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Abb.2. Eine Anordnung A v,e (6)-

struierten einfachen Anordnung AVE(ri) folgt etwa aus den verschiedenen
Schnittpunktanzahlen.
Damit ist Satz 3 bewiesen. Es kann ausserdem gezeigt werden, dass für /_ 0 (mod 4)
weitere maximale Anordnungen AVE{ri) existieren, und auch für /t^0(mod4) gibt
es, bis auf einige Ausnahmen, nichtisomorphe Anordnungen AVE(ri).

Ingrid Mengersen, Braunschweig, BRD
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An application of Dirichlet convolution in proving some inequalities from elementary
number theory

1. The aim of this note is to show how we can use the properties of a ring of real
anthmetic functions to prove some known inequahties from the elementary theory
of numbers.
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We denote by/an arithmetic function and byf(n) the value of/at n. Let A be the
set of all real arithmetic functions. If/ geA, then their Dirichlet convolution is

defined by

(f*g)(n)='Zf(k)g(n/k), n^l.
k\n

It is well known that A forms a commutative ring with convolution as multiplication
and with the usual addition. This ring has the zero and unit element 9 and e,
respectively, defined by

0OO-O, n>U e(n)= ß J« ^
We further define the product/g as usual,

(fg)(n)=f(n)g(n), n>l.

We write/<g (/>g) when f(n)^g(n) (f(n)^g(n)) for n^ 1. We use in the proofs
ofall inequahties under consideration the following trivial lemma:

Lemma. Iff, geA andf>0, g>@, thenf*g^O.

2. We shall denote by d(ri) and ok(ri) the number of divisors and the sum of k-th
powers of divisors of n respectively (ax (n) o (ri)), by ß and cpk the Mobius function
and the Jordan function, respectively (cpk(n)=nknp\n (l—p~k),p prime, is defined
for positive integers k, n as the number of different sequences ax,...,ak containing
k (equal or distinct) positive integers ^n such that (ax,..., ak, n)= 1; cpx cp is the
Euler function). For integral k, define the arithmetic function Ik by

Ik(ri) nk, n>l

(I0=I). In the proofs we shall use the following known equalities valid in the ring A:

d=I*I, (1) I*» e, (2) I*cpk Ik, (3)
cpkI_k=I* (jul-k), (4) okI_k=I*I„k, (5) ok=cpk*d. (6)

The first inequahty is due to Bagchi and Gupta [1]:

2.1. lfn>l then er (ri)^cp(n)+d(ri).

Proof: It suffices to show that o + e^cp + d, that is o + e-cp-d^O. From (6) for
/t» 1 we obtain

o + e—cp — d cp *d+e— cp — d= (cp — e)* (d— e).

Since <p — e^& and d-e^O the inequality (cp — e)*(d—e)*^@ holds by the lemma
and the proofof (2.1) is completed.
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Remarks: It is easy to notice that (((p-e)*(d-e)) (n)=0 holds iff n= 1 or n is a
prime number. Hence a (n)> cp (n) + d(n) iff« is a composite number. We can get the
inequality (2.1) from the relation o cp*d also as follows: if n > 1 then

a(ri)= Y,(p(k)d(n/k)^<p(l)d(n)+(p(n)d(l) (p(n)+d(n).
k\n

The second inequality is due to Makowski [2]:

2.2. Forn,k^lwe have cpk(ri) + ok(ri)^2nk.

Proof: From the relations (6) and (3) we have

cpk + ok-2Ik=cpk+((pk*d)-(cpk*2I)=cpk*(e+d-2I).

Applying the lemma we obtain inequality (2.2) immediately.

Remark: As (2.1) it is easy to verify that the strong inequahty cpk(n)+ok(ri)>2nk
holds iff« is a composite number.

The third inequality is due to Makowski [2]:

2.3. lfk^l,n>l then cpk(ri) + ok(ri)^nkd(ri).

Proof: If suffices to prove the inequality

cpkI_k+okI_k^d+e.

Using the relations (1), (2), (4), (5) and the lemma we have

d+e-okI_k-<pkI_k=I*((I+M)-(I+M)I_k) =1* ((/+//)(/- I.k))>0

and (2.3) follows.
J. Rutkowski, PoznaÄ, Poland
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Aufgaben

Aufgabe 804. Man bestimme die Anzahl der inkongruenten ebenen Netze eines

regulären Ikosaeders. [Vgl. M. Jeger: Über die Anzahl der inkongruenten ebenen
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