Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 34 (1979)

Heft: 4

Rubrik: Aufgaben

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

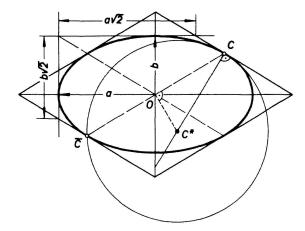
Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

94 Aufgaben



genannten Zwischenpunkte C gehörige Krümmungsradius wird nämlich aus dem Ellipsenzentrum O unter rechtem Winkel gesehen; der Krümmungsmittelpunkt C* hälftet überdies den zwischen den Achsen befindlichen Normalenabschnitt (Figur). – Beweise für diesen einfachen Sachverhalt lassen sich auf verschiedene Arten führen und dürfen dem Leser überlassen bleiben.

W. Wunderlich, Technische Universität Wien

Aufgaben

Aufgabe 807. Man beweise für reelle x, y, s, t mit

$$0 \le s \le x$$
 und $0 \le t \le y$

die Ungleichung

$$\sinh x \sinh y \ge \min \{ \sinh (x-s) \sinh (y+t), \sinh (x+s) \sinh (y-t) \}.$$

P. Buser, Bonn, BRD

Lösung: Es ist $\min(a,b) \le (ab)^{1/2}$ für $a,b \ge 0$. Somit gilt bei den über x,y,s,t gemachten Annahmen

$$\min \left\{ \sinh (x-s) \sinh (y+t), \sinh (x+s) \sinh (y-t) \right\}$$

$$\leq \left[\sinh (x-s) \sinh (y+t) \sinh (x+s) \sinh (y-t) \right]^{1/2}. \tag{1}$$

Nun ist

$$\sinh(x-s)\sinh(x+s) = \frac{1}{2}\left(\cosh 2x - \cosh 2s\right)$$

$$\leq \frac{1}{2}\left(\cosh 2x - 1\right)$$

$$= \sinh^2 x$$
(2)

Aufgaben 95

und ebenso

$$\sinh(y-t)\sinh(y+t) \leqslant \sinh^2 y. \tag{3}$$

Aus (1), (2), (3) folgt nun unmittelbar die Behauptung.

O. P. Lossers, Eindhoven, NL

Weitere Lösungen sandten P. Bundschuh (Köln, BRD) und L. Kuipers (Mollens VS).

Aufgabe 808. In einem Sehnenviereck seien über allen Seiten und Diagonalen als Durchmessern Kreise gezeichnet. Je zwei dieser Kreise sollen benachbart heissen, wenn sie sich in einem Eckpunkt des Vierecks schneiden. Man zeige, dass die insgesamt zwölf Schnittpunkte von je zwei benachbarten Kreisen (Eckpunkte nicht mitgezählt) je zu dritt auf vier konkurrenten Geraden liegen.

Hj. Stocker, Wädenswil

Im Sehnenviereck $A_1A_2A_3A_4$ betrachten wir von den sechs Kreisen jene drei, welche durch A_1 gehen. Je zwei dieser (benachbarten) Kreise schneiden sich in einem der zwölf zur Diskussion stehenden Punkte. Diese drei Schnittpunkte sind offenbar die Fusspunkte der Lote von A_1 auf die Seiten des Dreiecks $A_2A_3A_4$ und liegen somit auf der Wallace-Geraden von A_1 bezüglich des Dreiecks $A_2A_3A_4$. Sie geht durch den Mittelpunkt M der Strecke, welche von A_1 und dem Höhenschnittpunkt des Dreiecks $A_2A_3A_4$ begrenzt wird (siehe [1], S. 207).

M ist auch der Mittelpunkt der Strecken, welche von A_2, A_3, A_4 und dem Höhenschnittpunkt von $A_3A_4A_1$ bzw. $A_4A_1A_2$ bzw. $A_1A_2A_3$ begrenzt werden (siehe [1], S. 169).

Bezieht man sich schliesslich statt auf A_1 in gleicher Weise auf A_2 , A_3 und A_4 , so ergibt sich die Behauptung: Die zwölf Schnittpunkte liegen je zu dritt auf vier Wallace-Geraden, die sich in M schneiden.

Bemerkung: Durch M gehen auch die vier (kongruenten) Feuerbach-Kreise der Dreiecke $A_1A_2A_3$, $A_2A_3A_4$, $A_3A_4A_1$ und $A_4A_1A_2$ (siehe [1], S. 203, 243, 244).

H. Frischknecht, Berneck

LITERATURVERZEICHNIS

1 R.A. Johnson: Advanced Euclidean Geometry. Dover publications, Inc., New York 1960.

Weitere Lösungen sandten J.T. Groenman (Groningen, NL), K. Grün (Linz, A), L. Kuipers (Mollens VS), O. P. Lossers (Eindhoven, NL), M. Vowe (Therwil).

Aufgabe 809. Mit $x = (x_1, x_2, ..., x_k), x_i \in \mathbb{Z}$, sei ein Punkt des k-dimensionalen Gitters bezeichnet. Im Gitterwürfel $W_n^k := \{x \mid 1 \le x_i \le n\}$ sei eine Relation ρ^k wie folgt definiert:

$$x \rho^k y : \Leftrightarrow \begin{cases} \text{entweder: } x_i = y_i (1 \le i \le k-1) & \text{und } x_k | y_k \\ \text{oder: } & \text{es gibt ein } m \text{ mit } m \le k-1, \text{ so dass} \end{cases}$$

$$x_m \ne y_m, \qquad x_m | y_m \quad \text{und } x_i = y_i \quad \text{für } i < m.$$

- a) Man beweise, dass (W_n^k, ρ^k) eine Halbordnung ist.
- b) Es sei U die Menge der bezüglich ρ^k total ungeordneten Teilmengen U von W_n^k . Man bestimme $v_n^k = \max$ card U.

J. Binz, Bolligen

Lösung des Aufgabenstellers: k=1: Die Definition reduziert sich auf $x \rho^1 y : \Leftrightarrow x_1 | y_1;$ ρ^1 ist die gewöhnliche Teilerrelation und (W_n^1, ρ^1) ist eine Halbordnung. Aus $W_n^1 = \{1, 2, ..., n\}$ wählen wir die s = [(n+1)/2] ungeraden Zahlen $u_1 = 1, u_2 = 3, ..., u_s = 2[(n+1)/2] - 1$ aus und bilden für i = 1, 2, ..., s die Mengen

$$M_i^1 = \{u_i, 2u_i, 2^2u_i, ..., 2^{r_i}u_i\}$$
 mit $\frac{n}{2} < 2^{r_i}u_i \le n$.

 M_i^1 ist für jedes *i* bezüglich ρ^1 linear geordnet, und die *s* Mengen M_i^1 bilden eine Partition von W_n^1 . Wählt man aus W_n^1 eine (s+1)-elementige Teilmenge S^1 aus, so fallen zwei ihrer Elemente in die gleiche Menge M_i . S^1 ist somit nicht total ungeordnet, und es gilt $v_n^1 \le s$. Andererseits hat die Menge $T^1 = \{x; [(n+2)/2] \le x \le n\}$ *s* Elemente und ist total ungeordnet. Daher wird $v_n^1 = s$.

- $k \ge 2$: Wegen (1) gilt $x \rho^k x$ für alle x, ρ^k ist also reflexiv. Zum Nachweis der Transitivität seien $x \rho^k y$ und $y \rho^k z$ vorausgesetzt; es gibt vier Fälle, je nachdem ob (1) oder (2) zutrifft:
- (1), (1): Man erhält unmittelbar $x_i = z_i$ für $i \le k-1$ und $x_k \mid z_k$. Somit ist $x \rho^k z$ nach (1).
- (1), (2): Aus $y_m \neq z_m$, $y_m \mid z_m$, $y_i = z_i$ für i < m folgt zuerst $x_i = z_i$ für i < m, wegen $x_m = y_m$ weiter $x_m \mid z_m$ und $x_m \neq z_m$, somit $x \rho^k z$ nach (2). Der Fall (2), (1) erledigt sich in analoger Weise.
- (2), (2): Es seien m_1, m_2 die beiden Stichzahlen gemäss (2) und $m = \min(m_1, m_2)$. Dann ist $x_i = z_i$ für i < m; da entweder $x_m = y_m < z_m$ oder $x_m < y_m = z_m$ oder $x_m < y_m$ oder $x_m < y_m$ oder $x_m < y_m$ oder $x_m | y_m$ oder $x_m | y_m$, also jedenfalls $x_m | z_m$. Somit ist $x \rho^k z$ nach (2).

Schliesslich folgt aus $x \rho^k y$ und $y \rho^k x$, dass x = y ist. Andernfalls gäbe es m, $1 \le m \le k$, mit $x_m \ne y_m$, $x_i = y_i$ für i < m.

Ist $m \le k-1$, so folgt aus (2) $x_m | y_m, y_m | x_m$, also doch $x_m = y_m$. Für m = k erhält man analogerweise den Widerspruch $x_k = y_k$. ρ^k ist demnach auch identitiv, und somit ist (W_n^k, ρ^k) eine Halbordnung.

Nun ist $W_n^k = W_n^1 \times W_n^1 \times \cdots \times W_n^1$, k Faktoren. Für $1 \le i_\mu \le s$, $1 \le \mu \le k$ bilden wir die s^k Mengen

$$M_{i_1i_2\cdots i_k}^k = M_{i_1}^1 \times M_{i_2}^1 \times \cdots \times M_{i_k}^1 \subset W_n^k$$

Wieder sind diese Mengen je linear georndet und bilden insgesamt eine Partition von W_n^k . Wählen wir deshalb aus W_n^k eine $(s^k + 1)$ -elementige Teilmenge S^k aus, so

Neue Aufgaben 97

fallen zwei ihrer Elemente in die gleiche Menge $M_{i_1 i_2 \cdots i_k}^k$, sind also bezüglich ρ^k vergleichbar. S^k ist somit nicht total ungeordnet, und wir haben $v_n^k \leq s^k$. Andererseits hat die aus k Faktoren gebildete Menge $T^k = T^1 \times T^1 \times \cdots \times T^1 \subset W_n^k$ s^k Elemente und ist offensichtlich total ungeordnet. Damit wird $v_n^k = s^k$. Zusammengefasst:

$$v_n^k = \left[\frac{n+1}{2} \right]^k$$
 für $k = 1, 2, 3, ...$

Eine weitere Lösung sandte L. Himstedt, Bad Harzburg, BRD.

Neue Aufgaben

Die Lösungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift erbeten bis 10. Februar 1980 an Dr. H. Kappus. Dagegen ist die Einsendung von Lösungen zu den mit Problem ... A, B bezeichneten Aufgaben an keinen Termin gebunden.

Bei Redaktionsschluss dieses Heftes sind noch ungelöst: Problem 601A (Band 25, S. 67), Problem 625B (Band 25, S. 68), Problem 645A (Band 26, S. 46), Problem 672A (Band 27, S. 68), Aufgabe 680 (Band 27, S. 116), Problem 724A (Band 30, S. 91), Problem 764A (Band 31, S. 44).

Aufgabe 825. Es sei N eine natürliche Zahl. Für n=1,2,...,2N sei f(n) definiert durch

$$f(n) = {2N \choose n}^{-1} \sum_{k=0}^{n} \left| \frac{n-2k}{n} \right| {N \choose k} {N \choose n-k}.$$

Man gebe einen geschlossenen Term für f(n) an. Ferner zeige man, dass stets $f(n+1) \le f(n)$.

S. Gabler, Mannheim, BRD

Aufgabe 826. Man beweise folgende Verallgemeinerung der bekannten Ungleichung

$$\binom{2n}{n} \geqslant \frac{4^n}{2n}$$

für die mittleren Binomialkoeffizienten: Für alle $m, n \in \mathbb{N}$ gilt

$$\binom{(m+1)n}{n} \geqslant \frac{(m+1)^{(m+1)n}}{(m+1)nm^{mn}}$$

mit Gleichheit genau dann, wenn m=n=1.

A. Kemnitz, Braunschweig, BRD

98 Literaturüberschau

Aufgabe 827. Man zeige, dass die Kongruenz

$$1+4(n!)^4\equiv 0 \pmod{4n+1}$$

dann und nur dann gilt, wenn n Quadratzahl und 4n+1 Primzahl ist.

E. Trost, Zürich

Literaturüberschau

S.M. Ulam: Adventures of a Mathematician. 317 Seiten. US \$ 4.95. Charles Scribner's Sons, New York 1976.

Die vorliegende Autobiographie von S.M. Ulam beschreibt auf fesselnde Art und Weise die verschiedenen Stationen im Leben des polnischen Mathematikers: Seine Kindheit und Studienjahre in Polen, die ersten Auslandreisen und Publikationen, die Übersiedlung nach Amerika sowie seine Tätigkeit an verschiedenen amerikanischen Universitäten und im nationalen Forschungslaboratorium von Los Alamos. Das Werk vermittelt einen lebendigen Einblick in den Werdegang eines Mathematikers. Andererseits enthält es wertvolle Angaben über die Entwicklung der Wasserstoffbombe, der Rechenmaschinen und der Raumfahrt, über Forschungsprojekte, an denen der Autor mitbeteiligt war, sowie über mehrere Wissenschaftler (Fermi, von Neumann), mit denen er verkehrt hat.

A. Linder und W. Berchtold: Statistische Auswertung von Prozentzahlen. Uni-Taschenbücher, Band 522. 232 Seiten. DM 17.80. Birkhäuser, Basel, Stuttgart 1976.

Nicht selten stösst man in der Praxis auf statistische Probleme, bei denen Analysen von Prozentzahlen durchzuführen sind. Sucht man sodann nach geeigneten Verfahren, um diese Prozentzahlen den üblichen statistischen Methoden zugänglich zu machen, so findet man in deutschsprachigen Lehrbüchern der Statistik recht wenig. Mit dem vorliegenden Buch versuchen nun die beiden Autoren, diese Lücke in der statistischen Literatur zu schliessen. Der reiche Inhalt kann durch folgende Aufzählung nur andeutungsweise wiedergegeben werden:

- 1. Einleitung (Winkel-, Probit-, Logit-, Loglotransformation usw.);
- 2. und 3. Einfache lineare Regression (eine und mehrere Regressionsgeraden);
- 4. Mehrfache Regression, allgemeines lineares Modell;
- 5. Ein- und Mehrwegklassifikation, Streuungszerlegung;
- 6. Tafeln.

Die Darstellung des Stoffes in den einzelnen Abschnitten ist so gehalten, dass je zuerst die theoretischen Grundlagen vermittelt und diese sodann durch zahlreiche praktische Beispiele aus Biologie, Medizin, Technik und Soziologie illustriert werden. – Das Buch vermittelt eine gute Übersicht über das oben erwähnte Sondergebiet der Statistik und gehört deshalb in die Bibliothek jedes Statistikers. Wegen seiner leichten Lesbarkeit – mehr als elementare Kenntnisse in Wahrscheinlichkeitsrechnung und Statistik werden nicht vorausgesetzt – kann es auch Studenten, die sich in die praktische Arbeit mit statistischen Methoden vertiefen wollen, wertvolle Dienste leisten.

V. Wüthrich

C. Reid: Courant in Göttingen and New York; The Story of an Improbable Mathematician. 314 Seiten und ein 16seitiges Photoalbum. DM 31.30. Springer, Berlin, Heidelberg, New York 1976.

Als Schüler von Felix Klein und David Hilbert vollendete Richard Courant (1888–1972) sein akademisches Studium in Göttingen und übernahm dort später selbst eine Professur und die Direktion des Mathematischen Instituts der Universität. Nachdem er Göttingen nach dem ersten Weltkrieg zu neuem Ruhm verholfen hatte, blieb ihm als Spross einer jüdischen Familie die Emigration aus dem Deutschland der dreissiger Jahre nicht erspart. An seinem neuen Wirkungsort New York gelang ihm, dem Ausländer, in unentwegter jahrzehntelanger Anstrengung, getragen vom Göttinger Geist, die Gründung des heute nach ihm benannten hochangesehenen Forschungsinstituts an der New York University.

Die Autorin zeichnet in 28 chronologisch sich folgenden Kapiteln die Phasen dieses interessanten Lebens. Aufgrund von Tagebuchnotizen Courants sowie zahlreicher Interviews mit Courant und vielen