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Diophantine representation of generalized Fibonacci numbers

Let A and B be integers such that either 4>0 and B=—1 or A>3 and B=1.
We define a sequence R={R,} ., by the integers Ry=0, R;=1 and the recurrence

Rn=ARn_.1—BRn_2, n>1.

When 4= —B=1 the positive terms of sequence R are the Fibonacci numbers;
when A= —B=1, Ry=2, R;=1 they are the Lucas numbers.

Jones [1, 2] has proved that the set of all Fibonacci (respectively Lucas) numbers
is identical with the set of positive values of the polynomial

¥ (2= (- yx—x%),
respectively
y (1-(0P=yx—xP=125)?),
as the variables x and y range over the positive integers.
The purpose of this paper is to extend the results of Jones on Fibonacci numbers

to the generalized sequence. We prove two theorems and a lemma.

Theorem 1. For non-negative integers x, y
|x2— Axy+ By*| =1 (D

if and only if x and y are consecutive terms of sequence R.

Theorem 2. The set of all terms of sequence R is identical with the set of all
non-negative values of the polynomial

f(x, )=y (2—(x*—Axy+ By*)?)

as the variables x and y range over the non-negative integers.
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Lemma. For every non-negative integer n,
|RZ2,,—AR,,R,+BR2| =1.

Proof of the lemma: The lemma is obviously true for n=0. And by definition
of sequence R,

IR, ,1— AR, R,+BR;| =|(AR,— BR,_,)>— A (AR,— BR,_,) R,+ BR}|
=|B(R:2—AR,R,_;+BR%:_,)|=|R:—AR,R,_,+BR%_,|

forn>0, since |B|=1.

Proof of theorem 1: Equality (1) holds for x=R, ., y=R, by the lemma. Thus
we must prove that if (1) holds for integers x,y= 0, then x and y are consecutive
terms of sequence R.

Suppose that for integers xq, y,>0 we have

x3—Axoyo+Byi=¢, @)

where ¢=1 or e= —1. If x(,y,>0, we may assume x,= y,. Indeed, for B=1 con-
dition (1) is symmetric in x and y; and for B= — 1, (2) gives

x%—y%é/{ XoYo— 1=0
(because x(y,+ 0).

Furthermore, if x¢= y,>0, then

1
Xo= —{(Ay0+\/;42y(2)—4By(2)+4e) :

For if

1
Xo= ? (Ayo"‘ \/;12_)%—'43_)1%4‘48 )

and y,>0, then in case B=—1, 4>0 we would get x,=0; and in case B=1,
A > 3 the condition x,= y, would imply the inequality

Ayo—2y0=V A2yi—4)yi+4¢
equivalent to the inequality

2—A)yize,

which is impossible for 4> 3, yp>0and e= + 1.
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It follows from (2) that the integers x,=y,, y;=A4By,— Bx, also satisfy equation
(1) since B*=1 gives

x{—Ax,y;+ By}=y§— Ay, (A Byo— Bxo) + B (A4 Byo— Bxo)?
= Bxg— ABxyo+y;=B(x3— Axoyo+ By}) = Be.

But if x>0 and y,>0, then x,>0 and

B
y1=AByy— Bxq=ABy,— —2—(Ay0+ VA2 —4Byl+4¢)

B
=-2—(Ay0—\/A2y§-4Byg+4g =0 3)

(1=0o0nlyif yy=1).
We show next that y,<y,, except perhaps when A= —B=1, yy=1. In case B=1,
A>3, using the form of y, given in (3), we get

1 1
y = -2-(Ayo—\/Azy(%—4)’(2)+4's ) <—2—(Ay0—\/A2y(2)—4Ay%+4y5) =)o

since A2yj—A4yi+4e>A2yi—4Ay3+4)3, ie. (A—2)yi>—e¢, clearly holds for
¥o>0. And if B= —1, then

1 1
=5 (VAT +4y5+4e —Ay) <— ((A+2Dy0—Ay0) =0

since 4¢ <4 Ay}, except perhapsif A=1, yy=1.
Continuing this procedure we construct the strictly decreasing sequences
Yo Y15V, --. and xg, X1, X, ..., where

x;=y;—1 and y,=ABy, —Bx;_; for i>0 @)

and x;>y;=0, if y;_ ;>0 (except perhaps if y,_;=1 in case A =— B=1). Further-
more equality (1) holds for x=x;, y=y;.

The construction comes to an end when an index j is reached such that y,=0
(or ;=1 in case 4=—B=1). If y;=0, then x;=1, so that y;= R, and x;=R;. But
by (4) we can show that if y,=R; and x;=R;,; for some indices i and k, then
Vi—1=Ry;, and x;_=Ay;_— By;=AR,.,— BR,=R, ., (since B2=1); this shows
that yo, xo are also consecutive terms of sequence R. If A=—B=1 and y;=1
for some index j, then x;=2, 1 or 0. But (y;,x;)=(1,2)=(R,R3), px)=(1,1)
=(Ry,R;) and y; =1, x;=0 imply that y;,_;=0=R,, x;_;=1=R;; therefore we get
as above that y,, x( are also consecutive terms of sequence R.

This completes the proof of theorem 1.

Proof of theorem 2: Because of the conditions imposed on 4 and B, we have
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x2—Axy+ By*=0

for integers x and y if and only if x=y=0. Therefore by theorem 1 for non-negative
integers x, y, we have f(x,y)=0 if and only if y=0, f(x,y)=y>0 if and only if x
and y>0 are two consecutive terms of the sequence R, and f(x,y)<0 in any other
cases.

Remark: One can easily see that theorem 1 is valid for cases A=1, B=1 and
A=2, B=1, but sequence R is degenerate in these cases. In case 4=3, B=1
theorem 1 is false since x=2, y=1 is a solution of equation (1) and 2 is not
a term of sequence R.

Péter Kiss, Teachers’ Training College, Eger, Hungary
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Kleine Mitteilungen

Eine merkwiirdige Familie von beweglichen Stabwerken

1. Sei ABA’B’ ein gelenkiges Antiparallelogramm mit den Seitenlingen
AB=A'B’=a und AB’=A’B=d>a. Wird es in seiner Ebene so bewegt, dass der
Schnittpunkt O der Langseiten und die Symmetrieachse z festbleiben (Fig. 1), dann
rollt bekanntlich eine Ellipse e mit den Brennpunkten 4, B und der Hauptachse d
auf einer kongruenten Ellipse ¢’ mit den Brennpunkten 4’, B’ gleitungslos ab, wie
die Betrachtung des gemeinsamen Linienelements (O, z) lehrt; diese Tatsache bildet
die kinematische Grundlage fiir elliptische Zahnriader [2]. Alle vier Gelenke des
Antiparallelogramms wandern dabei auf einer gemeinsamen, aus zwei kongruenten
Ovalen bestehenden Bahnkurve 6. Ordnung, wie in [5] gezeigt wurde.

Bezeichnet r=0A den Radiusvektor des Punktes 4 und y den Richtungswinkel,
gemessen von der zur z-Achse normalen x-Achse aus, so hat 4 die kartesischen
Koordinaten x=r cosy, z=r siny und B die Koordinaten X =(d—r) cosy, 2= (r—d)
siny. Die auf 4 B=a beziigliche Distanzformel liefert dann fur die Bahnsextik k die
Polargleichung

r(d—r)cos2y=m? mit 4m?=d*—a?, (D
welche auf die kartesische Gleichung

(x2+ 22) (x24 m?)2= d?x* @
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