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Elementarmathematik und Didaktik

Extrapolationsverfahren in der numerischen Analysis

In den vergangenen Jahren wurden viele Vorschläge gemacht, die Mathematik
an den Gymnasien praxisorientierter und anwendungsbezogener zu gestalten.
Daher wurden auch immer wieder Fragestellungen der numerischen Mathematik
daraufhin untersucht, ob sie für die Schule geeignet sind. In diesen Rahmen
gehört auch diese Note. Es geht um das für das numerische Rechnen
fundamentale Prinzip der sogenannten Richardson-Extrapolation zur Genauigkeitssteigerung.

Die Grundidee dieser Vorgehensweise kann man, an geeigneten Beispielen
illustriert, durchaus in der Schule verdeutlichen. Damit lernt der Schüler eine
Methode kennen, die heute bei fast allen aus dem Bereich der Analysis stammenden
numerischen Aufgabenstellungen zur Anwendung kommt.

1. Einleitung

Neben dem axiomatisch-deduktiven Aspekt der Mathematik spielt der konstruktive
Aspekt eine nicht weniger bedeutsame Rolle. Konstruktive Methoden sind
Verfahren, welche durch Ausführung von endlich vielen rationalen Rechenoperationen
die Lösung mathematischer Probleme mit beliebiger Genauigkeit liefern. Die
numerische Analysis beschäftigt sich mit der Theorie solcher konstruktiver Methoden.

Seit etwa 40 Jahren - mit dem Beginn der Entwicklung elektronischer
Rechenanlagen, welche die Rechengeschwindigkeit um das Millionenfache
gesteigert haben - hat die numerische Mathematik gegenüber früheren Zeiten ein
völlig neues Gesicht bekommen. Hauptgegenstände der numerischen Analysis sind:
a) die Bereitstellung von Algorithmen der verschiedensten Art zur Lösung
mathematischer Probleme, b) die Untersuchung des Konvergenzverhaltens der von
solchen Algorithmen gelieferten Zahlenfolgen sowie etwa c) die Frage nach dem
Fehler, den man begeht, wenn man den Algorithmus nach endhch vielen Schritten
abbricht. Dabei kann man sich prinzipiell auf zwei ganz verschiedene Standpunkte
stellen: Einmal kann man sich fragen, wie gross der Fehler höchstens ist, man
interessiert sich für eine Aussage der Form | u-u(h)\ <cst • hp, wo u die exakte
Lösung des Problems, u(h) eine Näherungslösung in Abhängigkeit von einem die
Approximation beschreibenden Parameter h ist und peR, zum andern kann man
sich fragen, wie sich der Fehler asymptotisch verhält, d.h. man interessiert sich
für eine Aussage der Form

\u-u(h)\=ö(hP) für h->0.

Das Extrapolationsprinzip, das im folgenden beschriebenen werden soll, hefert
eine Möglichkeit, die Konvergenz der durch einen Algorithmus geheferten
Näherungsfolge zu beschleunigen, falls eine asymptotische Fehleraussage bekannt ist.
Wir wollen die Fragestellung zunächst am Beispiel studieren:
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2. Beispiele

2 1 Naherungsweise Berechnung von n

Archimedes hat schon etwa 250 v Chr Schranken für die transzendente Zahl n
angegeben, indem er die Umfange regulärer, dem Einheitskreis ein- bzw um-
beschnebener Polygone berechnet hat Unter Verwendung von 96seitigen
Polygonen zeigte er 3(10/71)<7r<3(l/7) Diese Vorgehensweise wollen wir nun etwas

genauer untersuchen
Fur den Umfang des regelmassigen rc-seitigen Polygons, das dem Einheitskreis
embeschneben ist, gilt 2n sin (n/n) Wir betrachten den halben Umfang
Tn=n sm(n/ri) bzw mit h =(l/ri) die Grosse T(h)=(l/h) smnh Wir wollen
nun diese Umfange nicht ausrechnen, sondern deren Abweichung von n
studieren Dazu bedienen wir uns der fur alle reellen Argumente konvergenten
Potenzreihenentwicklung der Sinusfunktion Man erhalt damit

T{h)=n-jr- h2+^f A«- +

Für h<\, also n>\, ist offenbar T(h)<n, somit ist (Tn)neN eme monoton
zunehmende Folge unterer Schranken fur den halben Umfang des Einheitskreises,
d h für n
Fur den Umfang des regelmassigen, w-seitigen, dem Einheitskreis umbeschriebenen
Polygons erhalt man ebenfalls auf elementargeometrischem Wege 2n tan (n/n)
Wir bezeichnen den halben Umfang mit T'n =n tan(n/n) bzw T'(h)

(l/h) tannhmith =(l/ri) Unter Verwendung der Potenzreihenentwicklung fur
die Tangensfunktion erhalt man

n3 2n5 1

T'(h)=n+— ä2+-^~ h4+ fur h< —

Die Reihe konvergiert für h<l/2, somit stellt (T'n)neN eme monoton fallende
Folge oberer Schranken für n dar
Eme Auswertung der archimedischen Vorgehensweise liefert fur n 96 die Zahl n
auf 2 Dezimalen (Archimedes —250), für n 230 die Zahl n auf 15 Dezimalen
(Romanus 1593), für n 262 die Zahl n auf 35 Dezimalen (Ludolph van Ceulen
1610) Um die angegebene Genauigkeitssteigerung zu erreichen, ist also ein nesiger
Rechenaufwand notig
Die nahehegende Frage nach der Verbesserung der Konvergenz führte schon im
Jahre 1654 Huyghens auf die folgende Idee, die dem Extrapolationsprinzip
zugrunde hegt
Betrachte

T(h)=n + axh2+a2h4+ +axh2l +

sowie
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'A\ h2 h4 h2'/h\ W- h* h2'
T(Y) n + aXJ + a2-+-+a,-^ +

und bilde

r>(A) := 7Kl) - r(Ä))=" - T^-Te***- • • •

Mit den obigen Koeffizienten in der Ä-Entwicklung von Theisst dies:

und damit ist der h2-Term eliminiert, der Fehler Tx(h)—n ist also noch 0(h4)
für h-+0. Man bekommt für n 230 damit _Ti(l/230), und das bedeutet, man
bekommt n schon auf fast 35 Dezimalen genau. Das Huyghenssche Vorgehen
beschleunigt somit die Konvergenz gewaltig.
Eine Wiederholung des beschriebenen Vorgehens bietet sich geradezu an, man
erhält:

*«=-£(*•'•¦(})-r,«)-.--5jl?r .'¦«•-•
und erkennt, dass der Fehler in T2(h) noch von der Ordnung h6 ist.

2.2 Numerische Integration

Gegeben seif:[a,b]-+R, feC2m~2[a,b], [a,.]cR sei in n Teilintervalle geteilt mit
h:=(b — a)/n durch xQ a,xx a + h, ...,xn a + nh b. Gesucht sei eine Näherung
fürl:=\baf(x)dx.
Zur numerischen Integration werde die Trapezregel benutzt, die man bekanntlich
dadurch erhält, dass man / in den n Teilintervallen von [a, b] linear durch
Polynome interpoliert und dann exakt integriert. Mit f(xx)=f=f(a + ih) lautet die
Trapezregel:

T(h)-~h(f0+2fx + 2f2+-+2fn_x+fn).

Mit Hilfe der Euler-MacLaurinschen Summenformeln (~ 1740) kann man zeigen:

b m D

lf(x)dx- T(h)= - S t^tt • A2'[/1<2'-1>(-)-/<2-•>(<!)] +R2m+2
a i=l (2 0-

mit R2m+2= O (A2m+2) und Bx die Bernoullischen Zahlen.
Es gilt somit:

T(h)=l+axh2+ a2h4+-+amh2m+0(h2m+2),
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d.h. der Fehler T(h)—list bestimmt durch die Potenz h2.

Beispiel: f(x) exp(-x2), [a,Z?] [0,l/2]. Man erhält für n= 1, d.h. h h0= l/l:
T(h0)=0,4447; für n 2, d.h. h hjl= l/4: T(h0/2) 0,4572 an Stelle von 0,4613
auf 4 Dezimalen.
Die Huyghenssche Idee zur Genauigkeitssteigerung der Trapezregel bedeutet, dass

man in der obigen Entwicklung nach A-Potenzen den führenden A2-Term durch
Linearkombination der Ausdrücke für h und h/2 eliminiert. Man bildet also mit

T(h)=I+axh2 + a2h4+ --+amh2m+0(h2m+2)

und
'h\ h2 h4 h2m //h\2m+2\/h\ r

hL h* hlm //h\zm+l\T{j)-I^aXY2+a2¥+^+am^ + 0({-^

Tx(h):=j(4T(^)-T(h))^

~3~( 2^ )a2mh2m+0(h2>»+2).

Dies aber ist, wie man leicht zeigen kann, gerade die bekannte Simpsonregel,
namhch jene Quadraturformel, die dadurch entsteht, dass man / in [a:„.x:,+ i]
durch ein quadratisches Polynom interpoliert und dann exakt integriert.
Auf das obige Zahlenbeispiel angewandt, liefert dieses Vorgehen der
Genauigkeitssteigerung für /?= 1, d.h. hQ= l/2, den Näherungswert Tx (A0) 0,4614.
Dieses Vorgehen kann man nun in bekannter Weise fortsetzen, indem man jeweils
mit zwei verschiedenen h-Werten arbeitet. Man kann das Verfahren allerdings
noch effektiver machen, indem man eine unendliche Folge verschiedener A-Werte
in die Betrachtung einbezieht. Dieser Gedanke stammt von Romberg 1955 [6].
Man geht dabei folgendermassen vor: Man teilt [a,b] in 1, 2, 4, 8, Teilintervalle

und berechnet I mittels der Trapezregel für diese Teilintervalle, dabei
erhält man folgende Näherungswerte für h b- a:

h\ (h™ O T(i)

allgemein

'h7-y, -0,1,2,

Durch Linearkombination nach der Vorschrift von oben wird nun aus je zwei

aufeinanderfolgenden Näherungen eine neue Folge, die 7VFolge, gebildet:

rm. r,(i). r,(i)
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allgemein:

T/*x 4r(^r)-r(l)
%)" _ITi > '-0.1.2,..

Die Fortsetzung liefert eine T2-Folge:

rm. t4), r,(}),...

und schhesshch eine 7^-Folge mit

/Ax 22*7*-1(2^)"7*-1(y)
M^/ 2^1 ' i-0,l,2,...

Nach jeder Linearkombination ist die Verbesserung des Fehlers zwei A-Potenzen,
der Fehler in den Tk ist somit von der Ordnung A2fc+2. Auf unser Beispiel
angewandt, liefert dies:

'(_) '¦(.) *(.) *(.)••¦¦
0,4447
0,4572 0,4614
0,4603 0,4613 0,4613
0,4610 0,4613 0,4613 0,4613

3. Allgemeines Prinzip der Extrapolation

Eine unbekannte Grösse a0 wird durch eine Grösse T(h),h>0, approximiert, und es

giltlim^0r(A)=a0.
Es sei bekannt, dass T für A-»0 eine asymptotische Entwicklung besitzt der
Form

T(h)=a0+axh+--+am_xhm-l + Rm(h), m= 1,2,3,...

mit | JRm(A)| <Cmhm für A>0, wobei ax,a2,..., CX,C2,... Konstanten unabhängig
von A seien.
Der Algorithmus der Extrapolation lautet nun: Man wähle eine Nullfolge
(r1 A0) jeN{) reeller Zahlen mit 0<r< 1, A0>0 und bilde für i«0,1,2,... die Grössen
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T,fi:=T^h0), r,,fc+i:-r''*~_^'~',*> *-0(l)(/-l).

Für rl— l/2l erhält man gerade die Grössen des zweiten Beispiels, wenn man
beachtet, dass man dort eine Entwicklung nach Potenzen von A2 hat.
Zur Durchführung von Handrechnungen ordnet man die Werte zweckmässigerweise

in Form einer sogenannten Tafel an:

^0,0
r_.o Tu
^2,0 T2,X ^2,2
^3,0 ^3,1 ^3,2 ^3,3

^4,0 Ta,x ^4,2 *4»3 ^4,4

Eine genauere Untersuchung zeigt nun, dass die Tafel - und damit der
Algorithmus - die folgenden wichtigen Eigenschaften besitzt (siehe [1]):

a) Die Werte in jeder Spalte streben gegen a0.
b) Die Werte in jeder Diagonalen streben gegen a0.

c) Die Werte in der (k+ 1)-Spalte streben schneller gegen a0 als die Werte in der
k-Spsdte in dem folgenden Sinne:

• iim^__±J_____=0.
*->°° TXtk — a0

d) Für jeden festen Wert von k=0 gilt:

^a=öo+(-l)n^+i/--(^/2)("+1H^^+1 + 0((r'Ao)^2)^

e) Bei geometrischer Schrittweitenfolge (wie sie oben betrachtet wurde) gilt: Falls
die Werte in der ersten Spalte mit Fehlern behaftet sind, deren Beträge < e sind,
so ist der resultierende Fehler im Schema nirgends grösser als 2e (der Algorithmus
ist also numerisch stabil).

Die folgenden Ausführungen sollen deuthch machen, was hinter dem
Extrapolationsalgorithmus steht. Man betrachte die m+1-Werte Tho:=T(r'h0), i=0(l)m
und dazu die m+1-Paare: (A0,r0>0), (*</•, rlf0), • •, (K^^T^f). Durch diese m+l-
Punkte lege man nun das (wegen paarweise verschiedener Stützstellen) eindeutig
bestimmte Lagrangesche Interpolationspolynom Pm vom Grade m. In dem Ansatz
Pm(h) — b0+bxh-i ±bmhm sind dann die Koeffizienten b0,...,bm aus der
Interpolationsforderung Pm (A0 r1) Tx o für i=0 (1) m zu bestimmen.
Nun extrapoliere man auf den Wert A 0, d.h. man ermittle den Wert des

Interpolationspolynoms Pm an der Stelle A 0 ausserhalb des Stützstellenintervalls
und erhält damit in Pm (h 0) eine Näherung für T(0).
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Wiederholt man die Konstruktion solcher Interpolationspolynome für dieselben
Stützstellen, aber nacheinander die Stützwerte TxX, Tu2, Tx3, ...mit i=0, 1, 2,...,
so erhält man eine Folge von Interpolationspolynomen und nach Extrapolation auf
A 0 eine Folge von Näherungswerten für T(0).
Wendet man zur Berechnung der Werte dieser Interpolationspolynome an der
Stelle A 0 (die ja keine Stützstelle ist) den Algorithmus von Neville (1934) an,
so erhält man gerade das obige Schema.

Bemerkungen:
a) Die ganze Vorgehensweise ist noch erheblicher Verallgemeinerungen fähig
[1, 2, 4, 6]: Man kann etwa viel allgemeinere Schrittweiten-Nullfolgen zulassen;
die asymptotische Entwicklung - auf der das ganze Vorgehen beruht - braucht
nicht nur ganze A-Potenzen zu enthalten; anstatt Polynominterpolation kann man
auch rationale Interpolation anwenden.
b) Historisch gesehen gehen die ersten Ansätze dieser Methode zurück auf
Huyghens 1654, Sheppard 1900, Milne 1903. Die erste systematische Untersuchung
und Anwendung auf viele Aufgabenstellungen stammt von Richardson 1927

(Richardson-Extrapolation). Zur selben Zeit haben sich auch Bogoljuboff und
Kryloff mit dieser Vorgehensweise beschäftigt. 1955 nahm Romberg die Idee
wieder auf und iterierte die Richardson-Extrapolation bei Anwendung auf die
numerische Integration. Ab 1960 wurden viele grundlegenden Arbeiten, insbesondere

zur Fehleranalyse des Verfahrens, veröffentlicht, vor allem von Bauer,
Rutishauser, Stiefel, Stoer, Buhrsch.

4. Numerische Bedeutung der Extrapolationsverfahren

Die Methode der Extrapolation stellt eine Möglichkeit dar, die Näherungen T(h)
einer Grösse a0 zu verbessern, falls eine asymptotische Entwicklung bekannt
ist. Nun wird man vielleicht fragen, warum diese aufwendige Vorgehensweise.
Warum lässt man nicht einfach A gegen Null gehen, d.h. nimmt eine beliebige
Verkleinerung der Schrittweite vor? Dann wird der Fehler zwischen exakter Lösung
und Näherungslösung - der sogenannte Diskretisierungsfehler - natürlich kleiner.
Aber für die Numerik kommt nun ein entscheidender, neuer Gesichtspunkt ins

Spiel: Seit 1955 [5] ist nämlich bekannt, dass sich mit A->0 der Rundungsfehler
im allgemeinen erheblich vergrössert.
Die Extrapolationsverfahren haben folgende numerische Vorteile:

a) Sie verkleinern den Diskretisierungsfehler durch sukzessive Elimination von
A-Potenzen in der asymptotischen Entwicklung.
b) Sie vergrössern im allgemeinen (bei geeigneter Auswahl der Schrittweiten-
Nullfolgen) den Rundungsfehler nicht.
c) Der Arbeitsaufwand ist kleiner als bei Rechnung mit beliebig kleinen Schrittweiten

A.

Insgesamt stellen die Extrapolationsverfahren für sehr viele Probleme den
einfachsten und zugleich günstigsten Weg zur Verbesserung von Näherungslösungen
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dar. Sie werden mit grossem Erfolg angewendet bei der numerischen Behandlung
von einfachen und mehrfachen Integralen, Anfangs-, Rand- und Eigenwertaufgaben

bei gewöhnlichen und partiellen Differentialgleichungen, Differentiationsaufgaben

usw.

5. Einige Anwendungen des allgemeinen Extrapolationsprinzips

5.1. Sei wieder eine unbekannte Grösse a0 durch eine Grösse T(h), A>0, approximiert

mit lim^o T(h) a0, und es gelte

T(h)=a0+axh2+a2h4+O(h6),

wobei ax,a2 Konstanten unabhängig von A seien.
Betrachtet man nun

r(2A)=a0+4fl1A2+16a2A44-O(A6)

sowie

T(3h)=a0+9axh2+Sla2h4+O(h6)

und eliminiert die Grössen ax und a2, so erhält man

a0=-^{l5T(h)-6'T(2h)+T(3h)} + O(h6).

5.2. Betrachtet man nun noch einmal die näherungsweise Berechnung von n im
Beispiel 2.1, so gilt für den halben Umfang des dem Einheitskreis einbeschriebenen,

regelmässigen, n-seitigen Polygons

1 n3 n5
F(A)= — • sin n h n- — • A2 + — • h4+ 0(h6).

h 3! 5!

Das bedeutet:

r(A=}) 2-sin| 2, T(A=|) 3-sin| |-VT,

T[h=^) 6sin~ 3.-K)-<
Für _0= n erhält man damit aufgrund von Abschnitt 5.1 mit h= l/6

ao=-j^{l5-3-6-yVy+2J + 0(A6)=3,1411 + O(A6),
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also einen besseren Näherungswert für n als der von Archimedes mittels des

96seitigen Polygons gewonnene Wert.

5.3. Durch Extrapolation kann die transzendente Zahl e mit wenig Rechenaufwand

auf 3 Dezimalen genau mittels der Beziehung e=limh_+0(l + h)l/h, A>0,
gewonnen werden.
Im Sinne von Abschnitt 3 muss für T(h):=(l + h)l/h zunächst gezeigt werden,
dass die Voraussetzung zur Extrapolation auf Schrittweite Null erfüllt ist, d.h.
dass eine Entwicklung der Form

T(h)=a0+axh+--+am_lhm-l + O(hm)

existiert, mit meN, a0=e, ax,a2,... von A unabhängigen Konstanten.
Es gilt bekanntlich

]n(l + hy/h=jln(l + h)=l-j + ~-j + 0(h4),

somit

r(A)=(l + A)1/A=exp(y-ln(l+A)) exp(l-y + j-^ + 0(A4^

/ A A2 A3 1 / A A2\2 1 / A\3 A\-^O-y+y-4+y(-y+y)+irr t) +0(*4))

Wählt man nun h0= 1, hx= l/2, h2= l/4, A3= l/8, A4= l/l6, also, in der Bezeichnung

von Abschnitt 3, den Wert r= l/2, so erhält man mit

r(A0=l) -(l+l)1 =2,

r(*'-y) =(1+t)2 =2'25'

T[h2=—) =(1 + — =2,4414 (aus der Binomialentwicklung
V 4; V 4; berechnet),

MÄ3== Tj V1 + T) 2»5658 (logarithmisch berechnet),

t(A4= — J
(1 + — j 2,6379 (logarithmisch berechnet)
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wegen

^,i 2 * ^i,o~"" ^1-1,0» j=l,2,..

rI>2-y(4-rI>1-r,_u), * 2,3,...

To= y (**' Tt,i~Ti-\,i), /=3,4,..

Elementarmathematik und Didaktik

rli4«-jy(i6-r,>3-r,_li3), <=4,5,..

die Tafel

T>.o 7>i T.,2 T,,3 ^1,4

2,0000
2,2500 2,5000
2,4414 2,6328 2,611 \
2,5658 2,6902 2,7093 2,7139
2,6379 2,7100 2,7166 2,7176 2,7178

also |e-2,71781 £5- 10~4.

•5.4. Eine physikahsche Grösse x sei vom Druck p eines Gases in der folgenden
Weise abhängig

x(p) a0 + axp2 + a2p3 + a3p6,

wobei a0,ax, a2, a3 reelle, nichtverschwindende Konstanten seien.
Aus der Messreihe

p in mm Hg 0,8 0,4 0,2 0,1 0,05

x in Einheiten 740 487 475 485 489

bestimme man näherungsweise x im Vakuum, d. h. x (p 0)=aQ.
Durch dreimalige Richardson-Extrapolation erhält man aufgrund von

ao=j(4'x(j)-x(p)) + 0(p>)

a^j{%-xi^)-x(p)) + 0(p6)
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bzw.

die folgende Tafel:

740
487 402,7
475 471,0 480,8
485 488,3 490,8 491,6
489 490,3 490,6 490,6

und damit für x (p 0) näherungsweise den Wert 491 Einheiten.
Hans Ade, Universität Mainz
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Tip für das Zeichnen von Ellipsen

Beim Zeichnen einer Ellipse zieht man gerne die Scheitelkrummungskreise heran.
Das Überbrücken der noch klaffenden Lücken mit dem Kurvenlineal ist manchmal
heikel, insbesondere bei grösserem Maßstab. Als bequeme Zwischenpunkte
empfehlen sich vor allem die Enden der konjugierten Durchmesser gleicher Länge.
Die zugehörigen Tangenten bilden einen der Ellipse umschriebenen Rhombus,
dessen Ecken leicht zu finden sind, indem man die Halbachsen a und b vom
Mittelpunkt aus auf das V^-fache streckt, was mit dem Stechzirkel rasch und
ohne Hilfshnien geschehen kann; die Berührungspunkte halbieren die Seiten und
sind nachträglich durch Ziehen der Mittelhnien festzustellen. - Bei Platzmangel
mag man die Schnittstellen der Rhombusseiten mit den Scheiteltangenten verwenden;

man erhält sie, wenn man von den Ecken des Scheiteltangentenrechtecks aus
die Strecken a\fl bzw. b\fl abträgt (Figur).
Weniger bekannt ist anscheinend, dass sich auch die Krümmungskreise schnell
hinzufügen lassen, die eine vorzüghche Zeichenhilfe bieten. Der zu einem der
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