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Application of non-linear programming to plane geometry

1. Introduction

The purpose of this paper is to show how one may obtain geometric inequalities
by means of purely non-geometric methods. An advantage of this approach is that
those inequalities may be viewed in a somewhat wider setting than that given by
mere plane geometry. Although we intend to prove only two inequalities, we
strongly feel that others may be found in a similar fashion. The method to be
used is taken from the field of non-linear programming, to be more specific, we
shall employ an adopted version of the Kuhn-Tucker theorem.

To illustrate our point, we have selected the following inequalities:

5
ab+bc+ca<k,(a+b+c)? with k1=—?+2\/2 (1.1)
and

1
(aB—ba)*+ (by —cf)*+(ca—ay)*<k,(a+b+c)* with k,= —4—7r2. (1.2)

In (1.1) the quantities a,b and c stand for the sides of an obtuse triangle and in (1.2)
a,b and c are the sides and a,f and y are the corresponding angles (measured in
radials) of an arbitrary triangle.

The first inequality is proved in [3] by means of an entirely geometric argument.
Note that (1.1) with constant k;=1/3 holds for any non-equilateral triangle.
However in that case the inequality becomes rather trivial (cf. [2], 1.1, p. 11).

The second inequality has more stature. A proof may be found in [5]. This proof
uses both geometric and non-geometric methods. See also [2], 3.5, p. 38.

2. The Kuhn-Tucker theorem

Let f,gy, ..., g, be real-valued functions defined on a subset X of R”. Optimization
problems, which can be put into the form

gi(x)=0 for i=1,...,m

g:()=0 for i=m+1,..m *X 2.1)

Maximize f(x), subject to {
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are the subject matter of what is known as programming; linear programming
when the functions f. gy, ..., 8, are all linear functions and non-linear programming
otherwise.

We define the set C as follows:

C={xeX|g;(x)=z0 for i=1,...m~Ag(x)=0 for i=m;+1,....m} (2.2)

and we shall always assume that this so-called constraint set is non-empty.
If C is compact (i.e. closed and bounded) and f continuous, the existence of a
solution to problem (2.1) is garanteed by the following well-known theorem:

Theorem A (Weierstrass). Let C be a compact subset of R" and suppose that the
Sfunction f:R"—R is continuous. Then the restriction of f to C attains a (global)
maximum and a (global) minimum.

Often the constraint set is unbounded. In that case it is not always easy, if at all
possible, to prove the existence of a solution to (2.1). The only existence theorems
known for such a situation relate to concave (or convex) programming and
quadratic programming.

We suppose for the moment that a solution does exist. In order to find the maximal
value of f attained on C, the following theorem could be of some use, although in
practice it is not often applied in a constructive way.

Theorem B (Kuhn-Tucker). Let f, g, ..., §n be real-valued totally differentiable
functions defined on a non-empty open subset X of R". Further, let C be defined as in
(2.2). For every x € C, we define E (x) to be the set of all indices je {1, ..., m} for which
8 (x)=0. Moreover, let f attain a local maximum on C in the point X. Assume that at
least one of the following regularity conditions is satisfied:

R1. All contraint functions g; are linear;

R2. The set of gradient vectors {Vg;(%)|icE(X)Vie {m+1, ..., m}} is linear
independent. '

Then the following conditions (first order conditions or Kuhn-Tucker conditions) are
Sfulfilled:
There exist real numbers 2, ..., 2,, such that

VI (x)+ .21 2:8;(%)=0

£,8:(X)=0, i=1,....m

g§(*X)=0 and 1,20, i=1,..,m

gi(*)=0, i=m+1,...,m. 23)

Remarks: The notation Vf (%) stands for ‘the gradient of fin X’ i.e.

Vf(R):=(0f/0x,, ..., Of [0x,) =5

Proofs of theorem B can be found in various places e.g. [1], p. 121.
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There exist a wide variety of regularity conditions (cf. [4], chapter 1, section D).
We have chosen R1 and R2 merely, because they prove sufficient for the
applications selected.

On reversing the relevant inequality signs and replacing the phrase ‘local maximum’
by ‘local minimum’ in theorem B, we obtain an analoguous theorem for the
problem:

gi(x)=0 for i=1,...,m,

e (=0 for i=m 4l ..m XX @D

Minimize f(x), subject to {

3. Applications to plane geometry
In this section we shall give proofs of the inequalities mentioned in the introduction.
Lemma 1. The problem

max f(x)=xxXy+ XX3+ X3X,
subject to

x;=0, x,=0, X3=0
xizx3+x3

x1+x2+x3=l

has a solution. This maximum is attained in one point only, namely ¥=(—1+V 2,

1-V2 2,1-\V2 ) and f($)=-5/2+2V2 .

Proof: Clearly f is a continuous function on R? and the constraint set C is compact.
This shows the existence of a solution M; attained in a point X=(x,,x,,x3) say.
Since xeC, it is clear that x;#0. Moreover, if x,=x3;=0, then M=0. However,
f is not identically zero on C. So x; and x; cannot vanish simultaneously. Now
suppose that x,x3=0. Because of symmetry, we may assume that x,=0 and x;#0.
Then M=x;x3=1/4, in view of the relation x,+x;=1. On the other hand,
f(5t,4t,30)=47¢* and (5t,41,3H)eC iff t=1/12. But f(5/12, 4/12, 3/12)>1/4.
Consequently, x,x3# 0. It is now easy to check that condition R2 of theorem B is
satisfied in X. Hence, real numbers A, 4,, A3, 4, v exist such that (see (2.3)):

X+ X3+ A+ 2ux;+v=0
X1+ X3+ A—=2ux,+v=0
X1+ x;+A3—2ux3+v=0

xz0, x,=0, x3z0 Xy =Ayxy=2A3x3=0
Az xi+ 3 4 (3= xi=x)=0
X1+ x4+ x3=1 V(X + X3+ x3—1)=0

41z0, 4,20, 2320, uz0.

Since X1X2X3 # 0, it follows that il = 2,2 = ),3 =0.
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From the first three equations we obtain by addition

0=2(x;+ X2+ x3)+ A1+ A+ A3+ 2pu(x;—x;—x3)+ 3V
=24+2u(x;—x,—x3)+3v.

If 4=0, then v=—2/3 and thus 1—x;=1—x,=1—x3=2/3. Hence x;=x,=2x;
= 1/3, but this contradicts x}z x3+x%. Thus x>0 and consequently x3=x3+x2.
From

vHl=x(1-2u)=x,(1+2u)=x3(142p)

it follows that x,=x3 and hence x3=2x} which gives x, =x,V 2. Then x;+x,+ X3
=1 shows that x;= — 1+V2 and Xy=X3= l—\/?/2. We also find /1=3/2——\/2_
and v=5—4V2.

From this lemma, the following theorem can be easily deduced.

Theorem 1. Let a, b and c be the sides of an obtuse triangle. Then inequality (1.1) holds
and the constant k is best possible.

Proof: Put x,=a/(a+b+c), x,=b/(a+b+c) and x3=c/(a+b+c). The quantities
X1,Xp,x3 satisfy x>0, x>0, x3>0, x;+x;+x3=1 and x3>x}+x3 if we assume,
without loss of generality, that a=max(a, b, c).

Lemma 1 shows that equality can only be reached in a right isosceles triangle
with 2b=2c=aV/ 2 . That k, is best possible also follows from the observation that
for each sufficiently small positive number ¢, the triangle with sides

a=—1+V2 +8,2b=2c=2—/2 — 4§ is obtuse.
Inequality (1.2) is somewhat harder to prove. We need the following lemma.
Lemma 2. The problem

max f(x; y)= (xyy— Xop1)* + (X203 — X3p2)* + (X3y1— X1Y3)?

subject to
X1+X2+)C3=1, y1+y2+y3=1
—x1+1/2z0
xl——xzéO yl—yz_z_O
X2"’X3§O yz""y3§0
JC3%O y3§0

is solvable. The maximum M=1/4 is attained at %=(1/2, 1/2, 0; 1, 0, 0) and at no
other point of C.

Proof: The function f is continuous on R® and the constraint set C is compact. Let f
attain its maximum M on C in the point X = (x,, X5, X3; ¥1,V2, V3). Since all constraint
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functions are linear, the regularity condition R1. of theorem B is fulfilled. Hence,
there exist real numbers ag, a,, a,, a3, 1, B2, B3, A, u such that (see (2.3) of
theorem B):

of

0x1 —ap+a;+41=0, al+ﬁ1+,u 0

a )

9 —a;+a,+1=0 9 —B1+ B2 +u=0

6x2 6 V2

of of

ox, —ay+az+4i=0 s — B2+ pB3+u=0

—x;+12=20,  ag(=x;+1/2)=0
x1—x=0 ayj(x;—x)=0,  y;—=»,z0, Bi(1—y)=0
X;—x3=0 ay(x;—x3)=0 »—y3=0 B2(y2—y3)=0

X3§_0 a3x3=0 y3§0 ﬁ3y3=0
X1+X2+)C3=1 y)+y2+y3=1

aoéo, aléo, a2§0, 0320, ﬂléo, ﬂZéOa ﬁ3§0.

First of all we note that (1/2,1/2,0; 1,0, 0)=1/4. Hence M =max f= 1/4.
Since 3y;=y;+y,+y;=1 and O=x,=x;=1/2, we have B,—pf;—u=0f/dy,
=2y, (x3+xD)—2x;(x1y;+x00)=1/3.

Moreover, as a function of yy, y,, y; alone, the function f'is homogeneous of degree 2.
Hence, by Euler’s theorem

of
0y;

of of
2f= + + =—u.
f ylayl J’2ay2 V3 7

Combining these two results, we obtain
1
2f+Br—Bs3= 3

Now, if £;=0 then §,= 0 implies that f= 1/6. This means that we may assume that
f3>0. But then y;=0.

As a function of x;,x,,x; alone, the function f is also homogeneous of degree 2.
Hence, as before,

of 6f . of ey

X123
0x;

2f=

Further, df/0x,+0f/0x,=09—a;—2A=—a,+4f and also df/dx,+ df/ox,
=2x; (1= y2)* = 2y1(x;— X2) (11— y2) = 1, since y;=0. Thus

—-a2+4f§1.



6 R.J. Stroeker: Application of non-linear programming to plane geometry

Suppose now that a,=0. Because we are only interested in values of fz= 1/4,it
follows from the above that

1=4f=2x,(r1—y2)* - 2y1(x1—x) (1 —yp)=1

and this means that

2x;(71—y2?=1 and 2y, (x;—x;)(»,—y2)=0.

This is only possible when x;=x,=1/2 and y,= 1, y,=0. Consequently, x;=0.
After some calculation we find that 0=ag=1, a,=(1+a,)/2, (a;=0), a3=(1—ay)/2,
B1=0, B,=1 and f;=3/2. Hence the first order conditions are satisfied in the point
(1/2, 1/2,0; 1,0, 0).
We continue by assuming that £+#(1/2,1/2,0;1,0,0). Then clearly a,>0
and  x;=x3. Now  2f+ag/2—a;=0f/0x,=2p,(x1y2— X)) =2x12 (12— ¥1)
+ 2y, (X1 — x,) =y, = 1 /4, because y; + y, = 1 (recall that y;=0). Hence,
1

2f—a;= 4
in view of gz 0. From a,;=0, it follows that f= 1/8. Hence suppose that a;>0.
Then x;= x,. Also x,= x5 and thus x,=x,=x;=1/3. We have

of of 2 2
Af—py=L T _ 2 _Z
f—B> 6y1+<3y2 5 01+»2) 9

If #,=0, then f=1/18. And if #,>0, then y,=y;=0 and thus y,= 1. This implies
that 2f=df/dy,=4/9, since §,=0(y,#y,). But then f=2/9< 1/4.
This proves the lemma.

Theorem 2. Let a, b, ¢ be the sides and a, 3, y the corresponding angles of a triangle.
Then inequality (1.2) holds. Moreover, the constant k, is best possible.

Proof: Put x;=a/(a+b+c), x,=b/(a+b+c), x3=c/(a+b+c) and assume that
a= b= c. Further, put y;=a/n, y,=f/n and y;=7 /n. Then x;+ x,+ x3=y,+ y+ 3
=1. Since b+ c>a, we have also x,+x3> x,. This shows that x,<1/2. In view of
azbz=c, we have azf=y and consequently x;zx,=x3>0 and y;=y,=y;>0.
That k, is best possible may be seen as follows (in fact the proof of lemma 2 already
gives evidence to that effect):

Let 6>0. Put y,=a/n=1—(0+6%/n, y,=B/n=6/n, y3=y/n=06*/n and x;=a
=sin (6 +62)/20, x,=b=sind /24, x;=c=sind?/24. Now let § tend to zero.

4. Postscript

The most difficult part of the foregoing method in order to obtain geometric
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inequalities, lies in the choice of the constraint set. The relations between the
elements of a triangle are often given in terms of circle functions. These functions,
when appearing in the constraint functions, greatly complicate the determination of
points satisfying the first order conditions.

R.J. Stroeker, Erasmus University, Rotterdam
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Distance theorems in geometry

1. Introduction

The purpose of this note is to give a method for proving ‘distance theorems’ in
elementary plane geometry. As an application we give an easy proof of the Feuer-
bach theorem and we solve an old problem of A.H. Stone [3] problem E585.

Let (7)) be any triangle A4, A with vertices numbered in counter clockwise order.
Denote the interior angle at 4; by a;(i=1, 2, 3), and the length of the opposite side
by a;, We use the notation P (x;, x,, x3) or (x;) to indicate that the distances of P
from the sides of (7) are proportional to x;, x,, X3 with the convention that x; is
positive if P and A, are on the same side of a; and negative otherwise. We shall also
use capital letters to denote complex numbers; thus, for example, (1/3)
(4, + A,+ A,) is the centroid of (7).

Our method is based on the following elementary lemma.

Lemma. Let M be a point in the plane of (T) satisfying
3 e
>, mMA}=k, M
i=1

where the m;’s are real numbers satisfying sy;=m;+my+m;+#0, and k is a constant
satisfying
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