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Z

Abb.2. Eine Anordnung A4y, g (6).

struierten einfachen Anordnung A, z(n) folgt etwa aus den verschiedenen
Schnittpunktanzahlen.
Damit ist Satz 3 bewiesen. Es kann ausserdem gezeigt werden, dass fiir n=0 (mod 4)
weitere maximale Anordnungen A4 ¢ (n) existieren, und auch fiir n3 0 (mod 4) gibt
es, bis auf einige Ausnahmen, nichtisomorphe Anordnungen 4y (n).

Ingrid Mengersen, Braunschweig, BRD
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An application of Dirichlet convolution in proving some inequalities from elementary
number theory

1. The aim of this note is to show how we can use the properties of a ring of real
arithmetic functions to prove some known inequalities from the elementary theory
of numbers.
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We denote by f an arithmetic function and by f(n) the value of fat n. Let 4 be the
set of all real arithmetic functions. If f, ge A, then their Dirichlet convolution is
defined by

(f*g)(n)=l§;lf(k)g(n/k), nxz1l.

It is well known that 4 forms a commutative ring with convolution as multiplication
and with the usual addition. This ring has the zero and unit element ® and e,
respectively, defined by

1 for n=1

Om)=0, nzl;  e(n)= {0 for n#l.

We further define the product fg as usual,

(e (m=f(n)g(n), n=1.

We write f<g (f>g) when f(n)<g(n) (f(n)>g(n)) for n>1. We use in the proofs
of all inequalities under consideration the following trivial lemma:

Lemma. Iff,gc A and >0, g>0, then f* g=> 0.

2. We shall denote by d(n) and o, (n) the number of divisors and the sum of k-th
powers of divisors of n respectively (o, (n)=0 (1)), by u and ¢, the M6bius function
and the Jordan function, respectively (¢, (n)=n*I1,,, (1—p~*), p prime, is defined
for positive integers k, n as the number of different sequences ay, ..., @, containing
k (equal or distinct) positive integers <n such that (a, ..., ay, n)=1; p,=¢ is the
Euler function) . For integral k, define the arithmetic function I; by

L(m)=n*, n>1
(Io=1). In the proofs we shall use the following known equalities valid in the ring A:

d=1I+1, (D I*xu=e, 2) Ixp,=1,, (3
ol _g=1% (ul_p), (4) oxl_=I%1_, (5) or=0p*d. (6)

The first inequality is due to Bagchi and Gupta [1]:
21 Ifn>1thenag (n)= ¢ n)+d(n).

Proof: It suffices to show that s +e>¢p+d, that is s+e—p—d>60. From (6) for
k=1 we obtain

o+e—gp—d=p*d+e—p—d=(p—e)*(d—e).

Since p —e> 6O and d—e> O the inequality (p —e)* (d— €)= O holds by the lemma
and the proof of (2.1) is completed.
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Remarks: It is easy to notice that ((p—e)* (d—e)) (n)=0 holds iff n=1 or n is a
prime number. Hence g (n)> ¢ (n)+ d(n) iff n is a composite number. We can get the
inequality (2.1) from the relation o = ¢ * d also as follows: if n> 1 then

o (n)= g;t(o K)d(n/k)= 9 (1)d()+9 (1)d(1)=gp (1)+d(n).

The second inequality is due to Makowski [2]:

2.2. Forn, k=1 we have ¢, (n)+ g, (n)=2n*.

Proof: From the relations (6) and (3) we have
prtor—2L=g;+ (g *d)— (g *2D)= g * (e+d—2I).

Applying the lemma we obtain inequality (2.2) immediately.

Remark: As (2.1) it is easy to verify that the strong inequality ¢, (n)+ o, (n)> 2 nk
holds iff » is a composite number.

The third inequality is due to Makowski [2]:
2.3. Ifk>1,n>1then g, (n)+ o, (n)<n*d(n).
Proof: If suffices to prove the inequality
ol _+ol_<d+e.
Using the relations (1), (2), (4), (5) and the lemma we have
dte—opl =il =1+ (I+p)— A+ 1) =T+ (I+p)I-1_) =6

and (2.3) follows.
J. Rutkowski, Poznan, Poland
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Aufgaben

Aufgabe 804. Man bestimme die Anzahl der inkongruenten ebenen Netze eines
reguliren Ikosaeders. [Vgl. M. Jeger: Uber die Anzahl der inkongruenten ebenen
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