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Elementarmathematik und Didaktik

Extrapolationsverfahren in der numerischen Analysis

In den vergangenen Jahren wurden viele Vorschlige gemacht, die Mathematik
an den Gymnasien praxisorientierter und anwendungsbezogener zu gestalten.
Daher wurden auch immer wieder Fragestellungen der numerischen Mathematik
daraufhin untersucht, ob sie fiir die Schule geeignet sind. In diesen Rahmen
gehort auch diese Note. Es geht um das fiir das numerische Rechnen funda-
mentale Prinzip der sogenannten Richardson-Extrapolation zur Genauigkeitsstei-
gerung. Die Grundidee dieser Vorgehensweise kann man, an geeigneten Beispielen
illustriert, durchaus in der Schule verdeutlichen. Damit lernt der Schiiler eine
Methode kennen, die heute bei fast allen aus dem Bereich der Analysis stammenden
numerischen Aufgabenstellungen zur Anwendung kommt.

1. Einleitung

Neben dem axiomatisch-deduktiven Aspekt der Mathematik spielt der konstruktive
Aspekt eine nicht weniger bedeutsame Rolle. Konstruktive Methoden sind Ver-
fahren, welche durch Ausfihrung von endlich vielen rationalen Rechenoperationen
die Losung mathematischer Probleme mit beliebiger Genauigkeit liefern. Die
numerische Analysis beschiftigt sich mit der Theorie solcher konstruktiver Metho-
den. Seit etwa 40 Jahren - mit dem Beginn der Entwicklung elektronischer
Rechenanlagen, welche die Rechengeschwindigkeit um das Millionenfache ge-
steigert haben - hat die numerische Mathematik gegeniiber fritheren Zeiten ein
vollig neues Gesicht bekommen. Hauptgegenstinde der numerischen Analysis sind:
a) die Bereitstellung von Algorithmen der verschiedensten Art zur Losung mathe-
matischer Probleme, b) die Untersuchung des Konvergenzverhaltens der von
solchen Algorithmen gelieferten Zahlenfolgen sowie etwa c¢) die Frage nach dem
Fehler, den man begeht, wenn man den Algorithmus nach endlich vielen Schritten
abbricht. Dabei kann man sich prinzipiell auf zwei ganz verschiedene Standpunkte
stellen: Einmal kann man sich fragen, wie gross der Fehler hochstens ist, man
interessiert sich fiir eine Aussage der Form |u—u(h)| <cst- #?, wo u die exakte
Losung des Problems, u(h) eine Niherungslosung in Abhingigkeit von einem die
Approximation beschreibenden Parameter 4 ist und peR, zum andern kann man
sich fragen, wie sich der Fehler asymptotisch verhilt, d.h. man interessiert sich
fur eine Aussage der Form

lu—u(h)|=0(H?) fir h—O0.

Das Extrapolationsprinzip, das im folgenden beschriebenen werden soll, liefert
eine Moglichkeit, die Konvergenz der durch einen Algorithmus gelieferten Nihe-
rungsfolge zu beschleunigen, falls eine asymptotische Fehleraussage bekannt ist.
Wir wollen die Fragestellung zunédchst am Beispiel studieren:
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2. Beispiele

2.1 Ndherungsweise Berechnung von

Archimedes hat schon etwa 250 v.Chr. Schranken fiir die transzendente Zahl =
angegeben, indem er die Umfinge regulirer, dem Einheitskreis ein- bzw. um-
beschriebener Polygone berechnet hat. Unter Verwendung von 96seitigen Poly-
gonen zeigte er 3(10/71)<n <3 (1/7). Diese Vorgehensweise wollen wir nun etwas
genauer untersuchen:

Fir den Umfang des regelmissigen n-seitigen Polygons, das dem Einheitskreis
einbeschrieben ist, gilt 2n-sin(z/n). Wir betrachten den halben Umfang
T,:=n-sin(n/n) bzw. mit h:=(1/n) die Grosse T(h)=(1/h)-sinzh. Wir wollen
nun diese Umfidnge nicht ausrechnen, sondern deren Abweichung von = stu-
dieren. Dazu bedienen wir uns der fiir alle reellen Argumente konvergenten
Potenzreihenentwicklung der Sinusfunktion. Man erhilt damit

3 5

e 2 A
T(hy=n— 7 W+ b=+

Fiur h<1, also n>1, ist offenbar T (h)<n, somit ist (7,),.n €ine monoton zu-
nehmende Folge unterer Schranken fiir den halben Umfang des Einheitskreises,
d.h. fur z.

Fiir den Umfang des regelmaissigen, n-seitigen, dem Einheitskreis umbeschriebenen
Polygons erhilt man ebenfalls auf elementargeometrischem Wege 27 - tan(n/n).
Wir bezeichnen den halben Umfang mit 7T:=n-tan(z/n) bzw. T’(h)
* =(1/h) - tanz h mit h:= (1/n). Unter Verwendung der Potenzreihenentwicklung fiir
die Tangensfunktion erhilt man

n3 27 1
T, sz -—-hz Sl A —_ ] —.
(h)=n+ 5 + T h*+ fur h<2

Die Reihe konvergiert fir h<1/2, somit stellt (77%),.n €ine monoton fallende
Folge oberer Schranken fiir z dar.

Eine Auswertung der archimedischen Vorgehensweise liefert fiir n=96 die Zahl =
auf 2 Dezimalen (Archimedes —250), fiir n=23 die Zahl n auf 15 Dezimalen
(Romanus 1593), fiir n=26? die Zahl n auf 35 Dezimalen (Ludolph van Ceulen
1610). Um die angegebene Genauigkeitssteigerung zu erreichen, ist also ein riesiger
Rechenaufwand notig.

Die naheliegende Frage nach der Verbesserung der Konvergenz fithrte schon im
Jahre 1654 Huyghens auf die folgende Idee, die dem Extrapolationsprinzip zu-
grunde liegt:

Betrachte

T(h=n+a h*+a,h*+--- +a;h¥+ - --

sowie
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h 2 4 h2l
T(—2—>=n+a1—4—+a2—1—6—+---+a,-—2—27+---
und bilde
1 h 1 5
SR L P S DV B
1 (h) 3 T > T(h) n 4a2h T ash

Mit den obigen Koeffizienten in der A-Entwicklung von T heisst dies:

ol hS— ...

1 5
T =g——— - 7% h*—
i =n= ey e

und damit ist der A>-Term eliminiert, der Fehler T,(h)— = ist also noch O (h%)
fir ~—0. Man bekommt fir =230 damit 7,(1/2%°), und das bedeutet, man
bekommt n schon auf fast 35 Dezimalen genau. Das Huyghenssche Vorgehen
beschleunigt somit die Konvergenz gewaltig.

Eine Wiederholung des beschriebenen Vorgehens bietet sich geradezu an, man
erhilt:

ol HS— ...

Tz(h):=—1—(24- T, (—h—> - (h)> —n

15 2 T 647!

und erkennt, dass der Fehler in T, (k) noch von der Ordnung A5 ist.

2.2 Numerische Integration

Gegeben sei f:[a,b]— R, fe C?"~2[qa,b], [a,b]<R sei in n Teilintervalle geteilt mit
h:=(b—a)/n durch xo=a,x,=a+h, ..., x,=a+nh=>b. Gesucht sei eine Naherung
fir I:= [% f(x)dx.

Zur numerischen Integration werde die Trapezregel benutzt, die man bekanntlich
dadurch erhilt, dass man f in den n Teilintervallen von [a,b] linear durch Poly-
nome interpoliert und dann exakt integriert. Mit f(x;)=f;=f(a+ih) lautet die
Trapezregel:

1
T(h)=~>h (fo+2fi+2f+ - +2f,_1+f) .

Mit Hilfe der Euler-MacLaurinschen Summenformeln (~ 1740) kann man zeigen:

m

& B,, . . .
If )y dx = T(hy== 3, =7 - WD @) =fE V@] + Rams
a i=1 .

mit R,,,.,=0 (h*"*2) und B; die Bernoullischen Zahlen.

Es gilt somit:

T(h)=1+al h2+02h4+ v +amh2m+ 0(h2m+2) ,
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d.h. der Fehler T (h)— I ist bestimmt durch die Potenz A2,

Beispiel: f(x)=exp(—x2?), [a,b]=[0,1/2]. Man erhilt fiir n=1, d.h. h=hy=1/2:
T(hy)=0,4447; fur n=2, d.h. h=h,/2=1/4: T(hy/2)=0,4572 an Stelle von 0,4613
auf 4 Dezimalen.

Die Huyghenssche Idee zur Genauigkeitssteigerung der Trapezregel bedeutet, dass
man in der obigen Entwicklung nach h-Potenzen den fiihrenden A%-Term durch
Linearkombination der Ausdriicke fiir 4 und /2 eliminiert. Man bildet also mit

T(h)=I+alh2+a2h4+ . +amh2"I+O (h2m+2)

und
h h2 h4 h2m h 2m+2
T(3)=Irag ezt o o((3) )

1 h 1 5
Tl (h)= "3"(4 T(E) - T(h)) =J— 2—02’!4"— —1'6"03}!6"‘ s
1 2—2m+2__1
— ._3._(_____55;;____) ath2m+ 0(h2m+2) .

Dies aber ist, wie man leicht zeigen kann, gerade die bekannte Simpsonregel,
nimlich jene Quadraturformel, die dadurch entsteht, dass man f in [x;x;.]
durch ein quadratisches Polynom interpoliert und dann exakt integriert.

Auf das obige Zahlenbeispiel angewandt, liefert dieses Vorgehen der Genauig-
keitssteigerung fir n=1, d.h. hy=1/2, den Niherungswert T, (h,)=0,4614.

Dieses Vorgehen kann man nun in bekannter Weise fortsetzen, indem man jeweils
mit zwei verschiedenen h-Werten arbeitet. Man kann das Verfahren allerdings
noch effektiver machen, indem man eine unendliche Folge verschiedener A-Werte
in die Betrachtung einbezieht. Dieser Gedanke stammt von Romberg 1955 [6].
Man geht dabei folgendermassen vor: Man teilt [q,b] in 1, 2, 4, 8, ... Teilinter-
valle und berechnet I mittels der Trapezregel fiir diese Teilintervalle, dabei
erhilt man folgende Naherungswerte fir h=b—a:

r(2)....

. (%)

allgemein:
h :
T(—i;), i=0,1,2,...

Durch Linearkombination nach der Vorschrift von oben wird nun aus je zwei
aufeinanderfolgenden Niherungen eine neue Folge, die T)-Folge, gebildet:

new, 1(5). 1(%).-
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h T(zi’ll)_T%)

T, (5)= s ., i=0,1,2,...

Die Fortsetzung liefert eine 7,-Folge:

T, (h), Tz(%), Tz(%),...

und schliesslich eine T}-Folge mit

allgemein:

i=0,1,2,...

h h
2k
iy 20 ()7 (3)
T (—) -
k 2 22k __ 1 2
Nach jeder Linearkombination ist die Verbesserung des Fehlers zwei h-Potenzen,

der Fehler in den Tj ist somit von der Ordnung h***2, Auf unser Beispiel
angewandt, liefert dies:

h h h h
T (?) T (‘27) Tz(?) T3 (?) oo
0,4447
0,4572 0,4614

0,4603 0,4613 0,4613
0,4610 0,4613 0,4613 0,4613

3. Alligemeines Prinzip der Extrapolation

Eine unbekannte Grésse ay wird durch eine Grosse T'(h), h> 0, approximiert, und es
giltlim,_, , T (h)=ay.

Es sei bekannt, dass T fiur A—0 eine asymptotische Entwicklung besitzt der
Form

T(h)=a0+a1h+---+am_1hm"l+Rm(h)’ m=1,23,...

mit |R,, (h)| <C,,h™ fur h>0, wobei a,,a,, ..., C|,C,, ... Konstanten unabhingig
von h seien.

Der Algorithmus der Extrapolation lautet nun: Man wihle eine Nullfolge
(7 ho) jen, reeller Zahlen mit 0<r< 1, hy>0 und bilde fir i=0, 1,2, ... die Grossen
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Tig— 4 Ty 1
A

Ti,0:= T("iho), Tiks1:= k=0(1)(-1).

Fiir r’=1/2/ erhilt man gerade die Grossen des zweiten Beispiels, wenn man
beachtet, dass man dort eine Entwicklung nach Potenzen von A2 hat.

Zur Durchfithrung von Handrechnungen ordnet man die Werte zweckmissiger-
weise in Form einer sogenannten Tafel an:

T, Ty,

Iy, T, 1),

Iy, T3, 15, Ty
Tao Tan Tag Tasz  Tags

Eine genauere Untersuchung zeigt nun, dass die Tafel - und damit der Algo-
rithmus - die folgenden wichtigen Eigenschaften besitzt (siehe [1]):

a) Die Werte in jeder Spalte streben gegen a.

b) Die Werte in jeder Diagonalen streben gegen a,,.

c) Die Werte in der (k+ 1)-Spalte streben schneller gegen a, als die Werte in der
k-Spalte in dem folgenden Sinne:

Tiks1—ag

lim =0,

inw  T;r—aqg
d) Fiir jeden festen Wert von k= 0 gilt:
Tik=ao+ (= 1) ags r= ®DED @ o)1+ 0 (o) +?) .

e) Bei geometrischer Schrittweitenfolge (wie sie oben betrachtet wurde) gilt: Falls
die Werte in der ersten Spalte mit Fehlern behaftet sind, deren Betrige <¢ sind,
so ist der resultierende Fehler im Schema nirgends grosser als 2¢ (der Algorithmus
ist also numerisch stabil).

Die folgenden Ausfithrungen sollen deutlich machen, was hinter dem Extrapola-
tionsalgorithmus steht. Man betrachte die m+1-Werte T, :=T(rhg), i=0(1)m
und dazu die m+ 1-Paare: (hg, Ty ), (hor, Ty ), ..., (hor™, T, o). Durch diese m+ 1-
Punkte lege man nun das (wegen paarweise verschiedener Stiitzstellen) eindeutig
bestimmte Lagrangesche Interpolationspolynom P,, vom Grade m. In dem Ansatz
P, (h)=by+bh+--- +b, h™ sind dann die Koeffizienten by, ..., b,, aus der Inter-
polationsforderung P, (hyr')= T o fir i=0(1) m zu bestimmen.

Nun extrapoliere man auf den Wert h=0, d.h. man ermittle den Wert des
Interpolationspolynoms P,, an der Stelle =0 ausserhalb des Stiitzstellenintervalls
und erhilt damit in P,, (h=0) eine Niherung fir 7(0).



Elementarmathematik und Didaktik 89

Wiederholt man die Konstruktion solcher Interpolationspolynome fiir dieselben
Stiitzstellen, aber nacheinander die Stiitzwerte T, T;,, T;3,...mit i=0, 1, 2, ...,
so erhilt man eine Folge von Interpolationspolynomen und nach Extrapolation auf
h=0 eine Folge von Naherungswerten fiir 7'(0).

Wendet man zur Berechnung der Werte dieser Interpolationspolynome an der
Stelle h=0 (die ja keine Stiitzstelle ist) den Algorithmus von Neville (1934) an,
so erhilt man gerade das obige Schema.

Bemerkungen:

a) Die ganze Vorgehensweise ist noch erheblicher Verallgemeinerungen fahig
[1, 2, 4, 6]: Man kann etwa viel allgemeinere Schrittweiten-Nullfolgen zulassen;
die asymptotische Entwicklung - auf der das ganze Vorgehen beruht - braucht
nicht nur ganze h-Potenzen zu enthalten; anstatt Polynominterpolation kann man
auch rationale Interpolation anwenden.

b) Historisch gesechen gehen die ersten Ansidtze dieser Methode zuriick auf
Huyghens 1654, Sheppard 1900, Milne 1903. Die erste systematische Untersuchung
und Anwendung auf viele Aufgabenstellungen stammt von Richardson 1927
(Richardson-Extrapolation). Zur selben Zeit haben sich auch Bogoljuboff und
Kryloff mit dieser Vorgehensweise beschiftigt. 1955 nahm Romberg die Idee
wieder auf und iterierte die Richardson-Extrapolation bei Anwendung auf die
numerische Integration. Ab 1960 wurden viele grundlegenden Arbeiten, insbeson-
dere zur Fehleranalyse des Verfahrens, veroffentlicht, vor allem von Bauer, Rutis-
hauser, Stiefel, Stoer, Bulirsch.

4. Numerische Bedeutung der Extrapolationsverfahren

Die Methode der Extrapolation stellt eine Moglichkeit dar, die Ndherungen T'(h)
einer Grosse g, zu verbessern, falls eine asymptotische Entwicklung bekannt
ist. Nun wird man vielleicht fragen, warum diese aufwendige Vorgehensweise.
Warum ldsst man nicht einfach # gegen Null gehen, d.h. nimmt eine beliebige
Verkleinerung der Schrittweite vor? Dann wird der Fehler zwischen exakter Losung
und Niherungslésung - der sogenannte Diskretisierungsfehler - natiirlich kleiner.
Aber fiir die Numerik kommt nun ein entscheidender, neuer Gesichtspunkt ins
Spiel: Seit 1955 [5] ist ndmlich bekannt, dass sich mit 27— 0 der Rundungsfehler
im allgemeinen erheblich vergrossert.

Die Extrapolationsverfahren haben folgende numerische Vorteile:

a) Sie verkleinern den Diskretisierungsfehler durch sukzessive Elimination von
h-Potenzen in der asymptotischen Entwicklung.

b) Sie vergrossern im allgemeinen (bei geeigneter Auswahl der Schrittweiten-
Nullfolgen) den Rundungsfehler nicht.

c) Der Arbeitsaufwand ist kleiner als bei Rechnung mit beliebig kleinen Schritt-
weiten A.

Insgesamt stellen die Extrapolationsverfahren fiir sehr viele Probleme den ein-
fachsten und zugleich giinstigsten Weg zur Verbesserung von Nidherungslosungen
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dar. Sie werden mit grossem Erfolg angewendet bei der numerischen Behandlung
von einfachen und mehrfachen Integralen, Anfangs-, Rand- und Eigenwertauf-
gaben bei gewohnlichen und partiellen Differentialgleichungen, Differentiations-
aufgaben usw.

5. Einige Anwendungen des allgemeinen Extrapolationsprinzips

5.1. Sei wieder eine unbekannte Grésse ay durch eine Grosse T'(h), h> 0, approxi-
miert mit lim,,_, o 7(h)=a,, und es gelte

T(h)=ao+ a1h2+a2h4+ 0(h6),

wobei a,, a, Konstanten unabhingig von 4 seien.
Betrachtet man nun

T(h)=ay+4a,h*+ 16a, h*+ O (h%)

sowie
TR h)=ay+9a,h®+81 a, h*+ 0 (h%)

und eliminiert die Grossen a; und a,, so erhilt man

a0=—1%{15 -T(h)—6-TQ2h)+T@Bh)}+0 (4.

5.2. Betrachtet man nun noch einmal die niherungsweise Berechnung von n im
Beispiel 2.1, so gilt fiir den halben Umfang des dem Einheitskreis einbeschrie-
benen, regelméssigen, n-seitigen Polygons

1 3 3

-G A LAY 6
T(h)—-h sinth=n 31 h+5! h*+ 0 (h°).
Das bedeutet:
1 . n 1 . m 3
T(h-—~2—>—2-sm?-—2, T(h———3*)—3-81113’-—?\/—3—,
1

n
T( =~——>= . SIn— = .
6 6 sm6 3

Firr ay=n erhilt man damit aufgrund von Abschnitt 5.1 mit h=1/6

1 3
a =To"{15 36 _2~\/3_+2}+0(h5)=3,1411+0(h5),
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also einen besseren Niherungswert fiir = als der von Archimedes mittels des
96seitigen Polygons gewonnene Wert.

5.3. Durch Extrapolation kann die transzendente Zahl e mit wenig Rechenauf-
wand auf 3 Dezimalen genau mittels der Bezichung e=1lim,_o(1+A)!/*, h>0,
gewonnen werden.

Im Sinne von Abschnitt 3 muss fur T'(h):=(1+h)'/* zunichst gezeigt werden,
dass die Voraussetzung zur Extrapolation auf Schrittweite Null erfullt ist, d.h.
dass eine Entwicklung der Form

T(hy=ag+ah+---+a,_ "1+ 0(hm)

existiert, mit meN, gy=e, a,,a,, ... von h unabhingigen Konstanten.
Es gilt bekanntlich

1 horR
1h— — .1 =] — 4 —— — 4
In(1+h) P n(l+h)=1 2+3 4+0(h),
somit
1/h 1 h 2w
T(h)=(1+h) =exp(—~-1n(1+h))=exp(1———+-——-—+0(h4)>
h 2737 %
—e(l——h—+-}£ f'i+1( h+h2 i 1( h)3 o (h*
273 a2\ 3) s\ 2)F ())
o1l 7
= —_—— e  R2 .3 4
e(l TR h+0(h)).

Wihlt man nun hy=1, hy=1/2, h,=1/4, h3=1/8, hy=1/16, also, in der Bezeich-
nung von Abschnitt 3, den Wert r=1/2, so erhilt man mit

T(hy=1) =1+1)! =2,

1\4
1+ ) =2,4414 (aus der Binomialentwicklung
berechnet),

1 8
T<h3= %) - (1 + {) ~2,5658  (logarithmisch berechnet),

1 \16
1+ ——) =2,6379 (logarithmisch berechnet)
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wegen
T;1=2-T;o—Ti-10, i=1,2,...
1 -
Ti,2=‘3‘(4' Ti,l_Ti-l,l)a i=2,3,...
1
Ti,3=‘:7‘(8‘ Tir—Ti—12), i=3,4,..
1
Ti,4="l_§'(l6‘ Ti,3_Ti—~l,3)a l=4, 5,
die Tafel
T'i,O Tf,‘l Ti,2 Ti,3 T1,4
2,0000

2,2500 2,5000

24414 2,6328 2,6771

2,5658 2,6902 2,7093 2,7139

2,6379 2,7100 2,7166 2,7176 2,7178

also |e—2,7178| <5 - 1074

.5.4. Eine physikalische Grosse x sei vom Druck p eines Gases in der folgenden
Weise abhéngig

x(p)=ao+a p*+ayp*+aypS,

wobei ay, ay, a,, a; reelle, nichtverschwindende Konstanten seien.
Aus der Messreihe

pinmm Hg 0,8 0,4 0,2 0,1 0,05
x in Einheiten 740 487 475 485 489

bestimme man niherungsweise x im Vakuum, d.h. x (p=0)=aqy.
Durch dreimalige Richardson-Extrapolation erhilt man aufgrund von

wr o5(2)-s0) 00>

bzw.

ao=%(8~x(~%)—x(p))+0(p6)
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bzw.

o 1 (54(2) o)

die folgende Tafel:

740

487 402,7

475 471,0 480,8

485 488.3 490,8 491,6
489 490,3 490,6 490,6

und damit fiir x (p=0) niherungsweise den Wert 491 Einheiten.
Hans Ade, Universitit Mainz
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Tip fiir das Zeichnen von Ellipsen

Beim Zeichnen einer Ellipse zieht man gerne die Scheitelkriimmungskreise heran.
Das Uberbriicken der noch klaffenden Liicken mit dem Kurvenlineal ist manchmal
heikel, insbesondere bei grosserem MaBstab. Als bequeme Zwischenpunkte emp-
fehlen sich vor allem die Enden der konjugierten Durchmesser gleicher Linge.
Die zugehorigen Tangenten bilden einen der Ellipse umschriebenen Rhombus,
dessen Ecken leicht zu finden sind, indem man die Halbachsen ¢ und » vom
Mittelpunkt aus auf das V/2-fache streckt, was mit dem Stechzirkel rasch und
ohne Hilfslinien geschehen kann; die Berithrungspunkte halbieren die Seiten und
sind nachtriglich durch Ziehen der Mittellinien festzustellen. - Bei Platzmangel
mag man die Schnittstellen der Rhombusseiten mit den Scheiteltangenten verwen-
den; man erhilt sie, wenn man von den Ecken des Scheiteltangentenrechtecks aus
die Strecken a\/2 bzw. bV 2 abtriagt (Figur).

Weniger bekannt ist anscheinend, dass sich auch die Kriimmungskreise schnell
hinzufiigen lassen, die eine vorziigliche Zeichenhilfe bieten. Der zu einem der
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