Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 34 (1979)

Heft: 4

Artikel: Die irreduziblen Zahlen des Bereichs Z [Formel]
Autor: Wilker, Peter

DOl: https://doi.org/10.5169/seals-33804

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-33804
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

P. Wilker: Die irreduziblen Zahlen des Bereichs Z[V —5] 75

rungen, aber auch von seinen Lehrern und Schiilern verlangte er hohe Leistungen.
Seine Strenge im Fachlichen war jedoch gepaart mit Milde im menschlichen
Bereich. Auch war ihm die Forderung begabter Kinder aus einfachen Volkskreisen
ein besonderes Anliegen.
Seit seinem Riicktritt hat sich am MNG einiges gedndert, aber in wesentlichen
Strukturen erkennt man noch immer den Einfluss seines ersten Leiters. Viele
Lehrer und Generationen von ehemaligen Schiilern erinnern sich in grosser Dank-
barkeit an das Wirken ihres Rektors und Lehrers Paul Buchner.

R. Conzelmann

Die irreduziblen Zahlen des Bereichs Z [\/ — 5]

1. Die Existenz von Zahlbereichen, in denen jedes Element zwar als Produkt
irreduzibler Zahlen geschrieben werden kann, die Produktdarstellung aber nicht
eindeutig ist, wurde von Eduard Kummer um 1844 erkannt, obwohl sich diese
Tatsache schon aus der Theorie der quadratischen Formen von Gauss ergab
(vgl. [3]). Der Bereich Z[\/ —51], d.h. die Menge der komplexen Zahlen der
Form u+ vV —5 (u,veZ), dient als einfaches Beispiel. In ihm sind 3, 7, 1+2V -5,
1-2V —5 irreduzibel, und es gilt 21=3-7=(1+2V —5) (1-2V —5). Dieses
und dhnliche Beispiele findet man in allen géingigen Lehrbiichern der Zahlen-
theorie beschrieben. Der vorliegende Artikel soll die Frage beantworten, welches
ganz allgemein die irreduziblen Zahlen von Z[V —5 ] sind und wie man andere
oder sogar «alle» Beispiele nicht eindeutiger Zerlegbarkeit konstruieren kann.
Dariiber findet man in der Literatur im allgemeinen nichts oder nichts unmittel-
bar Ersichtliches, was aber leicht erklitlich ist. In Bereichen mit eindeutiger
Faktorzerlegung wie Z oder Z[V —1 ] sind ja die irreduziblen Zahlen mit den
Primzahlen identisch und stellen die «Bausteine der Arithmetik» dieser Bereiche
dar. In Bereichen wie Z[\/ —5] ist dies nicht der Fall, und die irreduziblen
Zahlen spielen eine weit geringere Rolle. Zudem ist es in den erstgenannten
Bereichen - wie sogleich angedeutet werden soll - verhiltnisméssig leicht, die
Bedingungen anzugeben, denen die irreduziblen Zahlen des Bereichs geniigen
miissen, wihrend in den andern Bereichen tiefer liegende Hilfsmittel der alge-
braischen Zahlentheorie angewendet werden miissen.

Wir fithren im Bereich der ganzen algebraischen Zahlen eines quadratischen
Zahlksrpers Q (V/d) die iiblichen Begriffe «konjugiert» und «Norm» ein (vgl.
dazu etwa [4] und [6]). Konjugiert zu a=u+ wd ist a=u—vVd; die Norm
von a ist N (a)=ad = u®— dv?. Es ist leicht zu kontrollieren, dass N (a8)= N (a) N (B).
Wir erinnern zudem an die Begriffe Einheit: Zahl x mit x|1; irreduzible Zahl:
Zahl x, keine Einheit, mit ausschliesslich trivialen Teilern x und Einheiten;
Primzahl: Zahl x mit x| a oder x| b, falls x| ab.

Im Bereich Q(\/d) gelte nun die Eindeutigkeit der Zerlegbarkeit in irreduzible,
das sind gleichzeitig Primzahlen. Sei a irreduzibel mit Norm m und sei m in
rationale Primzahlen zerlegt, etwa m= *p;p,---p;. Da a|m und da a prim ist,
muss schon a|p; fiir einen Primfaktor p; von m gelten. Jede irreduzible Zahl des
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Bereichs ist also Faktor einer und, wie man leicht sieht, auch nur einer rationalen
Primzahl, und es geniigt, die Zerlegungen der letzteren zu studieren.

Man bemerkt, dass bei Nichtbestehen der eindeutigen Zerlegbarkeit das vorge-
brachte Argument hinfillig wird. Wie sich zeigen wird, ist auch die angefiihrte
Tatsache nicht mehr richtig, und die Verhiltnisse hingen entscheidend von der
sogenannten Klassenzahl # des Korpers Q(V/d) ab. Wir erwdhnen, dass h=1
notwendig und hinreichend fiir die Eindeutigkeit der Produktdarstellung durch
irreduzible Zahlen ist und dass Q (V' —5) die Klassenzahl A=2 hat.

Im Rahmen dieses Artikels ist es natiirlich nicht moglich, die zur Konstruktion
der irreduziblen Zahlen von Z [V —5 ] bendtigten Sétze der algebraischen Zahlen-
theorie zu begriinden. Sie sollen lediglich erldutert und anschliessend soll gezeigt
werden, wie man mit ihrer Hilfe auf elementarem Weg zu einer expliziten
Bestimmung der irreduziblen Zahlen kommt. (Zur algebraischen Zahlentheorie vgl.
z.B.[7])

2. Wir erinnern an einige fundamentale Begriffe der Zahlen- und Ringtheorie. Sei
R ein (kommutativer) Ring mit Einselement 1. Fiir re R bezeichne Rr das von r
erzeugte Hauptideal, bestehend aus allen Vielfachen von r. Man sieht leicht, dass
Rr=R gleichwertig ist damit, dass r Einheit des Ringes ist. Ein Ideal P von R
heisst prim, wenn P# R und wenn aus abe P stets ae P oder beP folgt. Es ist
klar, dass das Ringelement r genau dann prim ist, wenn das Hauptideal Rr ein
Primideal ist.

Es sei nun R der Ring der ganzen algebraischen Zahlen eines Zahlkorpers. Eine
fundamentale Tatsache der algebraischen Zahlentheorie besagt, dass sich in R
jedes Ideal eindeutig als Produkt von Primidealen schreiben lisst. Wir werden
von dieser Tatsache vielfach, meist stillschweigend, Gebrauch machen.

Wie sofort aus der Definition folgt, gilt Z< R. Ist P ein Primideal von R, so ist
PnZ, wie sich ebenfalls unmittelbar aus der Definition ergibt, ein Primideal von
Z, also ein von einer rationalen Primzahl erzeugtes Hauptideal Zp von Z. Dadurch
wird P eindeutig eine Primzahl p zugeordnet, und man sagt, P liege iiber p.

Ist umgekehrt p eine rationale Primzahl, so betrachte man das von p im ganzen
Ring R erzeugte Hauptideal Rp, das sich eindeutig als Produkt von Primidealen
aus R darstellen ldsst. Es gilt die weitere fundamentale Tatsache, dass die bei
dieser Produktdarstellung auftretenden Primideale genau die iiber p liegenden sind.
Fiir quadratische Zahlkérper lisst sich diese Produktdarstellung einfach beschrei-
ben durch

Satz 1. Ist p eine rationale Primzahl und ist R der Ring der ganzen algebraischen
Zahlen eines quadratischen Zahlkirpers Q(\/d), so gibt es fir die Darstellung
von Rp als Produkt von Primidealen aus R drei Moglichkeiten:

(V) Rp=P? mit einem Primideal P («p ist verzweigt»).
(Z) Rp= P, P, mit zwei verschiedenen Primidealen P, P, («p ist zerlegt»).
(T) Rp ist selber Primideal («p ist trige»).

Es ldsst sich stets angeben, welcher der drei Fille fur eine gegebene Primzahl p
eintritt. Wir stellen die Kriterien gerade fir den Ring Z[V —5] dar, der im
folgenden kurz mit 4 bezeichnet werden soll.
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(V) tritt ein, wenn p die sogenannte Diskriminante von A teilt. Diese ist gleich —20;
somit sind 2 und 5 die einzigen verzweigten Primzahlen.

(Z) tritt ein fiir p#2, 5, wenn die quadratische Kongruenz x?>= —5modp l6sbar
ist. Unter Verwendung des quadratischen Reziprozititsgesetzes lassen sich die
zugehorigen p leicht angeben. Wir verzichten auf die einfache Durchrechnung
und fihren nur das Resultat an: p ist zerlegt dann und nur dann, wenn
p=1, 3,7 oder 9 mod20 ist.

(T) tritt ein fir p, wenn x2= -5 modp nicht 16sbar ist. Dies liefert natiirlich
p=11,13,17 oder 19 mod20 als trige Primzahlen.

3. Wir wollen im folgenden zur Vereinfachung der Ausdrucksweise ein Ideal von
A, das nicht ein Hauptideal ist, «echt» nennen. Von der oben erwihnten Tatsache,
dass die Klassenzahl von A4 gleich 2 ist, benotigen wir fiir unsere Zwecke lediglich
die folgenden Tatsachen:

Satz 2. Das Produkt zweier echter Primideale von A ist ein Hauptideal. Das
Produkt eines echten Primideals mit einem Hauptideal ist ein echtes Ideal.

Bevor wir einen fiir unsere Zwecke sehr niitzlichen Hilfssatz ableiten, sei erwidhnt,
dass die Einheiten von A4 die Zahlen +1 sind. Denn eine Einheit u+vV —5
hat, weil sie 1 teilt, die Norm 1, und die Gleichung 1=u?+5v? lisst nur die
Losungen u=+1,v=0zu.

Hilfssatz 1. Sei a€A und Aa=PP,---P, die Zerlegung des Hauptideals Aa in
Primideale von A. a ist in A dann und nur dann irreduzibel, wenn n=1 oder
wenn n=2 und die beiden auftretenden Primideale echt sind.

Beweis: Sei a irreduzibel. Aus Satz 2 folgt sofort, dass dic Anzahl der echten
unter den Primidealen P; gerade sein muss. Fasst man sie paarweise zusammen,
so erhdlt man eine Darstellung von Aa als Produkt von Hauptidealen, etwa
Aa=Ap,AB, - --AB,,. Dies bedeutet a=+£,8,---§,,, was aber wegen der Irre-
duzibilitit von a nur fiir m=1 mdglich ist. Folglich ist also entweder Aa selber
ein Primideal, oder aber es ist Produkt zweier echter Primideale.

Sei umgekehrt Aa =P, ein Primideal, aber a ein Produkt, etwa a=p,f,. Dann
is Ada=AB,AB,=P, so dass infolge der Eindeutigkeit der Produktdarstellung
durch Primideale z.B. Af,=P und Af,=A sein muss. Dann ist aber B, eine
Einheit, und die Zerlegung von a war nicht echt. a ist also irreduzibel.

Ist schliesslich Aa=P;P,, mit echten Primidealen P, und P,, aber wieder
a=f,8, so muss B, oder B, eine Einheit sein. Andernfalls wire nimlich z.B.
AB,=P,, AB,=P,, und P, sowie P, wiren nicht echt.

Wir fiigen hier noch einen weiteren, ganz elementaren Hilfssatz an.

Hilfssatz 2. Seien a, B irreduzible Zahlen von A, die nicht zu 1 gehéren, wihrend
afeZ gelte. Dann ist f= ta.

Beweis: Aus af=keZ folgt aif=N(a)f=ka, also f=(k/N(a))a. k/N(a) ist
eine rationale Zahl, und wir nehmen an, sie sei in die Form r/s mit teiler-
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fremden r, s und s>0 gebracht. Da die Komponenten von § ganzzahlig sind,
muss d@d=sy fur ein yeAd gelten, was wegen der Irreduzibilitit von a und der
Voraussetzung a ¢ Z auf s= 1 fithrt. Aber f=ra ist wieder nur fiir r= + 1 moglich.

4. Wir betrachten nochmals Satz 1 und wollen Kriterien dafiir suchen, wann in
den Fillen (V) und (Z) die auftretenden Primideale P bzw. P,, P, Hauptideale sind
und wann echt.

Im Falle (V) ist diese Frage leicht zu beantworten. Ist P ein Hauptideal, P=Aa,
mit a=u+vV =5, so gilt Ap=(4a)*=Aa?, also p= +a2 Berechnet man beidseits
die Normen, so findet man N(p)=p?>=N(@?)=N(a)? also N(a)=p=u+5v%
p ist entweder 2 oder 5. Die diophantische Gleichung 2=u?+5v? ist unldsbar,
hingegen hat 5=u?+5v? die Losungen u=0, v=+ 1. Somit ist P fiir 2 ein echtes
Primideal, fiir 5 das Hauptideal AV — 5.

Wann im Falle (Z) fur Ap= P, P, Hauptideale auftreten, ist eine tiefer liegende
Frage. Sei Py=Aa,, P,=Aa,. Es folgt Aa,a,=Ap, also a,a,= +peZ, wihrend
offenbar a; und a, nicht zu Z gehoéren. Nach Hilfssatz 1 sind a, und a, irredu-
zibel, nach Hilfssatz 2 gilt a,=+a,. Setzt man a,=u+ wW =5, so gilt somit
p=0,a;=u*+ 512

Damit also bei Ap= P, P, Hauptideale auftreten konnen, muss p=u?+ 5v? losbar
sein. Ist dies umgekehrt der Fall, ist (u,v) eine Losung, und setzt man
a=u+vV =5, so wird p=ad, Ap=Aa Aa, und gemaiss Satz 1 miissen Aa und
Aa Primideale sein.

Da wir uns im Falle (Z) befinden, gilt p=1, 3, 7 oder 9 mod20. Betrachtet
man die Gleichung p=u?+5v2 modulo5, so bedeutet ihre Losbarkeit, dass u?=p
., mod$5 gelten muss. Dies ist offenbar nur fiir p=1 oder 4 mod5 moglich, was dazu
fihrt, dass mod20 nur p=1 oder 9 in Frage kommen.

Damit ist unsere Fragestellung auf die nach der Losbarkeit der diophantischen
Gleichung u?+ 5v?=p fiir Primzahlen p=1 oder 9 mod 20 zuriickgefithrt. Es gilt
nun

Satz 3. Die diophantische Gleichung w?+5v*=p ist fiir eine Primzahl p=1 oder
9 mod 20 stets losbar.

Satz 3 ergibt sich aus der Theorie der quadratischen Formen von Gauss (vgl. [2])
oder auch direkt mittels des Minkowskischen Satzes iiber Linearformen (vgl. [5]).
Wir werden iibrigens auf die Existenzaussage von Satz 3 am Schluss dieses
Artikels zuriickkommen. Aufgrund der vorstehenden Ergebnisse lassen sich bereits
die rationalen Primzahlen angeben, die in A irreduzibel bleiben. Es sind dies
einmal die trigen Primzahlen p=11, 13, 17, 19 mod 20 sowie diejenigen zerlegbaren,
bei denen Ap das Produkt zweier echter Primideale ist. Wie gerade gezeigt, sind
das die Primzahlen p=3, 7 mod 20. Schliesslich ist im Falle (V) noch 2 irreduzibel
inA.

Wir fassen zusammen: Irreduzibel in 4 sind

(1) rationale Primzahlen p=3,7, 11, 13, 17, 19 mod 20 sowie p=2.

5. Nun soll die Bestimmung der irreduziblen, aber nicht zu Z gehérenden Elemente
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von A in Angriff genommen werden. Wir schreiben fiir sie generell a=u+vVy —5
und gehen so vor, dass wir Aa betrachten, notwendige Bedingungen fiir die
Irreduzibilitdt von a ableiten und zeigen, dass sie auch hinreichend sind.

Zur Vereinfachung der Ausdrucksweise soll im folgenden a als «Losung» der
diophantischen Gleichung u?+ 5v?>=N(a) betrachtet werden. Es ist klar, dass
neben a auch —a, & Losungen sind. Sie werden als nicht wesentlich ver-
schieden angesehen.

Das Hauptideal 4a kann selber prim sein; wir wollen das in diesem Abschnitt
voraussetzen. Aa liegt dann iiber einer rationalen Primzahl p und wird bei der
Produktdarstellung von Ap als Faktor auftreten. Die genauen Verhiltnisse hingen
davon ab, welcher der Bedingungen (V), (T) oder (Z) die Zahl p geniigt.

(V) p ist verzweigt, d.h. Ap=(4a)*=Aa? und p= +a?. Anderseits muss p gleich
2 oder 5 sein. Wie bereits gezeigt, kommt nur 5 in Frage, woraus a=\ —5

folgt. Dass V' —5 tatsichlich irreduzibel ist, folgt z.B. daraus, dass N (V-=5)=5
ist.

(T) p ist trige, d.h. Ap ist ein Primideal, Ap=Aa und a= +p. Dieser Fall
wurde bereits besprochen.

(Z) p ist zerlegt, d.h. Ap=P,P, mit z.B. Aa=P,. Aus Satz 2 folgt, dass auch
P, ein Hauptideal sein muss, etwa P,=Apf. Somit gilt Ap=Aa Af=A(af) und
aff= xp. Aus Hilfssatz 1 folgt die Irreduzibilitit von f. a und f konnen nicht
ganzzahlig sein, so dass nach Hilfssatz 2 gelten muss: f=+a, p=aa=N(a)
=u?+5y2

Wie in Abschnitt 4 gezeigt, ist die Losbarkeit der diophantischen Gleichung
p=u*+5v? gleichwertig mit p=1, 9 mod 20. Sie hat iibrigens nur eine Losung a.
Denn wire y eine weitere Losung, p=7y7, so wiirde Ap=Ay A5 =P, P,, also z.B.
Ay=P{=Aa und y = *a, folgen.

Man sieht nun umgekehrt sofort, dass jede Losung a einer Gleichung der an-
gegebenen Art in A4 irreduzibel ist. Denn aus Ap=Aa Aa folgt aufgrund der
Annahme, dass p zerlegbar ist, dass Aa ein Primideal sein muss, worauf man
Hilfssatz 1 anwenden kann.

Bevor wir die Ergebnisse dieses Abschnitts zusammenfassen, sei bemerkt, dass
wir nur einen Wert von a angeben. Stets sind auch —a und +ad zusammen mit
a irreduzibel.

Irreduzibel in 4 sind

(3) Losungen a der Gleichung p=u?+5v? p eine rationale Primzahl =1 oder
9 mod 20 (p bestimmt a eindeutig).

6. Wir wollen jetzt den Fall betrachten, dass Aa selber nicht prim ist. Nach
Hilfssatz 1 ist dann Aa das Produkt zweier echter Primideale. Die beiden Ideale
konnen gleich sein, so dass Aa=P2 Wir wollen das fiir diesen Abschnitt vor-
aussetzen.

P liegt iiber einer rationalen Primzahl p, und wieder sind die drei Moglich-
keiten (T), (V) und (Z) zu beriicksichtigen. (T) scheidet allerdings aus, denn ist
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Ap ein Primideal, so muss Ap=P gelten, und P wire nicht echt. Aber auch (V)
ist bereits erledigt, da 4p= P*= Aqa auf a = + p fiihrt. Es bleibt also noch

(Z) p ist zerlegt, und es gilt Ap=PQ mit einem weiteren echten Primideal Q.
Fir das Hauptideal 4p? ist dann Ap?=P?Q%?=Aa Q*. Aufgrund von Satz 2 ist
Q? ein Hauptideal, etwa Q?=A4p, und es folgt af =+ p* Aus Hilfssatz 1 ergibt
sich2 p als irreduzibel, aus Hilfssatz 2 folgt f=+d. Somit ist p’=ad=N(a)
=u’+ 52

Wir wissen bereits, dass p=3 oder 7 mod 20 ist und miissen nun beweisen, dass
die Gleichung p?=u?+5v? neben u=p, v=0 noch eine weitere Losung a¢Z
besitzt. Dies ldsst sich ohne Zuhilfenahme neuer zahlentheoretischer Sétze be-
weisen, indem man die soeben gegebenen Argumente riickwirts verfolgt: p ist
zerlegt, also Ap=PQ, und P,Q sind echt wegen p#1, 9 mod20. Es folgt Ap>
=P2Q? und nach Satz 2 muss P =Aa, Q?=Ap, somit p’=af gelten. Wire
a € Z, so auch = +ad, und es wiirde a = £ p folgen. Dann wire aber p verzweigt,
im Widerspruch zur Voraussetzung.

Wir haben damit gezeigt: Irreduzibel in 4 sind

(4) Losungen a der Gleichung p>=u?+5v?%, p eine rationale Primzahl =3 oder
7 mod 20 (p bestimmt a ¢ Z eindeutig).

7. Wir kommen zum letzten Fall, ndmlich Aa = P, P,, beides echte und voneinan-
der verschiedene Primideale. P, liege iiber der rationalen Primzahl p;, P, iiber p,.
p1=p,=p ist moglich, liefert aber keine neuen irreduziblen Zahlen. Es gilt dann
ndmlich Ap= P, P,=Aa, also a = *+ p. Wir diirfen somit p, # p, annehmen.

Keine der beiden Primzahlen p,,p, kann trige sein, da sonst P, und P, nicht
_echt wiren. Somit gilt Ap,=P,Q,, Ap,=P,(Q, mit echten Primidealen Q,, Q.
Nach Satz 2 und Hilfssatz 1 ist Q,Q,=Ap fir ein irreduzibles #, und Ap,p,
=P1Q1P2Q2=AaA,[)’ fuhrt aufaﬁ= iplpz,ﬁ= ta.

Eine der beiden Primzahlen p; kann verzweigt sein. Ist es z.B. p;, also Ap,= P2,
so muss, wie bewiesen, p;=2 gelten. Wegen P, # P, ist dann p,=2 ausgeschlossen.
Setzen wir p,=p, so ist p zerlegt, also gemiss Abschnitt 4 p=3, 7 mod20 und a
berechnet sich aus 2 p=u?+ 512 Dass diese Gleichung tatsichlich eine und nur
eine Losung besitzt, zeigt man wie in Abschnitt 6.

Abschliessend ist noch der Fall (Z) fir p, wie auch p, zu untersuchen; beides
miissen Primzahlen =3, 7 mod20 sein. a geniigt der Gleichung p;p,=u?+5v2,
diesmal aber stellt es sich heraus, dass sie zwei wesentlich verschiedene Losungen
besitzt. Denn die Ausgangsbeziehung Ap,p,= P, Q, P, Q, lisst auch die Anordnung
(P19Q2)(P,Q,) zu. Es wird P,Q,=Ay,P,Q,=A7, und y ist ebenfalls Losung von
pip2=u*+5v2. y kann keine der Zahlen +a, *+a sein, Denn ist z.B. y=a, so
auch P,Q,=P,P, was auf P,=Q, fihrt, d.h. p, wire verzweigt. Eine dritte
Losung der Gleichung ist offenbach unméglich.

Damit erhalten wir als letzte Serie von irreduziblen Zahlen des Bereichs A:

(5) Losungen a der Gleichung 2p=u?+512, p eine rationale Primzahl =3, 7
mod 20 (p bestimmt a eindeutig).

(6) Losungen a der Gleichung p; p,=u?+ 5v2, p, und p, rationale Primzahlen = 3,7
mod 20. (Die Gleichung hat zwei wesentlich verschiedene Losungen.)
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Es ist klar, dass Serie (4) ein Spezialfall von Serie (6) ist. Neben den Einzel-
zahlen 2 und V/ —5 gibt es also vier unendliche Serien irreduzibler Zahlen in
Z[V=5].

Die eingangs erwihnte Frage, wie sich in Z[V —5] weitere bzw. «alle» Bei-
spiele nicht eindeutiger Faktorzerlegung ganzer Zahlen konstruieren lassen, ist
jetzt leicht zu beantworten. Offenbar muss in der rationalen Primfaktorzerlegung
einer solchen Zahl ein Produkt einer der Formen 2p oder p,p, mit p,p,,p,=3, 7
mod20 vorkommen. Die kleinsten Zahlen dieser Art sind 6=2-3=
a+v-=35) A=V -=5), 9=3-3=2+V -5) @2-Vv-=5), 2=3-7=
142V =5)(1-2V =5)=(4+V =5)d—V=5).

8. Dieser letzte Abschnitt des Artikels sei einigen zusidtzlichen Bemerkungen ge-
widmet. Es ist aufgrund unserer Ergebnisse leicht, nun auch die Primzahlen des
Bereichs Z [\/ —5 ] zu charakterisieren, die ja unter den aufgefundenen irreduzi-
blen Zahlen vorkommen miissen. Wie bereits erwidhnt, muss Aa ein Primideal
sein, damit a prim ist. Durchgeht man unsere Liste, so findet man sofort, dass
inZ[V/ =5 prim sind:

(1) die tragen rationalen Primzahlen p=11, 13,17, 19 mod 20,

@) v =5,

(3) Losungen a von p=u?+5v2, p=1,9 mod 20.

Wird eines der «kritischen» Produkte 2p bzw. p,p, in irreduzible, nicht ganz-
zahlige Faktoren zerlegt, so treten jeweils deren zwei auf. Obwohl also eine
ganze Zahl m mehrere Produktdarstellungen zulassen kann, ist die Anzahl der
auftretenden Faktoren bei gegebenem m stets dieselbe. Dieses Phinomen beruht
ausschliesslich auf der Klassenzahl 2, denn es wurde bewiesen, dass fiir beliebige
Zahlkorper die Konstanz der Faktorenzahl in den verschiedenen Zerlegungen
einer ganzen Zahl dquivalent ist dazu, dass der Korper die Klassenzahl 1 oder 2
hat (siehe [1]).

Es ist einleuchtend, dass sich die in diesem Artikel angewandte Methode zur
Bestimmung der irreduziblen Zahlen auf andere Zahlkorper Q (V' d ) der Klassen-
zahl 2 und negativem d iibertragen lasst. Man weiss seit kurzem, dass es genau
17 solcher Korper gibt, nimlich fir —d=35, 6, 15, 22, 35, 37, 51, 58, 91, 115,
123, 187, 267, 403, 427 (siehe [8]).

Zum Schluss soll noch die Frage aufgegriffen werden, wie sich die irreduziblen
Elemente von Z[V —5 ] effektiv bestimmen lassen. Dazu sind zweierlei Schritte
notig. Erstens muss der Primzahlcharakter von Zahlen festgestellt und auch ent-
schieden werden, zu welcher Restklasse mod 20 sie gehoren. Dafiir sind natiirlich
zahlreiche Verfahren bekannt. Im weiteren ist es dann nétig, diophantische
Gleichungen der Form m=u?+ 5v? zu l6sen. Das kann im Prinzip in endlich vielen
Schritten geschehen, doch wird man nach einem effizienten Verfahren suchen.
Fiir die Gleichung m=u?+?, deren Losungen die irreduziblen Zahlen von
Z [V —1] beherrschen, sind solche Verfahren seit langem bekannt. Der Autor hat
einen Algorithmus auch zur Losung der ersten Gleichung entwickelt, der wie
bei der zweiten mit einer Spielart des euklidischen Algorithmus vorgeht. Der
(nicht ganz einfache) Beweis fur die Durchfithrbarkeit des Algorithmus liefert
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gleichzeitig eine Existenzaussage fiir die Losung der diophantischen Gleichung,
und dies auch im Falle von Primzahlen =1 oder 9 mod20 (siche oben Satz 3).
Die Uberlegungen sollen an anderer Stelle publiziert werden. Peter Wilker, Bern
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Some equations involving the sum of divisors

Pomerance [2] considered the sets Sy (@)= {n:o (n)=kn+a} (a,keZ). He observed
that the sets S, m/m (0 (m)) if m|o (m) and S,(—1) are infinite and wrote: “We
know of no other example.” Below we give other examples of infinite S (a).

Proposition 1. If m is a positive integer not divisible by a prime number p and such that
o (m)=(p— 1) m then p* me S, (—m) for natural k.

Proof: g (p¥m)=0o (m) p**'= 1) /(p— )= @** '~ 1)m=p - p*m—m.

For instance we have 3*. Pe S;(— P), where P is a perfect number not divisible
by 3, e.g. P=28 or 219936 (219937 1), Similarly, 5 - Qe S5 (— Q), where o (Q)=4Q
and 5/Q, eg. 0=2-32-7-11-13-31 or 2!3-32-7-11-13-43-127 (R. Des-
cartes).

Eleven numbers of the set S,(2) were listed in the paper [1]. We generalize
the result stated there (case b=1).

Proposition 2. If 24— 2b— 1 is a prime number (be Z) then 2°—2b—1)e S,(2D).

Proof: ¢ (29 1(2°—2b—1)) =(2°—1)(2°-2b)= 22a._2a+lp_2a 2p
=2-22"1(29—-2p—1)+2b.
Andrzej Makowski, Institute of Mathematics, University of Warsaw
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