)2^d2x4 (2)
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