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(r \ 3r co (r \ 3r co /ty^X=V2~P)cosco+~ycosT' y== \2~p)smco+~YsmT * ^

beschrieben, die als Einhüllende der Spitzentangenten auftretende Astroide
(vierspitzige Hypozykloide) durch

m co\ m / „ o>\ rx=-~\coscd + 3cos—\, y=- — \smco-3sm—\ mit m — -p. (24)

Satz 3 steht überdies in gewissem Zusammenhang mit Untersuchungen von
Fachet [3], welche die Beweglichkeit einer starren Ellipse in einer sie dreifach
berührenden Steiner-Zykloide erkennen lassen und die von Wunderlich [6], Meyer
15] und anderen verallgemeinert wurden. Ernst Ungethüm, Wien
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On the diophantine equations 2y 1 + 1 and x + 11 3n

Certain diophantine equations have played an important role in the recent
development of the mathematicai theory of error-correcting codes. One of these
equations is

2/ 7*+l, (1)

for which Alter [1] has proved the following result.

Theorem 1. The only Solutions in positive integers y, k of the equation (1) are
(2,1) and (5, 2).

Alter's proof, which is based on the theory of continued fractions, is quite long
and complicated. Therefore, it may be of some interest that theorem 1 can be
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demonstrated very briefly by appealing to the following theorem of Ljunggren's
[8].

Theorem 2. The diophantine equation

xn-l
x-l -=y2 (n>2)

is impossible in integers x, y, \ x \ > 1 with the exception of the cases n 4, x l
andn 5,x 3.

This theorem is based on a fairly comprehensive theory which is, however,
completely elementary.
In order to prove theorem 1 it is enough to show that (1) is impossible for k>2.
Suppose that (1) holds for some integersy> 0, k> 2. We distinguish three cases.

If k is odd, then 2\y, i.e. y=z2y{ with a positive integer yx. Now (1) can be
written in the form

-7-1 s)\

By theorem 2 this is impossible.
lfk 2(2h+l) with/z an integer >0, then (l2+l)\(lk+l). Hence 5\y, \.e.y=5y2,
and (1) takes the form

(-49)2^1, 1

-49-1 -yl
Again, by Ljunggren's theorem, this is impossible because of h>0. Lastly, let
k=4h. Now (1) becomes (7h)4+ l=2y2. This equation is impossible, since h>0
and the only integer Solutions of x4+y4=2z2 with (x,y)= 1 are given by x2=y2= 1

(cf. e.g. [9], p. 18). This completes the proof of theorem 1.

We shall now deal with the equation

x2+ll 3w, (2)

for which the following result holds.

Theorem 3. The only positive integer Solution ofequation (2) is given by (x, n) (4,3).

It seems that the first proof for this theorem is given by Alter and Kubota [2].
[An error in the proof of the case n 7 (mod 10) was later corrected by the
second author [5]. By the way, we may note that the correction can be demonstrated

very briefly as follows: Since 3\n, we have n= — 3 (mod 30) and so, by (2) and
Fermat's theorem, 33jc2e=3w+3 + 4 • 11=-48 (mod31) or (3x)2 + 42==0 (mod31),
which is impossible, since (— l/31)= — L]
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Very recently Cohen [4] has proved theorem 3 using the interesting method
developed by Hasse [6]. However, an earlier proof given by Cohen and Ljunggren
[3] is much simpler. Our following proof is slightly dissimilar to the latter.
Firstly we show that 31 n. The equation (2) can be written in the forms

jt2+8 3(3"-1-l), jc2+2 9(3w-2-1).

The right-hand side is divisible by 33- 1 (=2 • 13) in the first equation for «= 1

(mod 3) and in the second one for n 2 (mod 3). But (-2/13)= — 1 and thus the
cases n= 1, 2 (mod3) are excluded. Now (2) has the form x2+ 11 =y3. We do not
wish to make use of the well-known result [7] that the only Solutions in positive
integers of this equation are given by (4, 3) and (58, 15), but we carry through
the proof completely.
In the quadratic field Q (V -11) unique factorization holds, the only units are
±l,andg.c.d. (jc + V - 11 ,x- V - 11) =1, whence

x + V^r-(fl + ^-n)3t 4W+11*. 0)

where a, b are rational integers. From these equations it follows that

3a2b-llb3 %, a2b-by=2.

Hence \b\ 1 or 2 and so a2= 1 or 16, respectively. The second equation in (3)
then gives >>=3, x 4 and y= 15, x 58 as only Solutions of x2+ ll=j3. Since y
is a power of 3 in the case we are considering, it follows that x 4, n 3 is
the only Solution of (2). K. Inkeri, University of Turku, Finland
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