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P; if P is the circumcenter, then Z is the orthocenter. Also, P and Z are isogonal
conjugates if they are the foci of any inscribed ellipse of the given triangle.

alR11R12R2R3+a2R21R22R3R1+a3R31R33R1R22 'bll |b2|a102a3. (161)

This is a variation of Hayashi’s inequality (2.1) and reduces to it if b, and b, coincide
with the circumcenter and P is on the circumcircle.

Our last inequality here is a simple proof of a result of Tweedie [10], i.e., if A, 4,44
and A4 A% A% denote two directly similar triangles in the plane, then

(@ A4,AY,a,A,A5,a3A5A%) form a triangle. (17.1)

Using (17) with (u,v,w) and (u’, v/, w’) as complex numbers representing the vertices
of the two triangles, we have by similarity that v—w=4(v'—w’), w—u=A(w' —u’),
u—v=A4(u'—v'). Whence, ) u’ (v=w)=0 and then

V=Y w—uw)+W—-—w)(u—v)=—W—-u)(v—w) 179

and the result follows by taking absolute values of both sides. A simple synthetic
proof of (17.1) was also given by Pinkerton [10], p. 27.
M. S. Klamkin, University of Alberta, Edmonton, Canada
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Vierseitige Flichen in Geradenanordnungen

Durch Anordnungen A (n) von n=4 Geraden werden die projektive Ebene P und
die euklidische Ebene E in einfach zusammenhingende Gebiete (Flichen) zerlegt.
In P treten dabei nach [1], S. 29, maximal
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-1
<n2 ) fir n=4

[(31) e e
) ur n=

vierseitige (durch vier Geraden bestimmte) Fliachen auf. In F gibt es fiir einfache
A (n) (keine Parallelen und keine Mehrfachschnittpunkte) nach [2] maximal

Ve(n)= ¢y

2
Vg(n)= )

5o

vierseitige Flachen.

In dieser Note soll das Maximum F(n) von vierseitigen Flachen nun auch fir
beliebige Anordnungen A (n) in E bestimmt werden. Ausserdem werden einige
Eigenschaften von Anordnungen A4y ¢(n) und 4 p(n) mit maximaler Anzahl vier-
seitiger Flichen in E und P angegeben. Damit wird auch die Vermutung aus [1]
bewiesen, dass in P das Maximum (1) nur bei einfachen Anordnungen ange-
nommen wird.

-1
(n )+£—3 fir n=0(mod4)

Satz 1. Alle maximalen Anordnungen Ay p(n) und Ay p(n) sind ohne Mehrfach-
schnittpunkte, In Ay g(n) gibt es nur fiir n=0(mod4) héchstens zwei und sonst keine
' Parallelen.

Beweis: Zwischen den Anzahlen f, k und s der Flichen, Flichenseiten und Gera-
denschnittpunkte in A4 (n) gilt sowohl in E als auch in P, wie etwa durch vollstindige
Induktion iiber n bewiesen werden kann, die Beziehung

f=k-js+1 ‘ (3)

(Eulersche Formel). Mit f; als der Anzahl der i-seitigen Fliachen in 4 (n) erhilt man

i @
2k=7Y if;. 5)
izl

Aus (5) folgt mit (3) und (4)

1
fims=1=5 3 (~Df. ~ ©)
4

Bezeichnet man mit s; die Anzahl der i-fachen Schnittpunkte in 4 (#) und in E mit
r(4) die Minimalzahl von Klassen paarweise zueinander paralleler Geraden sowie
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mit n; die Anzahl der Geraden in der i-ten Klasse (1=i=r), so gilt

#=(2)-Z((2)- )2 5) g

In P sind im Fall 5,=0 mindestens n dreiseitige Flichen in 4 (n) vorhanden (siehe
etwa [1], S. 25). Da man jeder dreiseitigen Fliche von 4 (n) in P eine dreiseitige von
A (n) in E umkehrbar eindeutig zuordnen kann, gilt immer

fr=n fur s,=0 und r>1. (8)

Die trivialen A (n) mit 5,#0 (d.h. s,=1) oder r=1 haben f;=0<V zur Folge.
Wegen f; =0 fiir > 1 und mit f;= 0 fiir i= 5 folgt in E aus (6) mit (7) und (8)

o7 B () 5 3)

Ist dann entweder s; ;= 1 fiir ein i= 3 oder n;= 2 fiir ein iz 1, so folgen durch Ver-
gleich mit (2) alle E betreffenden Aussagen in Satz 1.

Nun sei fur P noch angenommen, dass es eine nicht einfache Anordnung A4 p(n)
gibt. Wegen n=4 und Vjp(n)>0 gilt dann f;=f,=15,=0. Mit

i n
== . s k — ‘i 5 i = 10

o igzs”P P :;zls’P i§2<2)S’P (2) (19)
gilt

()5 (5

P7\2 =3\ 2 )Si’P
wegen (3). Mit (4) folgt hieraus

n—1 i—1
f4,P=< 2 )—(f3,P“n)—Zfi,P"_Z( 2 )Si,P- (12)
i=35 iz3

Mit (10), (5), (4) und (3) ergibt sich die Giiltigkeit von

frp=4+ 22;3 (i"'z)si,P"'i;S i—dfip- (13)

Da mindestens ein s; » mit i= 3 grosser als 0 sein muss, kann f3 p aus (12) den Wert
in (1) wegen (8) fiir n=4 gar nicht und fir n=5 nur annehmen, wenn f; p=n,
s3p=1, s5; p=0 fiir iz4 und f; =0 fur i=5 gelten. Dann folgt aber aus (13) noch
f3,p=6. Nach [1], S.5, gibt es jedoch keine Anordnung von sechs Geraden mit
diesen Werten s; p und f; p.



58 I. Mengersen: Vierseitige Flichen in Geradenanordnungen

Aus Satz 1 und (2) folgt unmittelbar noch

Korollar 1. Es gilt Vi (n)= Vg (n).

Zwei Anordnungen A;(n) und A,(n) sollen isomorph heissen, wenn es eine ein-
eindeutige Abbildung der Schnittpunkte, Flichenseiten und Flichen von 4, (n) auf
diejenigen von 4, (n) gibt, welche alle Nachbarschaftsbeziehungen erhilt.

Satz 2. Es gibt bis auf Isomorphie genau eine Anordnung Ay p(n).

Beweis: Nach [1], S. 29, gibt es genau eine einfache Anordnung 4 p (n), und damit
folgt Satz 2 aus Satz 1.

Fiir E gilt die Eindeutigkeit nicht, denn

Satz 3. Im Fall n=0(mod4) gibt es mindestens zwei nichtisomorphe Anordnungen
Ay g (n), eine ohne und eine mit zwei Parallelen.

Beweis: Fiir n=4 sind die beiden Anordnungen in Abb. 1 nicht isomorph, da etwa
schon die Schnittpunktanzahlen verschieden sind.

AN
AN

Abb. 1. Zwei nichtisomorphe Anordnungen 4y, g (4).

In [2] wurde fur n—2=2(mod4), nz6 eine einfache Anordnung A, p(n—2)
konstruiert, in der einer unbeschrinkten dreiseitigen Fliche D eine unbeschrinkte
zweiseitige Z; benachbart ist und eine unbeschrinkte zweiseitige Z, «gegeniiber-
liegt» (siche Abb.2). Mit g, sei die D und Z, trennende Gerade bezeichnet. Zu g .
wird eine Parallele g, so gezeichnet, dass g, durch Z, und. Z, verliuft und dass
zwischen g; und g, keine Schnittpunkte liegen (dies ist immer mdglich, da nur
endlich viele Schnittpunkte vorhanden sind). Eine Gerade g, soll dann g, in Z, und
g; erst von Z, nach D schneiden.

Da durch g, und g; jeweils n—4 und n— 1 neue vierseitige Flichen zu 4 g(n—2)
hinzugekommen sind, hat sich eine nicht einfache, maximale Anordnung A4 ¢(n)
ergeben (mit den Parallelen g; und g,). Die Nichtisomorphie zu der in [2] kon-
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Z

Abb.2. Eine Anordnung A4y, g (6).

struierten einfachen Anordnung A, z(n) folgt etwa aus den verschiedenen
Schnittpunktanzahlen.
Damit ist Satz 3 bewiesen. Es kann ausserdem gezeigt werden, dass fiir n=0 (mod 4)
weitere maximale Anordnungen A4 ¢ (n) existieren, und auch fiir n3 0 (mod 4) gibt
es, bis auf einige Ausnahmen, nichtisomorphe Anordnungen 4y (n).

Ingrid Mengersen, Braunschweig, BRD
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Kleine Mitteilungen

An application of Dirichlet convolution in proving some inequalities from elementary
number theory

1. The aim of this note is to show how we can use the properties of a ring of real
arithmetic functions to prove some known inequalities from the elementary theory
of numbers.
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