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x—(L— )cosw+£c @ —(—i ) i +—3—1 in2 (23)
3 > os3, r=\3 sinw 2sm3

beschrieben, die als Einhiillende der Spitzentangenten auftretende Astroide (vier-
spitzige Hypozykloide) durch

x———in—(cos +3c 2) ——Ln—(sin — 3si 2)—) it =L 24
5 w os3,y 5 W sm3 mi m—2 p. (24)

Satz 3 steht iiberdies in gewissem Zusammenhang mit Untersuchungen von
Fréchet [3], welche die Beweglichkeit einer starren Ellipse in einer sie dreifach
berithrenden Steiner-Zykloide erkennen lassen und die von Wunderlich [6], Meyer
[5] und anderen verallgemeinert wurden. Ernst Ungethiim, Wien
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On the diophantine equations 2y2 =7 +1landx’+11=3"

Certain diophantine equations have played an important role in the recent
development of the mathematical theory of error-correcting codes. One of these
equations is

2y?=Tk+1, (D
for which Alter [1] has proved the following result.

Theorem 1. The only solutions in positive integers y, k of the equation (1) are
(2, 1)and (5, 2).

Alter’s proof, which is based on the theory of continued fractions, is quite long
and complicated. Therefore, it may be of some interest that theorem 1 can be
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demonstrated very briefly by appealing to the following theorem of Ljunggren’s
(81

Theorem 2. The diophantine equation

x"—1

=2 >2
x—1 y (n>2)

is impossible in integers x, y, |x|>1 with the exception of the cases n=4, x=11
andn=35,x=3.

This theorem is based on a fairly comprehensive theory which is, however,
completely elementary.

In order to prove theorem 1 it is enough to show that (1) is impossible for k> 2.
Suppose that (1) holds for some integers y> 0, k> 2. We distinguish three cases.

If k is odd, then 2|y, i.e. y=2y; with a positive integer y;. Now (1) can be
written in the form

=D -1,
71 O

By theorem 2 this is impossible.
If k=2(2h+ 1) with 4 an integer >0, then (72+1)| (7*+ 1). Hence 5|y, i.e. y=5y,,
and (1) takes the form

(_49)2h+1_1 3
—49—-1 %

Again, by Ljunggren’s theorem, this is impossible because of A>0. Lastly, let
k=4h. Now (1) becomes (7¥)*+1=2)2. This equation is impossible, since h>0
and the only integer solutions of x*+ y*=2 22 with (x,y)=1 are given by x?>=)?=1
(cf. e.g. [9], p. 18). This completes the proof of theorem 1.

We shall now deal with the equation

x24+11=3", )
for which the following result holds.
Theorem 3. The only positive integer solution of equation (2) is given by (x,n) = (4,3).

It seems that the first proof for this theorem is given by Alter and Kubota [2].
[An error in the proof of the case n=7 (mod10) was later corrected by the
second author [5]. By the way, we may note that the correction can be demonstrated
very briefly as follows: Since 3|n, we have n= —3 (mod 30) and so, by (2) and
Fermat’s theorem, 3°x?=3"*34+4.11=—48 (mod31) or 3x)*+4%?=0 (mod 31),
which is impossible, since (— 1 /31)= —-1]
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Very recently Cohen [4] has proved theorem 3 using the interesting method
developed by Hasse [6]. However, an earlier proof given by Cohen and Ljunggren
[3] is much simpler. Our following proof is slightly dissimilar to the latter.

Firstly we show that 3| n. The equation (2) can be written in the forms

X2+8=3(3""1-1), x2+2=9(3""2-1).

The right-hand side is divisible by 3*~1 (=2 - 13) in the first equation for n=1
(mod 3) and in the second one for n=2 (mod 3). But (—2/13)= —1 and thus the
cases n=1, 2 (mod 3) are excluded. Now (2) has the form x?+ 11=)3. We do not
wish to make use of the well-known result [7] that the only solutions in positive
integers of this equation are given by (4, 3) and (58, 15), but we carry through
the proof completely.

In the quadratic field Q(V —11) unique factorization holds, the only units are

t+1,and g.cd. (x+V —11,x—V —11) =1, whence
— +bV —11 \?
x+\/—11=(“ \g ) . Ay=a2+ 1182, 3)

where a, b are rational integers. From these equations it follows that
3a’b—-11b%=38, a*b—by=2.

Hence |bl=1 or 2 and so a?=1 or 16, respectively. The second equation in (3)
then gives y=3, x=4 and y=15, x=58 as only solutions of x2+ 11=y3, Since y
is a power of 3 in the case we are considering, it follows that x=4, n=3 is
the only solution of (2). K. Inkeri, University of Turku, Finland

REFERENCES

1 R. Alter: On the nonexistence of close-packed double Hamming error-correcting codes on g=7
symbols. J. Comput. Syst. Sci. 2, 169-176 (1968).

2 R. Alter and K.K. Kubota: The diophantine equation x2+11=3" and a related sequence. J.
Number Theory 7, 5-10 (1975).

3 E.L. Cohen: Sur I'’équation diophantienne x2+ 11= 3%, C.r. Acad. Sci. Paris (A) 275, 5-7 (1972).

4 E.L. Cohen: The diophantine equation x2+11=3% and related questions. Math. Scand. 38,
240-246 (1976).

5 E.L. Cohen: Review of [2], MR 51, No.344, p.48 (1976).

6 H. Hasse: Uber eine diophantische Gleichung von Ramanujan-Nagell und ihre Verallgemeinerung.
Nagoya Math. J. 27, 77-102 (1966).

7 O.Hemer: On the diophantine equation y2— k= x3. Doct. Diss., Uppsala 1952.

8 W. Ljunggren: Noen setninger om ubestemte likninger av formen (x"—1)/(x—1)=j4. Norsk.
Mat. Tidsskr. I, H. 25, 17-20 (1943).

9 L.J. Mordell: Diophantine equations. Academic Press, New York, London 1969.



	On the diophantine equations 2y2 = 7k + 1 and x2 + 11 = 3n

