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Remarks: It is easy to notice that (((p-e)*(d-e)) (n)=0 holds iff n= 1 or n is a
prime number. Hence a (n)> cp (n) + d(n) iff« is a composite number. We can get the
inequality (2.1) from the relation o cp*d also as follows: if n > 1 then

a(ri)= Y,(p(k)d(n/k)^<p(l)d(n)+(p(n)d(l) (p(n)+d(n).
k\n

The second inequality is due to Makowski [2]:

2.2. Forn,k^lwe have cpk(ri) + ok(ri)^2nk.

Proof: From the relations (6) and (3) we have

cpk + ok-2Ik=cpk+((pk*d)-(cpk*2I)=cpk*(e+d-2I).

Applying the lemma we obtain inequality (2.2) immediately.

Remark: As (2.1) it is easy to verify that the strong inequahty cpk(n)+ok(ri)>2nk
holds iff« is a composite number.

The third inequality is due to Makowski [2]:

2.3. lfk^l,n>l then cpk(ri) + ok(ri)^nkd(ri).

Proof: If suffices to prove the inequality

cpkI_k+okI_k^d+e.

Using the relations (1), (2), (4), (5) and the lemma we have

d+e-okI_k-<pkI_k=I*((I+M)-(I+M)I_k) =1* ((/+//)(/- I.k))>0

and (2.3) follows.
J. Rutkowski, PoznaÄ, Poland
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Aufgaben

Aufgabe 804. Man bestimme die Anzahl der inkongruenten ebenen Netze eines

regulären Ikosaeders. [Vgl. M. Jeger: Über die Anzahl der inkongruenten ebenen
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Netze des Würfels und des regulären Oktaeders. El. Math. 30, 73-83 (1975).]
Ch. Hippenmeyer, Basel

Lösung des Aufgabenstellers: Es bezeichne @7 den Eckpunkt-Kanten-Graphen des

regulären Ikosaeders, G7 die Menge der Gerüste von ®2, _E)(G) die durch die
Ikosaederdrehgruppe auf der Menge G7 induzierte Permutationsgruppe.
Die Anzahl der inkongruenten ebenen Netze beim regulären Ikosaeder stimmt
überein mit der Anzahl der Äquivalenzklassen auf G7 in bezug auf die Gruppe
_£^G) (Anzahl der Muster in G7 bezughch <DjG>).

Die Gruppe £)^G) besteht aus 5 Klassen von unter sich konjugierten Elementen,
nämlich der

Klasse Kx, herrührend von der Identität in der Drehgruppe (1),
Klasse K2, herrührend von den Drehungen der Ordnung 2(15),
Klasse K3, herrührend von den Drehungen der Ordnung 3 (20),
Klasse K4, herrührend von den Drehungen mit dem Winkel 9 2 n/5 (12).
Klasse K5, herrührend von den Drehungen mit dem Winkel $ 4 n/5 (12).

Greift man aus jeder Klasse ein Element heraus, dann erhält man ein
Repräsentantensystem

{cox=*e,co2, co3, co4, co5}.

Aufgrund des Satzes von Burnside beträgt dann die Anzahl der Muster

1

*(2)f>)
60

(X(e)+l5x(co2)+20x(cü3)+l2x(co4)+l2x(co5)).

x(co) bezeichnet die Anzahl der Fix-Gerüste bei der Permutation co (Charakter
von co). Insbesondere ist / (e) die Anzahl aller Gerüste von ©7. Nach dem Satz

von Kirchhoff-Trent kann diese aus der Admittanz-Matrix von ©7 gewonnen
werden. Bei geeigneter Numerierung der 12 Eckpunkte des Polyeders ist

X(*)~

5-1000-1-1000-1
1 5-1 0 0 0-1-1 0 0-1
0-1 5-1 0 0 0-1-1 0-1
0 0-1 5-1 0 0 0-1 0-1
0 0 0-1 5-1 0 0 -1 --10 0 0-15-100-•1-1 0 0 0-1 5-1 0 -
0-1-1 0 0 0-1 5 -1 -
0 0-1-1-1 0 0-1 5 -
0 0 0 0-1-1-1-1-1 5

-1-1-1-10 0 0 0 0 0

5184000.
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Man findet weiter unter Berücksichtigung der Zyklenstruktur der betreffenden
Permutationen

X (<of)= 1440, /(^3) /(^4) /(^5) 0,

sodass

'(®/G)) ~ZK (5 184000+ 15 • 1440) 86760.
60

Bei Zugrundelegung der vollen Symmetrie-Gruppe des Ikosaeders (inkongruente
Netze bei beidseitig verschieden gefärbtem Papier) beträgt die Anzahl der Muster

t(%f>) —— (5 184000+ 15 • 1440)=43380.

Man schhesst daraus, dass keine ebenen Netze mit einer Symmetrieachse vorhanden
sind.

Aufgabe 805. Man bestimme für z e C mit Re (z) ^ 0

«-oo Wo \2m 1\ „t^o \lm+\ I

L. Hämmerling, Aachen, BRD

Lösung mit Verschärfung: Wir setzen für «eN:

[n/2] n v l(n-])/2]
M*):=Z L Um und kn(z):= Zft L .J^; O)m=o\2m/ m=o \2m+l /

damit rechnet man leicht die Gültigkeit von

2hn(z)=(l + zl/2)n + (l-zl/2)n und 2z1/2Mz)=(l + z1/2)w-(l-z1/2)* (2)

nach. Ist zeC so, dass kn(z)=0 gilt, so ist wegen (2) sicher zlj/2^l und
((l+zl/2)/(l-zl/2))n=l,also

1 4- yl/2

JZflj2 r V)

mit ke{0,1,..., /?-1}. Hier kann aber fc=0 wegen z^0 [siehe (1)] ausgeschlossen
werden; ebenso k—n/2, wenn n gerade ist [siehe (3)]. Aus (3) folgt weiter
zl/2*=itgnk/n, also z=-tg27_A:/rt mit einem ke{l,..., [(n-l)/2]}. Man prüft an-
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dererseits leicht nach, dass diese z-Werte tatsächhch die [(n— l)/2]-Nullstellen des

Polynoms kn sind, die daher sämtliche einfach sein müssen.
Sei nun zeC\R^0; dann ist also kn(z)^0 für alle neN und nach (2) bei
n-> cc

_?___) ^O+^y+o-z1/2)"^
kn(z)

Z (l+zl/2)»-(l-zl/2)»^

f z'/2, falls |l+z1/2|>|l-z1/2|,
l-z'/2, falls H+z^KH-z1/2!.

Wir beachten, dass aus 11+z1/2! | l-z1/2! direkt Rez1/2=0, also zeR<0 folgt;
aus unserer Voraussetzung über z ergibt sich daher 11 +zll2\ ^ 11 -zl/2\, und aus

(4) schliesst man endgültig auf

g: lim^^=z1/2sgnRez1/2 bei zeC\R<0. (5)
«-?oo kn(z)

Dass (5) noch für z=0 gilt, sieht man aus (1) direkt. Übrigens ist die rechte
Seite in (5) für jedes der fraglichen z natürlich eindeutig bestimmt, gleichgültig,
welche der beiden Bestimmungen der komplexen Wurzel man für z1/2 wählt.
Wir zeigen schhesshch, dass der Grenzwert in (5) für kein zeR<0 existiert: Für
reelles negatives z ist zxl2 it mit reellem t^O; (1 +z1/2)/(l -z1/2) ist vom Betrag 1,

aber ungleich 1, also gleich e2711*1 mit reellem se (0,1). Nach (2) ist

2An(z)=(l-z1/2)n(e2*''l*+l), 2zll2kn(z)=(l-zx/2)n(e2nins-l) (6)

Sei jetzt s rational, etwa s=p/q mit p,qeN; nach (6) ist krq(z)=0, hrq(z)+0 für
alle reN, und somit kann für diese z der Grenzwert in (5) nicht existieren. Sei

nun s irrational. Nach (6) ist

M_=__i___L=___ (7)
kn(z) tgnns tgnns

und nach dem Kroneckerschen Approximationssatz (vgl. [1], Kap. XXIII) gibt
es bei behebig vorgegebenem e>0 unendlich viele Paare (nj,df)eNxZ,j=l,2,...
mit nx<n2< ••• und \njS—dj\ <e. Schreiben wir eJ:=nJs — dJ, so ist |^| <e und

tgnnjS=tgnej (/= 1,2,...), also mit (7): hn (z)jkn (z)=t/tgner Daher ist klar, dass

für die jetzt noch betrachteten z die Folge (hn(z)/kn(z)) nicht einmal beschränkt
ist. P. Bundschuh, Köln, BRD

LITERATURVERZEICHNIS
1 G.H. Hardy und E.M. Wright: An introduction to the theory of numbers, 2. Aufl. Clarendon

Press, Oxford 1945.
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Weitere Lösungen sandten A.A. Jagers (Enschede, NL), L. Kuipers (Mollens VS),
D. A. Overdijk (NL), I. Paasche (München, BRD), M. Vowe (Therwil BL).

Aufgabe 806. Die Funktionen fig:[0,1]->R seien Riemann-integrabel, und / sei

monoton fallend. Ferner sei

]f(t)dt^]g(t)dt füralle xe[0,l].
ö ö

Dann gilt für jede stetig differenzierbare, monoton wachsende und konvexe
Funktion 0:R->R:

]&(f(tj)dt^]&(g(t))dt füralle jce[0,l].
ö b

Dies ist zu zeigen.

Aufgabe 806A. Man beweise die Aussage von Aufgabe 806 für beliebige monoton
wachsende, konvexe Funktionen 0.

C. Bandle, Basel

Lösung von Aufgabe 806A mit Verschärfung: Wir beweisen folgenden Satz.
Sei I: [0,1]. Die Funktionen fig:I-+R seien Riemann-integrabel, und / sei
monoton fallend. Ferner sei für alle xel

modt^g^dt. (i)
0 0

Dann gilt für jede konvexe Funktion _>: R-> R

U(g(t)) dt-]<P{f(t)) dt>0'+ (/(*)) (]g{f)dt-)f{t)dt) (2)
0 0 \o 0 /

für alle xel, wobei <&'+ die rechtsseitige Ableitung von 0 bedeutet. Ist 0 in R
auch noch monoton wachsend, so hat man für alle xel

]<P(g(t))dt>]0(f(t))dt.
o o

Beweis:
a) Wir schicken folgenden Hilfssatz voraus:

Lemma 1. Seien fg, u: I-» R jeweils über / Riemann-integrabel, sei u in / monoton
fallend, und es gelte (1) für alle xel. Dann gilt für alle xel
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J«(0(*(0-/(0) dt>u (x)J(g(/)-/(0) *• (3)
0 0

Zum Beweis setzen wir im Anschluss an [2], S. 114-115, D(x):=^(g(t)-f(t)) dt
in J; unter Benutzung der Formel für die partielle Integration beim Stieltjes-
Integral erhalten wir für jedes xel

]u(t)(g(t)^f(t))dt ]u(t)dD(t)=u(t)D(t)\^
0 0 0

was (3) beweist. Hier ist Z>(0)=0 beachtet, ferner D(t)^0 in / nach (1) und
schliesslich die Tatsache, dass uinl monoton fällt.

b) Weiterhin benötigen wir einen Hilfssatz über konvexe Funktionen:

Lemma 2. Sei JcR ein offenes Intervall und h: J->R konvex in/. Dann gilt:

(i) h hat in jedem Punkt von / eine rechts- bzw. eine linksseitige Ableitung, mit
A+ bzw. hL bezeichnet, und es gilt hL (x)^ h'+ (x) für alle xeJ.
(ii) Für alle x0eJ und für alle m e [h'__ (x0), h'+ (x0)] gilt

h(x)—h(x0)^m(x — x0) für jedes xeJ.

(iii) Sowohl hL wie h'+ sind in / monoton wachsend; ist hinj monoton wachsend,
so sind hL und h'+ in / nicht negativ.

Den Beweis von (i) und (ii) kann man [1], S. 180-183, entnehmen, nur dass

«konvex» im Sinne unserer Aufgabe «schwach konvex» im Sinne von [1]
entspricht. Diese Modifikation hat zur Folge, dass in [1] a.a.O. in den strengen
Ungleichungen (la), (lb), (2), (4) jeweils Gleichheit zuzulassen ist, dass in (11.6)
«streng monoton» durch «monoton» zu ersetzen ist und dass in den drei echten
Ungleichungen des Beweises zu (11.7) nun Gleichheiten eintreten können. Um
schliesslich (iii) zu zeigen, seien xx,x2eJ, xx<x2. Es ergibt sich aus [1], S. 183,
4.Zeile v.o.

Ai^K^fax*^"*^1^*!^^*;^, (4)
X2~XX

wobei bei den beiden äusseren Ungleichungen (i) verwendet wurde. Aus (4)
folgt das monotone Wachsen von hL und h'+ unmittelbar. Ist x2eJ beliebig,
so denke man sich dazu ein xxeJ mit xx<x2 gewählt (/ ist offen); wegen der
Monotonie von h ist 0^h(xf)—h(xx), und man hat 0^h'_(x2)^h'+(x2) aus den
beiden rechten Ungleichungen von (4).

c) Seien nun die Voraussetzungen unserer Aufgabe erfüllt. Dann ist 0'+ nach (iii)
von Lemma 2 in R monoton wachsend und w:—<_>+0/:_T->R in J monoton
fallend, da / in I fällt. Da u über I Riemann-integrabel ist, sind alle
Voraussetzungen von Lemma 1 erfüllt. Nach (ii) von Lemma 1 ist
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* (*(0) -* (AO) >*'+ (/(0) (g(0-/(0)

für alle re/; hieraus erhält man (2) durch Integration über [0,x], wenn man
noch (3) berücksichtigt.
Ist 0 in R monoton wachsend, so ist 0'+ in R nach (iii) von Lemma 2 nicht
negativ, und mit (1) folgt auch die letzte Behauptung.

P. Bundschuh, Köln, BRD

LITERATURVERZEICHNIS
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Lösungen zu Aufgabe 806 sandten P. Bundschuh (Köln, BRD), Chr. A. Meyer
(Ittigen).
Weitere Lösungen zu Aufgabe 806A sandten A.A. Jagers (Enschede, NL), O.P.
Lossers (Eindhoven, NL) (2 Lösungen), P. Mihailescu (Zürich).

Neue Aufgaben

Die Lösungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift
erbeten bis 10. Dezember 1979 an Dr. H Kappus. Dagegen ist die Einsendung von
Lösungen zu den mit Problem A, B bezeichneten Aufgaben an keinen Termin
gebunden.
Bei Redaktionsschluss dieses Heftes sind noch ungelöst: Problem 60IA (Band 25,
S.67), Problem 625B (Band 25, S.68), Problem 645A (Band 26, S.46), Problem
672A (Band 27, S.68), Aufgabe 680 (Band 27, S. 116), Problem 724A (Band 30,
S.91), Problem 764A (Band 31, S.44).

Aufgabe 822. Es sei a 2 (mod 3) und a+l genau durch 3* (s^l) teilbar. Man
bestimme für behebiges keN0 die Ordnung der Restklasse von a in der primen
Restklassengruppe mod 3s+k.

L. Kuipers, Mollens

Aufgabe 823. 2s {0,l,...,m— 1} sei die Eckenmenge eines regulären m-Ecks mit
m=*3kn Ecken (k> 1, («,3)= 1) und D {0,a,b} mit 0<a<b<m ein ausgewähltes
Dreieck. Für welche a,b ist E als disjunkte Vereinigung von 3k"xn Drehbildern
von D darstellbar?
Beispiel: £={0,1,...,11} {0,5,7}u{3,8,10ju{6,11, l}u{9,2,4}.

J. Binz, Bolligen
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Aufgabe 824. Für behebige neZ bestimme man den Wert des unendlichen
Kettenbruches

n+l
n +

n+l +
n + 2

n + 2 +

in dem die Teilzähler und Teilnenner beständig um 1 anwachsen.
I. Paasche, München, BRD

Literaturüberschau

P6ter Rösza Rekursive Funktionen m der Komputer-Theorie 190 Seiten US-$ 12 Verlag der Ungarischen

Akademie der Wissenschaften, Budapest 1976

Unter Komputer-Theorie wird hier em Gebiet verstanden, das zwischen abstrakten Maschinenmodellen
vom Typ der Registermaschinen und Programmiersprachen vom Typ ALGOL 60 hegt Eine Pionierin
der Theorie der rekursiven Funktionen fasst m diesem Buch ihre Auseinandersetzung mit fundamentalen

Fragestellungen dieser Theorie zusammen, die sich uber viele Jahre, zum Teil in Zusammenarbeit
mit dem kürzlich verstorbenen L Kalmar, erstreckt hat Ihr Hilfsmittel ist die Theone der rekursiven
Funktionen, die zu Beginn, Kleene folgend, kurz rekapituliert wird
Die Autonn zeigt anhand einer exakten Definition der Flussdiagramme als Graphschemas die
Äquivalenz der Begnffe «partiell-rekursive Funktion» und «auf einer Registermaschine mittels Graph-

* Schema berechenbare Funktion», dabei wird bemerkt, dass keine (m ALGOL zugelassenen) rekursiven
Prozeduren dazu notig sind und Graphschemata von spezieller Struktur, sog Normalschemata, genügen
Die Behandlung der Bedeutung rekursiver Prozeduren ist, im modernen Jargon, «Operationen», d h es

wird der eigentliche Mechanismus (Kellerspeicher) des Abarbeitens solcher Prozeduren zu Hilfe
genommen Dies ist hier nicht m vollem Detail durchgeführt Hingegen geht die Autorin auf den
Berechenbarkeitsbegnff fur Wortfunktionen und auf die Rekursivitat der syntaktischen Begnffe für
Programmiersprachen (insbesondere ALGOL und LISP) em
Das Buch ist m dem wohlbekannten freundlichen Stile verfasst und gibt interessante Hinweise auf
weniger bekannte Ongmalarbeiten E Engeler

Combinatorics Nato Advanced Study Institute Series Mathematicai and Physical Sciences, Band 16, 482
Seiten $44 Hrsg M Hall, Jr, und J H van Lmt D Reidel Publishing Company, Dordrecht, Boston
1975

Dieser Sammelband enthalt 21 Beiträge aus der Feder erstrangiger Spezialisten, die an einem Symposium
erarbeitet worden sind Es werden darm m uberbhckender Schau die Entwicklungen m den verschiedenen

Kerndisziphnen der modernen Kombinatorik (Blockplane, Endliche Geometnen, Codierungs-
Theone, Graphen-Theone, Kombmatonsche Geometne, Kombmatonsche Gruppentheone) bis an die
aktuelle Forschungsfront dargelegt Jedem Artikel ist em ausführliches Literaturverzeichnis beigegeben
Das Nato Advanced Study Institute bietet mit dieser Publikation dem forschenden Mathematiker eine
wertvolle Arbeitshilfe an M Jeger

Sherman K Stern Mathematics The Man-made Universe An Introduction to the Spirit of Mathematics

3 Auflage, 573 Seiten mit 440 Illustrationen $12 50 Freeman and Company Pubhshers, San
Francisco 1976

Mit den früheren Auflagen dieses Buches wandte sich der Autor, Professor an der University of
California in Davis, in erster Linie an Nichtmathemaüker Das Konzept war darauf ausgenchtet,
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