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rungen, aber auch von seinen Lehrern und Schülern verlangte er hohe Leistungen.
Seine Strenge im Fachlichen war jedoch gepaart mit Milde im menschlichen
Bereich. Auch war ihm die Förderung begabter Kinder aus einfachen Volkskreisen
ein besonderes Anhegen.
Seit seinem Rücktritt hat sich am MNG einiges geändert, aber in wesentlichen
Strukturen erkennt man noch immer den Einfluss seines ersten Leiters. Viele
Lehrer und Generationen von ehemahgen Schülern erinnern sich in grosser
Dankbarkeit an das Wirken ihres Rektors und Lehrers Paul Buchner.

R. Conzelmann

Die irreduziblen Zahlen des Bereichs Z [V—5J

1. Die Existenz von Zahlbereichen, in denen jedes Element zwar als Produkt
irreduzibler Zahlen geschrieben werden kann, die Produktdarstellung aber nicht
eindeutig ist, wurde von Eduard Kummer um 1844 erkannt, obwohl sich diese
Tatsache schon aus der Theorie der quadratischen Formen von Gauss ergab
(vgl. [3]). Der Bereich Z[V-5], d.h. die Menge der komplexen Zahlen der
Form u + W -5 (u,ve Z), dient als einfaches Beispiel. In ihm sind 3, 7, 14- 2V -5
1-2V-5 irreduzibel, und es gilt 21 3- 7 (l + 2V-5) (1-2V-5). Dieses
und ähnliche Beispiele findet man in allen gängigen Lehrbüchern der Zahlentheorie

beschrieben. Der vorliegende Artikel soll die Frage beantworten, welches

ganz allgemein die irreduziblen Zahlen von Z [V — 5 ] sind und wie man andere
oder sogar «alle» Beispiele nicht eindeutiger Zerlegbarkeit konstruieren kann.
Darüber findet man in der Literatur im allgemeinen nichts oder nichts unmittelbar

Ersichtliches, was aber leicht erklärlich ist. In Bereichen mit eindeutiger
Faktorzerlegung wie Z oder Z [V — 1 ] sind ja die irreduziblen Zahlen mit den
Primzahlen identisch und stellen die «Bausteine der Arithmetik» dieser Bereiche
dar. In Bereichen wie Z[V—5] ist dies nicht der Fall, und die irreduziblen
Zahlen spielen eine weit geringere Rolle. Zudem ist es in den erstgenannten
Bereichen - wie sogleich angedeutet werden soll - verhältnismässig leicht, die

Bedingungen anzugeben, denen die irreduziblen Zahlen des Bereichs genügen
müssen, während in den andern Bereichen tiefer hegende Hilfsmittel der
algebraischen Zahlentheorie angewendet werden müssen.
Wir führen im Bereich der ganzen algebraischen Zahlen eines quadratischen
Zahlkörpers Q(^^d) die üblichen Begriffe «konjugiert» und «Norm» ein (vgl.
dazu etwa [4] und [6]). Konjugiert zu a u + vyd ist ä u—vV!F; die Norm
von a ist N(a) aä u2-dv2. Es ist leicht zu kontrolheren, dass N(aß) N(a) N (ß).
Wir erinnern zudem an die Begriffe Einheit: Zahl x mit x|l; irreduzible Zahl:
Zahl jc, keine Einheit, mit ausschliesshch trivialen Teilern x und Einheiten;
Primzahl: Zahl x mit x \ a oder x | b, falls x \ ab.

Im Bereich Q (Va7) gelte nun die Eindeutigkeit der Zerlegbarkeit in irreduzible,
das sind gleichzeitig Primzahlen. Sei a irreduzibel mit Norm m und sei m in
rationale Primzahlen zerlegt, etwa m= ±pxp2--pk. Da a\m und da a prim ist,
muss schon a \px für einen Primfaktor px von m gelten. Jede irreduzible Zahl des
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Bereichs ist also Faktor einer und, wie man leicht sieht, auch nur einer rationalen
Primzahl, und es genügt, die Zerlegungen der letzteren zu studieren.
Man bemerkt, dass bei Nichtbestehen der eindeutigen Zerlegbarkeit das
vorgebrachte Argument hinfällig wird. Wie sich zeigen wird, ist auch die angeführte
Tatsache nicht mehr richtig, und die Verhältnisse hängen entscheidend von der
sogenannten Klassenzahl h des Körpers Q(V^Ö ab. Wir erwähnen, dass h=l
notwendig und hinreichend für die Eindeutigkeit der Produktdarstellung durch
irreduzible Zahlen ist und dass Q (V — 5 die Klassenzahl h 2 hat.
Im Rahmen dieses Artikels ist es natürlich nicht möglich, die zur Konstruktion
der irreduziblen Zahlen von Z [V —5 ] benötigten Sätze der algebraischen Zahlentheorie

zu begründen. Sie sollen lediglich erläutert und anschhessend soll gezeigt
werden, wie man mit ihrer Hilfe auf elementarem Weg zu einer expliziten
Bestimmung der irreduziblen Zahlen kommt. (Zur algebraischen Zahlentheorie vgl.
z.B. [7].)

2. Wir erinnern an einige fundamentale Begriffe der Zahlen- und Ringtheorie. Sei
R ein (kommutativer) Ring mit Einselement 1. Für reR bezeichne Rr das von r
erzeugte Hauptideal, bestehend aus allen Vielfachen von r. Man sieht leicht, dass

Rr=R gleichwertig ist damit, dass r Einheit des Ringes ist. Ein Ideal P von R
heisst prim, wenn P^R und wenn aus abeP stets aeP oder beP folgt. Es ist
klar, dass das Ringelement r genau dann prim ist, wenn das Hauptideal Rr ein
Primideal ist.
Es sei nun R der Ring der ganzen algebraischen Zahlen eines Zahlkörpers. Eine
fundamentale Tatsache der algebraischen Zahlentheorie besagt, dass sich in R
jedes Ideal eindeutig als Produkt von Primidealen schreiben lässt. Wir werden
von dieser Tatsache vielfach, meist stillschweigend, Gebrauch machen.
Wie sofort aus der Definition folgt, gilt Z ___ R. Ist P ein Primideal von R, so ist
PnZ, wie sich ebenfalls unmittelbar aus der Definition ergibt, ein Primideal von
Z, also ein von einer rationalen Primzahl erzeugtes Hauptideal Zp von Z. Dadurch
wird P eindeutig eine Primzahl/? zugeordnet, und man sagt, P liege über/?.
Ist umgekehrt p eine rationale Primzahl, so betrachte man das von p im ganzen
Ring R erzeugte Hauptideal Rp, das sich eindeutig als Produkt von Primidealen
aus R darstellen lässt. Es gilt die weitere fundamentale Tatsache, dass die bei
dieser Produktdarstellung auftretenden Primideale genau die über/? liegenden sind.
Für quadratische Zahlkörper lässt sich diese Produktdarstellung einfach beschreiben

durch

Satz 1. Ist p eine rationale Primzahl und ist R der Ring der ganzen algebraischen
Zahlen eines quadratischen Zahlkörpers Q (VtfT), so gibt es für die Darstellung
von Rp als Produkt von Primidealen aus R drei Möglichkeiten:

(V) Rp P2 mit einem Primideal P («p ist verzweigt»).
(Z) Rp Px P2 mit zwei verschiedenen Primidealen Px, P2 («p ist zerlegt»).
(T) Rp ist selber Primideal («/? ist träge»).

Es lässt sich stets angeben, welcher der drei Fälle für eine gegebene Primzahl p
eintritt. Wir stellen die Kriterien gerade für den Ring Z[V -5 ] dar, der im
folgenden kurz mit A bezeichnet werden soll.
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(V) tritt ein, wenn/? die sogenannte Diskriminante von A teilt. Diese ist gleich — 20;
somit sind 2 und 5 die einzigen verzweigten Primzahlen.
(Z) tritt ein für p¥*2, 5, wenn die quadratische Kongruenz x2= —5 mod/? lösbar
ist. Unter Verwendung des quadratischen Reziprozitätsgesetzes lassen sich die
zugehörigen /? leicht angeben. Wir verzichten auf die einfache Durchrechnung
und führen nur das Resultat an: /? ist zerlegt dann und nur dann, wenn
p= 1,3,7 oder 9 mod 20 ist.
(T) tritt ein für /?, wenn x2=—5 modp nicht lösbar ist. Dies liefert natürlich
/?= 11, 13, 17 oder 19 mod20 als träge Primzahlen.

3. Wir wollen im folgenden zur Vereinfachung der Ausdrucksweise ein Ideal von
A, das nicht ein Hauptideal ist, «echt» nennen. Von der oben erwähnten Tatsache,
dass die Klassenzahl von A gleich 2 ist, benötigen wir für unsere Zwecke lediglich
die folgenden Tatsachen:

Satz 2. Das Produkt zweier echter Primideale von A ist ein Hauptideal. Das
Produkt eines echten Primideals mit einem Hauptideal ist ein echtes Ideal.

Bevor wir einen für unsere Zwecke sehr nützlichen Hilfssatz ableiten, sei erwähnt,
dass die Einheiten von A die Zahlen ±1 sind. Denn eine Einheit u+ vV — 5

hat, weil sie 1 teilt, die Norm 1, und die Gleichung l w2 + 5v2 lässt nur die
Lösungen u ± 1, v 0 zu.

Hilfssatz 1. Sei aeA und Aa PxP2-Pn die Zerlegung des Hauptideals Aa in
Primideale von A. a ist in A dann und nur dann irreduzibel, wenn n=l oder
wenn n 2 und die beiden auftretenden Primideale echt sind.

Beweis: Sei a irreduzibel. Aus Satz 2 folgt sofort, dass die Anzahl der echten
unter den Primidealen Px gerade sein muss. Fasst man sie paarweise zusammen,
so erhält man eine Darstellung von Aa als Produkt von Hauptidealen, etwa
Aa=AßxAßr"Aßm. Dies bedeutet a ±ßxß2'-ßm, was aber wegen der Irre-
duzibilität von a nur für m= 1 möglich ist. Folglich ist also entweder Aa selber
ein Primideal, oder aber es ist Produkt zweier echter Primideale.
Sei umgekehrt Aa P, ein Primideal, aber a ein Produkt, etwa a=ßxß2. Dann
is Aa=AßxAß2 P, so dass infolge der Eindeutigkeit der Produktdarstellung
durch Primideale z.B. Aßx P und Aß2=A sein muss. Dann ist aber ß2 eine
Einheit, und die Zerlegung von a war nicht echt, a ist also irreduzibel.
Ist schhesshch Aa PxP2, mit echten Primidealen Px und P2, aber wieder
a=ßxß2, so muss ßx oder ß2 eine Einheit sein. Andernfalls wäre namhch z.B.
Aßx Px, Aß2=P2, und Px sowie P2 wären nicht echt.
Wir fügen hier noch einen weiteren, ganz elementaren Hilfssatz an.

Hilfssatz 2. Seien a, ß irreduzible Zahlen von A, die nicht zu Z gehören, während
aßeZ gelte. Dann istß=±ä.
Beweis: Aus aß=*keZ folgt aäß N(a)ß kä, also ß=(k/N(a))ä. k/N(a) ist
eine rationale Zahl, und wir nehmen an, sie sei in die Form r/s mit teuer-
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fremden r, s und s>0 gebracht Da die Komponenten von ß ganzzahlig smd,
muss ä=sy fur em yeA gelten, was wegen der Irreduzibihtat von a und der
Voraussetzung a <£ Z auf s= 1 fuhrt Aber ß rä ist wieder nur für r= ± 1 möglich

4 Wir betrachten nochmals Satz 1 und wollen Kriterien dafür suchen, wann in
den Fallen (V) und (Z) die auftretenden Pnmideale P bzw PX,P2 Hauptideale smd
und wann echt
Im Falle (V) ist diese Frage leicht zu beantworten Ist P ein Hauptideal, P=Aa,
mit a — u + vV — 5 so gilt Ap (Aa)2=Aa2, also p ± a2 Berechnet man beidseits
die Normen, so findet man N(p)=p2=N(a2)=N(a)2, also _V(a)=p=u2+5v2
p ist entweder 2 oder 5 Die diophantische Gleichung 2 u2+5v2 ist unlösbar,
hingegen hat 5 u2+5 v2 die Losungen u 0, v= ± 1 Somit ist P fur 2 em echtes

Pnmideal, fur 5 das Hauptideal Ay/ — 5

Wann im Falle (Z)fur Ap PxP2 Hauptideale auftreten, ist eine tiefer liegende
Frage Sei Px=Aax, P2 Aa2 Es folgt Aaxa2=Ap, also axa2= ±peZ, wahrend
offenbar ax und a2 nicht zu Z gehören Nach Hilfssatz 1 sind ax und a2 irreduzibel,

nach Hilfssatz 2 gilt a2=±äx Setzt man ax u + v\/ -5 so gilt somit

p axäx u2+5v2
Damit also bei Ap PxP2 Hauptideale auftreten können, muss p u2+5 v2 losbar
sem Ist dies umgekehrt der Fall, ist (u,v) eine Losung, und setzt man
a u+v\/ —5 so wird p aä, Ap AaAä, und gemäss Satz 1 müssen Aa und
Aä Primideale sein
Da wir uns im Falle (Z) befinden, gilt /?=1, 3, 7 oder 9 mod20 Betrachtet
man die Gleichung p u2+ 5 v2 modulo5, so bedeutet ihre Lösbarkeit, dass u2=p
mod5 gelten muss Dies ist offenbar nur für p 1 oder 4 mod 5 möglich, was dazu
führt, dass mod 20 nur/?= 1 oder 9 m Frage kommen
Damit ist unsere Fragestellung auf die nach der Lösbarkeit der diophantischen
Gleichung u2+5v2=p für Primzahlen/?= 1 oder 9 mod 20 zurückgeführt Es gilt
nun

Satz 3. Die diophantische Gleichung u2+5v2=p ist fur eine Primzahl p=l oder
9 mod20 stets losbar

Satz 3 ergibt sich aus der Theone der quadratischen Formen von Gauss (vgl [2])
oder auch direkt mittels des Minkowskischen Satzes uber Linearformen (vgl [5])
Wir werden ubngens auf die Existenzaussage von Satz 3 am Schluss dieses

Artikels zurückkommen Aufgrund der vorstehenden Ergebnisse lassen sich bereits
die rationalen Pnmzahlen angeben, die in A irreduzibel bleiben Es sind dies

einmal die tragen Primzahlen/?= 11,13, 17, 19 mod20 sowie diejenigen zerlegbaren,
bei denen Ap das Produkt zweier echter Pnmideale ist Wie gerade gezeigt, smd
das die Pnmzahlen/?= 3, 7 mod 20 Schliesslich ist im Falle (V) noch 2 irreduzibel
mA
Wir fassen zusammen Irreduzibel m A sind
(1) rationale Pnmzahlen/? 3,7,11, 13,17,19 mod20 sowie/? 2

5 Nun soll die Bestimmung der irreduziblen, aber nicht zu Z gehörenden Elemente
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von A in Angriff genommen werden. Wir schreiben für sie generell a w+vV — 5

und gehen so vor, dass wir Aa betrachten, notwendige Bedingungen für die
Irreduzibilität von a ableiten und zeigen, dass sie auch hinreichend sind.
Zur Vereinfachung der Ausdrucksweise soll im folgenden a als «Lösung» der
diophantischen Gleichung w2+5v2 _V(a) betrachtet werden. Es ist klar, dass
neben a auch —a, ±ä Lösungen sind. Sie werden als nicht wesentlich
verschieden angesehen.
Das Hauptideal Aa kann selber prim sein; wir wollen das in diesem Abschnitt
voraussetzen. Aa liegt dann über einer rationalen Primzahl p und wird bei der
Produktdarstellung von Ap als Faktor auftreten. Die genauen Verhältnisse hängen
davon ab, welcher der Bedingungen (V), (T) oder (Z) die Zahl/? genügt.

(V) p ist verzweigt, d.h. Ap (Aa)2=Aa2 und /?= ±a2. Anderseits muss p gleich
2 oder 5 sein. Wie bereits gezeigt, kommt nur 5 in Frage, woraus a V — 5

folgt. Dass V —5 tatsächlich irreduzibel ist, folgt z.B. daraus, dass iV(V —5 =5
ist.

(T)/? ist träge, d.h. Ap ist ein Primideal, Ap Aa und a=±p. Dieser Fall
wurde bereits besprochen.

(Z) p ist zerlegt, d.h. Ap PxP2 mit z.B. Aa Px. Aus Satz 2 folgt, dass auch
P2 ein Hauptideal sein muss, etwa P2=Aß. Somit gilt Ap AaAß=A(aß) und
aß= ±p. Aus Hilfssatz 1 folgt die Irreduzibilität von ß. a und ß können nicht
ganzzahlig sein, so dass nach Hilfssatz 2 gelten muss: ß=±ä, p aä N(a)

u2 + 5v2.

Wie in Abschnitt 4 gezeigt, ist die Lösbarkeit der diophantischen Gleichung
p u2+5 v2 gleichwertig mit /?= 1, 9 mod 20. Sie hat übrigens nur eine Lösung a.
Denn wäre y eine weitere Lösung, p=*yy, so würde Ap=AyAy PxP2, also z.B.
Ay Px=Aa undy= ±a, folgen.
Man sieht nun umgekehrt sofort, dass jede Lösung a einer Gleichung der
angegebenen Art in A irreduzibel ist. Denn aus Ap=AaAä folgt aufgrund der
Annahme, dass p zerlegbar ist, dass Aa ein Primideal sein muss, worauf man
Hilfssatz 1 anwenden kann.
Bevor wir die Ergebnisse dieses Abschnitts zusammenfassen, sei bemerkt, dass
wir nur einen Wert von a angeben. Stets sind auch —a und ±ä zusammen mit
a irreduzibel.
Irreduzibel in A sind
(2) V-5,
(3) Lösungen a der Gleichung p u2+5v2, p eine rationale Primzahl =1 oder
9 mod 20 (p bestimmt a eindeutig).

6. Wir wollen jetzt den Fall betrachten, dass Aa selber nicht prim ist. Nach
Hilfssatz 1 ist dann Aa das Produkt zweier echter Primideale. Die beiden Ideale
können gleich sein, so dass Aa P2. Wir wollen das für diesen Abschnitt
voraussetzen.

P liegt über einer rationalen Primzahl p, und wieder sind die drei Möglichkeiten

(T), (V) und (Z) zu berücksichtigen. (T) scheidet allerdings aus, denn ist
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Ap ein Primideal, so muss Ap P gelten, und P wäre nicht echt. Aber auch (V)
ist bereits erledigt, da.Ap P2=Aa auf a ±p führt. Es bleibt also noch

(Z) /? ist zerlegt, und es gilt Ap PQ mit einem weiteren echten Primideal Q.
Für das Hauptideal Ap2 ist dann Ap2 P2Q2=Aa Q2. Aufgrund von Satz 2 ist
Q2 ein Hauptideal, etwa Q2=Aß, und es folgt aß=±p2. Aus Hilfssatz 1 ergibt
sich ß als irreduzibel, aus Hilfssatz 2 folgt ß=±ä. Somit ist p2=aä N(a)

w2+5v2.

Wir wissen bereits, dass /?=3 oder 7 mod 20 ist und müssen nun beweisen, dass
die Gleichung p2 u2 + 5v2 neben u=p, v 0 noch eine weitere Lösung a$Z
besitzt. Dies lässt sich ohne Zuhilfenahme neuer zahlentheoretischer Sätze
beweisen, indem man die soeben gegebenen Argumente rückwärts verfolgt: p ist
zerlegt, also Ap PQ, und P,Q sind echt wegen p^l, 9 mod20. Es folgt Ap2

P2Q2, und nach Satz 2 muss P2=Aa, Q2=Aß, somit p2=aß gelten. Wäre
a e Z, so auch ß= ±ä, und es würde a= ±p folgen. Dann wäre aber/? verzweigt,
im Widerspruch zur Voraussetzung.
Wir haben damit gezeigt: Irreduzibel in A sind
(4) Lösungen a der Gleichung p2=u2+ 5 v2, p eine rationale Primzahl =3 oder
7 mod20 (p bestimmt a $Z eindeutig).

7. Wir kommen zum letzten Fall, nämlich Aa PxP2, beides echte und voneinander

verschiedene Primideale. Px liege über der rationalen Primzahl/?!, P2 überp2.
pi=p2—p ist möglich, hefert aber keine neuen irreduziblen Zahlen. Es gilt dann
namhch Ap PxP2=Aa, alsoa= ±p. Wir dürfen somit/?! ^/?2 annehmen.
Keine der beiden Primzahlen px,p2 kann träge sein, da sonst Px und P2 nicht
echt wären. Somit gilt Apx PxQx, Ap2=P2Q2 mit echten Primidealen QX,Q2.
Nach Satz 2 und Hilfssatz 1 ist QxQ2=Aß für ein irreduzibles ß, und Apxp2

piQ\P2Q2=zAaAß führt aufaß= ±pxp2,ß= ±ä.
Eine der beiden Primzahlen px kann verzweigt sein. Ist es z.B. px, also Apx P\,
so muss, wie bewiesen,px 2 gelten. Wegen Pxi*P2 ist dann/?2=2 ausgeschlossen.
Setzen wirp2=p, so ist/? zerlegt, also gemäss Abschnitt 4 p 3, 7 mod20 und a

berechnet sich aus 2/? w2 + 5 v2. Dass diese Gleichung tatsächhch eine und nur
eine Lösung besitzt, zeigt man wie in Abschnitt 6.

Abschliessend ist noch der Fall (Z) für px wie auch p2 zu untersuchen; beides
müssen Primzahlen =3, 7 mod20 sein, a genügt der Gleichung pxp2=u2+5 v2,

diesmal aber stellt es sich heraus, dass sie zwei wesentlich verschiedene Lösungen
besitzt. Denn die Ausgangsbeziehung Apxp2=Px Qx P2 Q2 lässt auch die Anordnung
(PiQfifäQi) zu. Es wird PxQ2:=Ay,P2Qx=Ay, und y ist ebenfalls Lösung von
/?!/?2=w2+5v2. y kann keine der Zahlen ±a, ±ä sein, Denn ist z.B. y a, so
auch B\Q2=*P\P2, was auf Pi^Qi führt, d.h. p2 wäre verzweigt. Eine dritte
Lösung der Gleichung ist offenbach unmoghch.
Damit erhalten wir als letzte Serie von irreduziblen Zahlen des Bereichs A:
(5) Lösungen a der Gleichung 2/?=w2+5v2, p eine rationale Primzahl =3, 7

mod 20 (p bestimmt a eindeutig).
(6) Lösungen a der GleichungP\P2~ u2+ 5 v2,px und/?2 rationale Primzahlen 3, 7

mod 20. (Die Gleichung hat zwei wesenthch verschiedene Lösungen.)
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Es ist klar, dass Serie (4) ein Spezialfall von Serie (6) ist. Neben den Einzel-
zahlen 2 und V—5 gibt es also vier unendhche Serien irreduzibler Zahlen in
Z[V-5].
Die eingangs erwähnte Frage, wie sich in Z[v -5] weitere bzw. «alle»
Beispiele nicht eindeutiger Faktorzerlegung ganzer Zahlen konstruieren lassen, ist
jetzt leicht zu beantworten. Offenbar muss in der rationalen Primfaktorzerlegung
einer solchen Zahl ein Produkt einer der Formen 2/? oder pxp2 mit p,px,p2= 3, 1
mod 20 vorkommet^ Die kleinsten Zahlen dieser Art sind 6 2-3
(l + \/~^5~) (l-x/^T), 9 3-3 (2+V^r5_) (2-\T^5), 21 3-7
(l + 2V~^)(l-2yf^)=(4+ V~^)(4-V^5).
8. Dieser letzte Abschnitt des Artikels sei einigen zusätzlichen Bemerkungen
gewidmet. Es ist aufgrund unserer Ergebnisse leicht, nun auch die Primzahlen des
Bereichs Z [ V — 5 ] zu charakterisieren, die ja unter den aufgefundenen irreduziblen

Zahlen vorkommen müssen. Wie bereits erwähnt, muss Aa ein Primideal
sein, damit a prim ist. Durchgeht man unsere Liste, so findet man sofort, dass
in Z [V — 5 ] prim sind:
(1) die trägen rationalen Primzahlenp= 11, 13, 17, 19 mod20,
(2) v^T,
(3) Lösungen a vonp u2+5 v2,p= 1, 9 mod20.

Wird eines der «kritischen» Produkte 2/? bzw. pxp2 in irreduzible, nicht
ganzzahlige Faktoren zerlegt, so treten jeweils deren zwei auf. Obwohl also eine

ganze Zahl m mehrere Produktdarstellungen zulassen kann, ist die Anzahl der
auftretenden Faktoren bei gegebenem m stets dieselbe. Dieses Phänomen beruht
ausschhesslich auf der Klassenzahl 2, denn es wurde bewiesen, dass für beliebige
Zahlkörper die Konstanz der Faktorenzahl in den verschiedenen Zerlegungen
einer ganzen Zahl äquivalent ist dazu, dass der Körper die Klassenzahl 1 oder 2

hat (siehe [1]).
Es ist einleuchtend, dass sich die in diesem Artikel angewandte Methode zur
Bestimmung der irreduziblen Zahlen auf andere Zahlkörper Q (V~J) der Klassenzahl

2 und negativem d übertragen lässt. Man weiss seit kurzem, dass es genau
17 solcher Körper gibt, nämlich für -d=5, 6, 15, 22, 35, 37, 51, 58, 91, 115,

123,187, 267,403, 427 (siehe [8]).
Zum Schluss soll noch die Frage aufgegriffen werden, wie sich die irreduziblen
Elemente von Z[V -5 ] effektiv bestimmen lassen. Dazu sind zweierlei Schritte
nötig. Erstens muss der Primzahlcharakter von Zahlen festgestellt und auch
entschieden werden, zu welcher Restklasse mod 20 sie gehören. Dafür sind natürlich
zahlreiche Verfahren bekannt. Im weiteren ist es dann nötig, diophantische
Gleichungen der Form m u2+ 5 v2 zu lösen. Das kann im Prinzip in endlich vielen
Schritten geschehen, doch wird man nach einem effizienten Verfahren suchen.
Für die Gleichung m w2+v2, deren Lösungen die irreduziblen Zahlen von
Z [V — 1 ] beherrschen, sind solche Verfahren seit langem bekannt. Der Autor hat
einen Algorithmus auch zur Lösung der ersten Gleichung entwickelt, der wie
bei der zweiten mit einer Spielart des euklidischen Algorithmus vorgeht. Der
(nicht ganz einfache) Beweis für die Durchführbarkeit des Algorithmus liefert
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gleichzeitig eine Existenzaussage für die Lösung der diophantischen Gleichung,
und dies auch im Falle von Primzahlen 1 oder 9 mod20 (siehe oben Satz 3).
Die Überlegungen sollen an anderer Stelle publiziert werden. Peter Wilker, Bern
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Kleine Mitteilungen
Some equations involving the sum of divisors

Pomerance [2] considered the sets Sk(a)= {n:o(n) kn + a] (a,keZ). He observed
that the sets Sa{rn)/m(o(m)) if m\o(m) and S2(—l) are infinite and wrote: "We
know of no other example." Below we give other examples of infinite Sk(a).

.Proposition 1. lfm isa positive integer not divisible by a prime number p and such that
a(m)=(p— l)m then pk me Sp(—m)for natural k.

Proof: a(pkm)=o(m)(pk+l- l)/(p- l) (pk+l— l)m=p • pkm-m.
For instance we have 3k • PeS3(-P), where P is a perfect number not divisible
by 3, e.g. />=28 or 219936 (219937- 1). Similarly, 5* • QeS5(-Q), where o(Q)=4Q
Sind 5XQ, e.g. ß 29-32-7- 11- 13-31 or 213 • 32 • 7 • 11 • 13 • 43 • 127 (R.
Descartes).

Eleven numbers of the set S2(2) were listed in the paper [1]. We generalize
the result stated there (case b= 1).

Proposition 2. If2a- 2b- 1 isa prime number (b e Z) then 2a-2b-l)eS2(2b).

Proof: a(2a-l(2a-2b-l))=(2a-l)(2a-2b)=22a-2a+lb-2a+2b
2 2a~l(2a-2b-l)+2b.

Andrzej Makowski, Institute of Mathematics, University ofWarsaw
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