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Aufgaben 61

Remarks: It is easy to notice that ((p—e)* (d—e)) (n)=0 holds iff n=1 or n is a
prime number. Hence g (n)> ¢ (n)+ d(n) iff n is a composite number. We can get the
inequality (2.1) from the relation o = ¢ * d also as follows: if n> 1 then

o (n)= g;t(o K)d(n/k)= 9 (1)d()+9 (1)d(1)=gp (1)+d(n).

The second inequality is due to Makowski [2]:

2.2. Forn, k=1 we have ¢, (n)+ g, (n)=2n*.

Proof: From the relations (6) and (3) we have
prtor—2L=g;+ (g *d)— (g *2D)= g * (e+d—2I).

Applying the lemma we obtain inequality (2.2) immediately.

Remark: As (2.1) it is easy to verify that the strong inequality ¢, (n)+ o, (n)> 2 nk
holds iff » is a composite number.

The third inequality is due to Makowski [2]:
2.3. Ifk>1,n>1then g, (n)+ o, (n)<n*d(n).
Proof: If suffices to prove the inequality
ol _+ol_<d+e.
Using the relations (1), (2), (4), (5) and the lemma we have
dte—opl =il =1+ (I+p)— A+ 1) =T+ (I+p)I-1_) =6

and (2.3) follows.
J. Rutkowski, Poznan, Poland
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Aufgaben

Aufgabe 804. Man bestimme die Anzahl der inkongruenten ebenen Netze eines
reguliren Ikosaeders. [Vgl. M. Jeger: Uber die Anzahl der inkongruenten ebenen
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Netze des Wiirfels und des regulidren Oktaeders. El. Math. 30, 73-83 (1975).]
Ch. Hippenmeyer, Basel

Losung des Aufgabenstellers: Es bezeichne &; den Eckpunkt-Kanten-Graphen des
reguliren lkosaeders, G; die Menge der Geriiste von &, D die durch die
Ikosaederdrehgruppe auf der Menge G; induzierte Permutationsgruppe.

Die Anzahl der inkongruenten ebenen Netze beim reguldren Ikosaeder stimmt
iiberein mit der Anzahl der Aquivalenzklassen auf G, in bezug auf die Gruppe
D@ (Anzahl der Muster in G; beziiglich D(®).

Die Gruppe D% besteht aus 5 Klassen von unter sich konjugierten Elementen,
nidmlich der

Klasse K, herrithrend von der Identitédt in der Drehgruppe (1),
Klasse K, herrithrend von den Drehungen der Ordnung 2 (15),
Klasse K3, herrithrend von den Drehungen der Ordnung 3 (20),
Klasse K, herrithrend von den Drehungen mit dem Winkel $=27 /5 (12).
Klasse K, herrithrend von den Drehungen mit dem Winkel $=47/5 (12).

Greift man aus jeder Klasse ein Element heraus, dann erhilt man ein Repri-
sentantensystem

{w,=¢, vy, 03, Wy, s} .
Aufgrund des Satzes von Burnside betrigt dann die Anzahl der Muster

L

(20) = o

(x @)+ 15x (@) +20 (@03)+ 12 (wg) + 121 (w5)) -

x (w) bezeichnet die Anzahl der Fix-Geriiste bei der Permutation w (Charakter
von ). Insbesondere ist y (¢) die Anzahl aller Geriiste von &;. Nach dem Satz
von Kirchhoff-Trent kann diese aus der Admittanz-Matrix von &; gewonnen
werden. Bei geeigneter Numerierung der 12 Eckpunkte des Polyeders ist

5-1. 0 0 0-1-1 0 O O0-1
-1 5-1 0 0 O0-1-1 0 O-1
0-1 5-1 0 0 O0-1-1 O0-1
o 0-1 5-1 0 O O0-1 O0-1
o 0o 0-1 5-1 0 O0-1-1 0
x@e=|-1 0 0 0-1 S5-1 0 0-1 0(=5184000.
-1-1 0 0 0-1 5-1"0-1
0-1-1 0 0 O0-1 5-1-1
o 0-1-1-1 0 O0-1 5 -1
o 0 0 0-1-1~-1-1-1 5
-1-1-1-1 0 0 O0 O O O

BN oOoOoOo o
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Man findet weiter unter Beriicksichtigung der Zyklenstruktur der betreffenden
Permutationen

x(@2)=1440,  y(w3)=y (@4)=y (@5)=0,

so dass

1

%0 (5184000+ 15 - 1440)=86760.

() =

Bei Zugrundelegung der vollen Symmetrie-Gruppe des Ikosaeders (inkongruente
Netze bei beidseitig verschieden gefarbtem Papier) betrigt die Anzahl der Muster

1
1(B) = Too (5 184000+15- 1440)=43380.

Man schliesst daraus, dass keine ebenen Netze mit einer Symmetrieachse vorhanden
sind.

Aufgabe 805. Man bestimme fiir ze C mit Re(2)#0

i {([rizl(n i [(n=1)/2] - =1
i m
s=im (2, () 7) (2, (mar) ) |
L. Himmerling, Aachen, BRD

Losung mit Verschdrfung: Wir setzen fir neN:
[n/2] [(n~1)/2]
()= (2’:”)2’" und k()= 3 ( 4 )zm; (1

m= m=0 2m+1
damit rechnet man leicht die Giiltigkeit von
2h,(2)=(14+z"A)"+(1=212)" und 222k, (2)=(1+2/2) "= (1=z12)" (2)

nach. Ist zeC so, dass k,(z)=0 gilt, so ist wegen (2) sicher z12%1 und
((1+z172) /(1 —z1/2))n=1, also

1+21/2 .
_1_:_2_175_ = 2nik/n (3)

mit ke {0, 1, ..., n—1}. Hier kann aber k=0 wegen z#0 [siche (1)] ausgeschlossen
werden; ebenso k=n/2, wenn n gerade ist [siche (3)]. Aus (3) folgt weiter
z\2=jtgnk/n, also z=~tg?nk/n mit einem ke (l,..., [(n-1)/2]}. Man priift an-
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dererseits leicht nach, dass diese z-Werte tatsichlich die [(n— 1)/2]-Nullstellen des
Polynoms k, sind, die daher simtliche einfach sein miissen.

Sei nun zeC\R(; dann ist also k,(z)#0 fir alle neN und nach (2) bei
n— oo

ha(2) _ 1 (L4224 (1= 212y
@ 2 Ar 2 y— (=B

V2 falls |1+z121> 1=z,
{_ C))

212, falls |1+z'2| <|1-212].

Wir beachten, dass aus |1+2z1/2| =|1—z!/2| direkt Rez!/2=0, also zeR, folgt;
aus unserer Voraussetzung iiber z ergibt sich daher |1+2172] # |1—-21/2|, und aus
(4) schliesst man endgiiltig auf

h,
g: —'}1_{1;) . ((;—-z‘/zsgnRezl/z bei zeC\R_,. (5)

Dass (5) noch fir z=0 gilt, sicht man aus (1) direkt. Ubrigens ist die rechte
Seite in (5) fiir jedes der fraglichen z natiirlich eindeutig bestimmt, gleichgiiltig,
welche der beiden Bestimmungen der komplexen Wurzel man fiir z!/2 wahlt.

Wir zeigen schliesslich, dass der Grenzwert in (5) fur kein zeR _ existiert: Fir
reelles negatives z ist 21/2= i¢ mit reellem t1#0; (1+212)/(1 - z1/2) ist vom Betrag 1,
aber ungleich 1, also gleich 2™ mit reellem se (0, 1). Nach (2) ist

2h,(2)=(1-22)n(rins4 1), 222k, (@)=(1—2A)"(mm5—1).  (6)

Sei jetzt s rational, etwa s=p/q mit p,geN; nach (6) ist k,q(2)=0, h,,(2)#0 fur
alle reN, und somit kann fir diese z der Grenzwert in (5) nicht existieren. Sei
nun s irrational. Nach (6) ist

ho(z) izt -
k,(2) tgzns tgmns

und nach dem Kroneckerschen Approximationssatz (vgl. [1], Kap. XXIII) gibt
es bei beliebig vorgegebenem ¢>0 unendlich viele Paare (n;,d)eNxZ, j=1,2,.

mit n;<ny<--- und |n;s—d;| <e. Schreiben wir ¢; t=n;s— d so ist |g;| <e und
tgnns=tgme; (j=1,2,..), aisg mil (7): h ](z)/k J(z)—t/tgne Daher ist klar dass
fir d1e jetzt noch betrachteten z die Folge (4,(z)/k,(z)) nicht einmal beschrinkt
ist. P. Bundschuh, Kéln, BRD

LITERATURVERZEICHNIS
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Weitere Losungen sandten A.A. Jagers (Enschede, NL), L. Kuipers (Mollens VS),
D.A. Overdijk (NL), I. Paasche (Miinchen, BRD), M. Vowe (Therwil BL).

Aufgabe 806. Die Funktionen f,g:[0,1]— R seien Riemann-integrabel, und f sei
monoton fallend. Ferner sei

X

,gf(f)dt<;tsg(t)dt furalle xe[0,1].

Dann gilt fir jede stetig differenzierbare, monoton wachsende und konvexe
Funktion @: R—>R:

X

Edi(f(t))dtsgtp(g(t))dt firalle xe[0,1].

Dies ist zu zeigen.

Aufgabe 806A. Man beweise die Aussage von Aufgabe 806 fiir beliebige monoton
wachsende, konvexe Funktionen @.
C. Bandle, Basel

Losung von Aufgabe 806A mit Verschiarfung: Wir beweisen folgenden Satz.
Sei I:=[0,1]. Die Funktionen f,g:/—R seien Riemann-integrabel, und f sei
monoton fallend. Ferner sei fur alle xe /

X

gf(t)dts;fg(t)dt. M

Dann gilt fur jede konvexe Funktion @:R—R
j2 (s0) ai=]o (1) dr> 23 () (Jg 0= {10 ar) @

fiur alle xel, wobei @, die rechtsseitige Ableitung von @ bedeutet. Ist @ in R
auch noch monoton wachsend, so hat man fiir alle xe/

X

[2(z) dt?;fcp (7)) dr.

Beweis:
a) Wir schicken folgenden Hilfssatz voraus:

Lemma 1. Seien f,g,u: I— R jeweils iiber I Riemann-integrabel, sei 4 in I monoton
fallend, und es gelte (1) fiir alle x € /. Dann gilt fr alle xe /
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[4()(gO—~f©) dr>u()] (80)=1 ) dr. 3)
Zum Beweis setzen wir im Anschluss an [2], S.114-115, D (x):=(} (g (©)—f(¢)) dt

in I; unter Benutzung der Formel fir die partielle Integration beim Stieltjes-
Integral erhalten wir fiir jedes xe 1

X

[u®)(g0-10) dt=f§u(t)du<t)=u(t)D(t)laf—gD(r)du(z>>u(x)0(x),

was (3) beweist. Hier ist D(0)=0 beachtet, ferner D(¢)=>0 in I nach (1) und
schliesslich die Tatsache, dass u in / monoton f#llt.

b) Weiterhin benétigen wir einen Hilfssatz iiber konvexe Funktionen:
Lemma 2. Sei J<R ein offenes Intervall und 4#:J — R konvex in J. Dann gilt:

(1) A hat in jedem Punkt von J eine rechts- bzw. eine linksseitige Ableitung, mit
h! bzw. h’_ bezeichnet, und es gilt 4’ (x)< k), (x) fiir alle xeJ.
(i) Fir alle xoeJ und fur alle me [AZ (x,), 7 (xo)] gilt

h(x)—h(xg)=m(x—x,) furjedes xeJ.

(ii1)) Sowohl hZ wie A/, sind in J monoton wachsend; ist 4 in J monoton wachsend,
so sind A’ und A} in J nicht negativ.

Den Beweis von (i) und (ii) kann man [1], S.180-183, entnehmen, nur dass
«konvex» im Sinne unserer Aufgabe «schwach konvex» im Sinne von [1] ent-
spricht. Diese Modifikation hat zur Folge, dass in [1] a.a.O. in den strengen
Ungleichungen (1a), (1b), (2), (4) jeweils Gleichheit zuzulassen ist, dass in (11.6)
«streng monoton» durch «monoton» zu ersetzen ist und dass in den drei echten
Ungleichungen des Beweises zu (11.7) nun Gleichheiten eintreten konnen. Um
schliesslich (iii) zu zeigen, seien x;,x,eJ, x;<x,. Es ergibt sich aus [1], S.183,
4.Zeile v.o.

B (e (< PEDTROD s (), @
X3— Xy

wobei bei den beiden #Ausseren Ungleichungen (i) verwendet wurde. Aus (4)
folgt das monotone Wachsen von A’ und A} unmittelbar. Ist x,eJ beliebig,
so denke man sich dazu ein x;eJ mit x;<x, gewidhlt (J ist offen); wegen der
Monotonie von A ist 0<h(x;)—h(x,), und man hat 0< A’ (x;)< A’ (x,) aus den
beiden rechten Ungleichungen von (4).

c) Seien nun die Voraussetzungen unserer Aufgabe erfullt. Dann ist @/ nach (iii)
von Lemma 2 in R monoton wachsend und u:=®,Of:/-R in I monoton
fallend, da f in I fdllt. Da u iber I Riemann-integrabel ist, sind alle Vor-
aussetzungen von Lemma 1 erfiillt. Nach (ii) von Lemma 1 ist
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® (g(0) - (f1) = 2% (fO) (8()—f(®)

fur alle tel; hieraus erhdlt man (2) durch Integration iiber [0,x], wenn man
noch (3) beriicksichtigt.
Ist @ in R monoton wachsend, so ist @, in R nach (iii) von Lemma 2 nicht
negativ, und mit (1) folgt auch die letzte Behauptung.

P. Bundschuh, K6ln, BRD

LITERATURVERZEICHNIS
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Losungen zu Aufgabe 806 sandten P. Bundschuh (Koln, BRD), Chr. A. Meyer
(Ittigen).

Weitere Losungen zu Aufgabe 806A sandten A.A. Jagers (Enschede, NL), O.P.
Lossers (Eindhoven, NL) (2 Losungen), P. Mihailescu (Ziirich).

Neue Aufgaben

Die Losungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift
erbeten bis 10. Dezember 1979 an Dr. H. Kappus. Dagegen ist die Einsendung von
Losungen zu den mit Problem ... A, B bezeichneten Aufgaben an keinen Termin
gebunden.

Bei Redaktionsschluss dieses Heftes sind noch ungeldst: Problem 601A (Band 25,
S.67), Problem 625B (Band 25, S.68), Problem 645A (Band 26, S.46), Problem
672A (Band 27, S.68), Aufgabe 680 (Band 27, S.116), Problem 724A (Band 30,
S.91), Problem 764 A (Band 31, S. 44).

Aufgabe 822. Es sei a=2 (mod 3) und a+ 1 genau durch 3° (s >1) teilbar. Man
bestimme fiir beliebiges ke N, die Ordnung der Restklasse von a in der primen

Restklassengruppe mod 35+,
L. Kuipers, Mollens

Aufgabe 823. E={0,1,...,m— 1} sei die Eckenmenge eines reguldren m-Ecks mit
m=3%n Ecken (k>1, (n,3)=1) und D={0,a,b} mit 0<a<b<m ein ausgewihltes
Dreieck. Fiir welche a,b ist E als disjunkte Vereinigung von 3¥~!n Drehbildern
von D darstellbar?
Beispiel: E={0,1,...,11}={0,5,7}u{3,8,10}L{6,11,1}U{9,2,4}.

J. Binz, Bolligen
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Aufgabe 824. Fiir beliebige neZ bestimme man den Wert des unendlichen
Kettenbruches

Kn= 9

in dem die Teilzihler und Teilnenner bestindig um 1 anwachsen.
- I. Paasche, Miinchen, BRD
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Péter Rosza: Rekursive Funktionen in der Komputer-Theorie. 190 Seiten. US-$12. Verlag der Ungari-
schen Akademie der Wissenschaften, Budapest 1976.

Unter Komputer-Theorie wird hier ein Gebiet verstanden, das zwischen abstrakten Maschinenmodellen
vom Typ der Registermaschinen und Programmiersprachen vom Typ ALGOL 60 liegt. Eine Pionierin
der Theorie der rekursiven Funktionen fasst in diesem Buch ihre Auseinandersetzung mit fundamenta-
len Fragestellungen dieser Theorie zusammen, die sich {iber viele Jahre, zum Teil in Zusammenarbeit
mit dem kiirzlich verstorbenen L. Kalmar, erstreckt hat. Ihr Hilfsmittel ist die Theorie der rekursiven
Funktionen, die zu Beginn, Kleene folgend, kurz rekapituliert wird.

Die Autorin zeigt anhand einer exakten Definition der Flussdiagramme als Graphschemas die
Aquivalenz der Begriffe «partiell-rekursive Funktion» und «auf einer Registermaschine mittels Graph-
'schema berechenbare Funktion»; dabei wird bemerkt, dass keine (in ALGOL zugelassenen) rekursiven
Prozeduren dazu nétig sind und Graphschemata von spezieller Struktur, sog. Normalschemata, geniigen.
Die Behandlung der Bedeutung rekursiver Prozeduren ist, im modernen Jargon, «operationelly, d.h. es
wird der eigentliche Mechanismus (Kellerspeicher) des Abarbeitens solcher Prozeduren zu Hilfe
genommen. Dies ist hier nicht in vollem Detail durchgefithrt. Hingegen geht die Autorin auf den
Berechenbarkeitsbegriff fir Wortfunktionen und auf die Rekursivitit der syntaktischen Begriffe fir
Programmiersprachen (insbesondere ALGOL und LISP) ein.

Das Buch ist in dem wohlbekannten freundlichen Stile verfasst und gibt interessante Hinweise auf
weniger bekannte Originalarbeiten. E. Engeler

Combinatorics. Nato Advanced Study Institute Series. Mathematical and Physical Sciences, Band 16, 482
Seiten. $44. Hrsg. M. Hall, Jr., und J.H. van Lint. D. Reidel Publishing Company, Dordrecht, Boston
1975.

Dieser Sammelband enthélt 21 Beitrige aus der Feder erstrangiger Spezialisten, die an einem Symposium
erarbeitet worden sind. Es werden darin in iberblickender Schau die Entwicklungen in den verschiede-
nen Kerndisziplinen der modernen Kombinatorik (Blockpline; Endliche Geometrien; Codierungs-
Theorie; Graphen-Theorie; Kombinatorische Geometrie; Kombinatorische Gruppentheorie) bis an die
aktuelle Forschungsfront dargelegt. Jedem Artikel ist ein ausfiihrliches Literaturverzeichnis beigegeben.
Das Nato Advanced Study Institute bietet mit dieser Publikation dem forschenden Mathematiker eine
wertvolle Arbeitshilfe an. M. Jeger

Sherman K. Stein: Mathematics. The Man-made Universe. An Introduction to the Spirit of Mathema-
tics. 3.Auflage, 573 Seiten mit 440 Illustrationen. $12.50. Freeman and Company Publishers, San
Francisco 1976.

Mit den fritheren Auflagen dieses Buches wandte sich der Autor, Professor an der University of
California in Davis, in erster Linie an Nichtmathematiker. Das Konzept war darauf ausgerichtet,
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