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Therefore by=b,=---=b,=0, and the theorem is proved.

Wolfgang Schwarz, Frankfurt am Main

8. Porubsky informed me that another simple proof of the theorem of this note and a discussion of its
connections with covering systems is given in M. Newman: Roots of unity and covering sets. Math. Ann.
191, 2719-282 (1971).
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Der Kreis mit minimaler Flichendifferenz zum Dreieck

Die folgende Aufgabe, die in der Thematik und in den Behandlungsmethoden
mehrfach verallgemeinerungsfihig ist, bis hin zur Nutzung in manchen An-
wendungsbereichen, kann auch bereits fiir sich Interesse finden, sowohl als Frage
wie auch wegen der Eigenart des Ergebnisses.

Aufgabe. Gegeben sei in der euklidischen Ebene ein beliebiges Dreieck ABC. Gesucht
ist eine in dem Sinne optimale Kreisflidche K, dass zwischen ihr und der Dreiecksfliche
D die symmetrische Differenz

(KU D)\(Kn D)
mdglichst kleinen Fldcheninhalt F hat.
1) Die fur diese Sparte bestimmte Erweiterung des Umfangs von 2 Heften pro Jahrgang um je 8 Seiten

wird durch die Deutschschweizerische Mathematik-Kommission (DMK) des Vereins Schweizerischer
Mathematik- und Physiklehrer (VSMP) finanziert.
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Ein Ansatz zur Behandlung dieser Aufgabe (der z.B. auch brauchbar bleibt, wenn
D und KX irgendwelche Ovale sind; vgl. [1]) besteht in folgendem Vorgehen: Es sei
K irgend ein Kreis, der mit D gemeinsame innere Punkte hat; Z sei ein gemein-
samer innerer Punkt. Wir betrachten die Schar aller aus K durch Streckung mit Z
als Zentrum und jeweils positivem s als Streckfaktor entstehenden Kreise K (s). Die
symmetrische Differenz (K (s)uD)\(K(s)n D) habe den Fliacheninhalt F(s). Fir
O0< s <s, zerlegen wir die Ringfliche zwischen den Rindern von K (s;) und K (s,)
in Fldchenstiicke, die zu vier Klassen jeweils mit Flicheninhaltssummen P, Q,p,q so
zusammengefasst werden, wie aus Abb. 1 ersichtlich ist. Es ergibt sich

.

F(s))=F(s)=P+p—Q0—q. (D
c

K(s,)

K(S-'

XD

Abb. 1

Dies ermoglicht Monotoniekriterien fiir F(s) als Funktion von s. Um sie zu formu-
lieren, zerlegen wir fir jedes s>0 die Kreisfliiche K=K (1) in Sektoren mit dem
Scheitel Z, die zu zwei Klassen jeweils mit Flicheninhaltssummen G(s), H (s) so
zusammengefasst werden, wie Abb. 2 zeigt.

Fiir kleine s ist konstant G(s)=0; von einem bestimmten Wert von s an wichst
G(s) streng monoton - hier, fir den Fall eines (konvexen) Polygons D und eines
Kreises K, sogar auch stetig (vgl. hierzu allgemeiner [2]) - bis zu einem Wert von s,
von dem an G(s) konstant gleich dem gesamten Flicheninhalt | K| von K bleibt;
fiir jedes s ist ausserdem G(s)+ H(s)= | K|. Hiernach hat genau eine Zahl s* die
Eigenschaft '
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Gls) I—i(s:) .
Abb. 2

G =H (=5 1K), @

und es ergibt sich als Diskussion von (1): Gilt (s;<) s,=s*, so ist G(sy)= H(s,),
wegen der Ahnlichkeit also P+p+¢g= Q und folglich F(s,)— F(s;))= —2¢<0. Gilt
aber 5* =5,(<s,), so ist G(s;)= H(sy), also P= Q+p+q und folglich F(s,)— F(s,)
z2p>0. Somit nimmt F(s) als in (0,s*] streng fallende und in [s*, + o0) streng
steigende Funktion genau an der Stelle s* das globale Minimum an, d. h. wir haben

Satz 1. Bei Einschrdnkung auf die einparametrige Schar der K (s) ist genau derjenige
Kreis K (s*) optimall, fiir den die « Halbierungsbedingung» (2) erfiillt ist.

Ist speziell Z der Mittelpunkt von K, so besagt (2) einfach, dass D den Umfang des
Kreises K (s*) halbiert. (Dies lisst sich anderweitig verallgemeinern, z. B. zu folgen-
der Aussage aus [1]: Bei beliebigem - nicht notwendig konvexem - Polygon D ist
die Umfangshalbierung eines Kreises K notwendig und hinreichend fiir stationires
Verhalten von F, wenn K nur eine Schar konzentrischer Kreise durchliuft.)
Jedoch ist es anscheinend unvorteilhaft, nur von den konzentrischen Kreisscharen
auszugehen, wenn man nun durch Variation des Punktes Z iiber die bisher betrach-
tete einparametrige Schar hinausgelangen mochte. Vielmehr er6ffnet gerade der
Ansatz, der zu Satz 1 fiihrte, einen besonders einfachen Weg zu Aussagen bei
variablem Z. (In [1] wurde auch dieses Vorgehen in Anpassung an allgemeinere
Ovale formuliert, ohne die hier folgende Nutzung speziell fiir Kreise K und
Dreiecke D.)
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Wir nennen einen gemeinsamen inneren Punkt Z eines Kreises K und eines
Dreiecks D ein «Halbierungszentrum» von K beziiglich D, wenn [wie in (2) fur
K(s*) als K] die Strahlen aus Z zu allen ausserhalb D gelegenen Randpunkten von
K gerade den Flicheninhalt (1/2)| K| iberstreichen. Auch Randpunkte Z von
KN D kdénnte man zunichst mit zulassen; da sie aber ohnehin aus der Diskussion
ausscheiden (siche unten die Bemerkung zum 3. Fall), sehen wir sogleich von ihnen
ab.

Satz 2. Die Menge aller Halbierungszentren von K beziiglich D ist der Durchschnitt
des Inneren J von Kn D mit einer nicht nulldimensionalen linearen Mannigfaltigkeit,
d. h. entweder leer oder eine J durchquerende Strecke oder ganz J.

Beweis: Fiir jeden Punkt Z e J setzt sich das Flichenstiick, das von den Strahlen aus
Z zu allen ausserhalb D gelegenen Randpunkten von K iiberstrichen wird, zusam-
men aus der Vereinigungsmenge von Kreissegmenten, die (bei variablem Z)
konstant sind, und Dreiecken mit je konstanter Gegenseite zu Z. Also ist der
Fliacheninhalt dieses iiberstrichenen Flichenstiickes eine lineare Funktion der
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Abb. 3
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kartesischen Koordinaten von Z. Diese nimmt den Wert (1/2)| K| genau auf einer
Punktmenge der behaupteten Art an.

Somit gelangen wir zu einer Bedingung, die zunéichst formuliert sei:

Bedingung (H) wird genau dann (beziiglich eines Dreiecks D) von einem Kreis K
erfiillt, wenn die folgenden beiden Aussagen gelten:

(H,) Das Dreieck D halbiert den Umfang von K, d.h., der Mittelpunkt Z von X ist
(wenn er auch innerer Punkt von D ist) ein Halbierungszentrum von K beziiglich D.
(H,) Variiert der gemeinsame innere Punkt Z von D und K, ausgehend von der
Lage als Mittelpunkt von K, in mindestens zwei nichtkollinearen Richtungen, so
bleibt Z Halbierungszentrum (desselben Kreises K beziiglich desselben Dreiecks D).

Nach Satz 1 und Satz 2 ist nun diese Bedingung (H) jedenfalls notwendig fiir die
Optimalitidt von K. Sie ist sogar, wovon wir im folgenden nicht einmal Gebrauch
machen, (notwendig und) hinreichend fiir die Optimalitit von K bei Variation iiber
eine dreiparametrige Schar. - Wir suchen nun fiir die verschiedenen Fille einer
Verwirklichung von (H,) auch (H,) zu erfiillen:

1. Fall. Die Peripherie eines Kreises K, der (H,) erfiillt, werde durch D in sechs Teil-
bogen zerlegt, die abwechselnd innerhalb und ausserhalb D liegen (Abb.3; auch
Grenzfille wie R=T oder S=A4 =T kann man zunichst, unabhingig von der Frage
der Optimalitit, mit zulassen).

Fiir die in Abb. 3 angegebenen Winkel ¢, y,  besagt (H,) dann
(180°—2¢)+(180°—2y)+ (180°—2y)=180°, d.h. ¢+ x + w=180°. Variiert nun Z
parallel zu A B, so bleibt Z dabei genau dann Halbierungszentrum, wenn

hu+ kv= const Q3)

bleibt. Allgemein stellt aber (3), wenn h,k die Lote (eines variablen Punktes Z) auf
BC bzw. AC sind und wenn u,v gegebene Koeffizienten (nicht beide 0) sind, eine
Gerade dar, deren Richtung eineindeutig durch u: v gegeben ist. Fiir die Gerade AB
selbst gilt offenbar ha+ kb= const; also stellt (3) genau dann eine Parallele zu AB
dar, wenn die gegebenen Koeffizienten im Verhiltnis u:v=a:b stehen. Ent-
sprechendes gilt fir das Variieren von Z parallel zu den anderen Dreiecksseiten;
damit ist bewiesen:

Satz 3. Ein Kreis K, der (H,) unter den Bedingungen des 1. Falles erfiillt, erfiillt genau
dann auch (H,), wenn fiir ihn

u:viw=a:b:c 4)
(mit u, v, w aus Abb. 3) gilt.

Um zur Gewinnung eines Kreises mit diesen Eigenschaften zu gelangen, nehmen
wir zunichst an, ein solcher Kreis liege vor. Dann gibt es ein Hilfsdreieck LMN
mit ¢,y,w als Innenwinkeln, in welchem sich die Abstinde u,v,w des Umkreis-
mittelpunktes X von den Seiten wie u:v:w=a:b:c verhalten: Abb.4 zeigt eine
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Abb. 4

Gewinnung von LMN durch Zusammensetzen gewisser Teildreiecke aus Abb.3.
Auch umgekehrt ergibt sich, sobald die Innenwinkel ¢,y,y eines Hilfsdreiecks
LMN mit dieser Eigenschaft vorliegen, im gegebenen Dreieck D ein - sogar kon-
struktiver - Weg zu dem gesuchten Kreis K (falls K existiert): Man findet in Abb.3
etwa zunéchst ein zu ZSAT dhnliches Viereck aus der Forderung ZS=ZT und den
Innenwinkeln 180°-y,a, 180°-yw bei S, A bzw. T, daraus schrittweise eine zu A BCZ
dhnliche Figur und dann diese selbst. Erforderlich fiir die Ausfithrbarkeit einer
solchen Konstruktion sind die Bedingungen y+wy=a,w+oe¢=f,0+y=y; fir
welches Dreieck D, wenn zu ihm LMN vorliegt, diese erfiillt sind (und ob sie auch
bereits hinreichend sind), werden wir weiter unten diskutieren.

Vorerst wollen wir allgemein zur Gewinnung eines Hilfsdreiecks LM N gelangen,
wenn u, v, w als gegebene Werte betrachtet werden. Dazu zeigen wir

Satz 4. Ist LMN ein spitzwinkliges Dreieck, in dem r der Umkreisradius und u,v,w
die Abstdnde des Umkreismittelpunktes von den Seiten sind, so gilt

P—@*+v+wd)r—2uw=0. | ®)

Beweis: Der Feuerbachkreis von LMN geht durch die Seitenmitten L’, M’, N’ sowie
durch die Hohenschnittpunkte E,E’ von N’ML’ bzw. M’L’N und hat E’N’ als
Durchmesser. Also folgt aus EE’-L’N'=EL’-E’N'+EN’-E’'L’ (Satz des
Ptoleméus)

Vr—u?  \ P—v:=wr+uy (6)

und daraus (5).

Bevor wir die iibrigen Fille der Lage von K betrachten und erst dann die Diskussion
auch des 1. Falles abschliessen, begniigen wir uns zunéchst noch mit folgender Fest-
stellung: Gemiss (4) hat man, mit den als Seiten von D gegebenen a,b,c>0, die
Gleichung (5) in der Form

f(xX):=x3—(@*+b*+ct)x—2abc=0 )
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zu behandeln, und diese Gleichung (7) besitzt genau eine positive Lésung x. Denn
/" (x) hat genau eine positive Nullstelle; es gilt f(0)<0, lim f(x)= + oo usw.
X+ 00

2. Fall. Die Peripherie eines Kreises K, der (H,) erfiillt, werde durch D in vier Teil-
bogen zerlegt, die abwechselnd innerhalb und ausserhalb D liegen (Abb. 5).

Sind die Teilbdgen, im Sinne eines Kreisumlaufs angeordnet, etwa RS, ST, TU, UR,
so ist (H;) dquivalent mit RT L SU.Variiert weiterhin Z parallel zu RS, so bleibt Z
dabei genau dann Halbierungszentrum, wenn UT| RS gilt; entsprechend bei
Variation parallel zu RU genau fiir ST|| RU. Also erfiillt ein Kreis, der (H,) unter
den Bedingungen des 2. Falles erfiillt, genau dann auch (H,), wenn RSTU ein
Quadrat ist. Dabei muss dann eine der Strecken RS, ST, TU, UR ganz in einer Seite
von D liegen, etwa RS in AB, und C im Innern von K. Hieraus folgt xACB>135°.
Die Diskussion auch dieses Falles schliessen wir weiter unten ab.

Abb. 5

Als einzige Moglichkeit, (H;) zu erfullen (freilich nur mit dem Kreismittelpunkt Z
auf dem Rand von D), verbleibt noch der

3. Fall. Die Peripherie eines Kreises K, der (H,) erfiillt, werde durch D in zwei Teil-
bogen zerlegt.

Dann kann (H,) nicht erfiillt werden; um dies zu sehen, variiere man Z nicht-
parallel zu der Sehne, die die beiden Teilbégen trennt, und wende Satz 2 an.
(Natiirlich lasst sich ohnehin ein Kreis K, dessen Mittelpunkt Z nicht in J liegt,
sogleich als nicht optimal erkennen.)

Damit sind wir zur Moglichkeit einer abschliessenden Diskussion vermittels der
folgenden endgiiltigen Fallunterscheidung (A), (B) gefithrt worden. Als Ergebnis
wird sich herausstellen:

Existenz- und Eindeutigkeitssatz zur Aufgabe: Fiir jedes Dreieck D existiert genau
ein optimaler Kreis K.

(A) Das gegebene Dreieck D enthalte einen Innenwinkel grisser als 135°, etwa
y=<xACB>135°. 8)

Als Hilfsaussage zum Beweis des Existenz- und Eindeutigkeitssatzes verwenden
wir hier noch den folgenden
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Satz 5. Es seien ¢, y,y die Innenwinkel eines spitzwinkligen Dreiecks LMN, in dem
die Abstdnde u,v,w des Umkreismittelpunktes X von den Seiten die Bedingung (4)
erfiillen. Dabei seien a,b,c und a,f,y die Seitenlingen bzw. Winkelgrissen in einem
Dreieck D, das (8) erfiillt. Dann gilt o+ y < y.

Beweis: Zunichst zeigen wir y<45°: Wire y=45°, so ergibe ein Vergleich
zwischen dem - nach (4) zu D &hnlichen - Dreieck mit den Seitenldngen u,v,w
und dem Dreieck L’XM’ aus Abb.4 wegen XL’'XM’'=180°—y=135°<y den
Widerspruch L’M’<w=w - tany = MN’. Damit ist gezeigt:

w 1
—=cosy> — V2,
2wir—r>0,

nach (5) also

202 v —2uv (uv+wr)+ (W2 —ut—v3) >0

und daher nach (6)
uv VE—u? PV w4+ vi—w?
r? r? > 2uv
cos (g + y)>cosy.

Aus Satz 5, Satz 3 und den Betrachtungen nach Satz 3 und Satz 4 folgt: Gilt (A),
so ist (H) nicht unter den Bedingungen des 1. Falles erfiillbar; denn die hierzu er-
forderliche Giiltigkeit von (4) fithrt iiber (7) auf genau ein x, also eindeutige
@,x,¥, aus denen sich wegen ¢ + y <y nicht Abb.3 zuriickgewinnen ldsst. Da aber
nach dem Satz von Weierstrass ein optimaler Kreis. K existieren muss, geschieht
dies unter den Bedingungen des 2. Falles. Damit ergibt die folgende Konstruktion
den eindeutig bestimmten optimalen Kreis (Abb. 5):

Man beschreibt - in bekannter Weise sogar mit Zirkel und Lineal - dem Dreieck D
das Quadrat RSTU ein. Sein Umkreis ist der gesuchte Kreis K.

(B) Alle Innenwinkel von D seien a,f,y = 135°.

Dann kann nach den Betrachtungen zum 2. Fall unter dessen Bedingungen die
Forderung (H) nicht erfiillt werden. Also wird das nach dem Satz von Weierstrass
auftretende minimale F unter den Bedingungen des 1. Falles angenommen. Wieder
fuhrt (4) tiber (7) auf eindeutige ¢, y, ¥, und da nur sie in der als existent erkannten
Abb.3 auftreten konnen, erfilllen sie auch zu deren Riickgewinnung hinreichende
Bedingungen. Das besagt, dass es genau den folgendermassen zu erhaltenden
optimalen Kreis gibt:

Man ermittelt die einzige positive Lésung x von (7), zu ihr mit u:v:w:r=a:b:c:x die
Winkel @, x,w in Abb. 4 und rekonstruiert mit deren Hilfe Abb. 3.
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Rechnerisch fiihrt dies iiber

a b c
cosp = — cosy =— cosy = —
@ P X <’ "4 X

[x aus (7)], wie ohne weitere Zwischenrechnungen mitgeteilt sei, auf die Formeln

2
AT=—]%— .sing - (siny +sin (v —a)) , TR=—]—V9—- sina - sing - cosy,
2

Fopt= N r, sina - sinf - siny

(r,: Umkreisradius von 4 BC; r,,: Radius des optimalen Kreises;
N:=sina - sing +sinf - siny +siny - siny).

Damit ist die Existenz- und Eindeutigkeitsaussage sowohl im Fall (A) als auch im
Fall (B) bewiesen. Bemerkenswert ist hierbei:

Satz 6. Gilt (B), so ist der optimale Kreis im allgemeinen nicht mit Zirkel und Lineal
aus D konstruierbar.

Dies folgt z.B., indem man Dreiecke D mit ganzzahligen a,b, ¢ findet, fur die f(x)
aus (7) iiber dem Korper der rationalen Zahlen irreduzibel wird. Fiir a=3, b=4,
c=35 etwa ist dies der Fall; zugleich zeigt dieses Beispiel, dass K sogar zu recht-

C
7
o (5.
.;l[yg-,; X %VSF-H
urccos(%[v's‘ - —
Z
arcsm{lz-(ﬁ'-ln —4 h‘ﬁ-z
bs-5)
]
A ! B
— %—‘i 515-1 b
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winkligen Dreiecken D im allgemeinen nicht mit Zirkel und Lineal konstruierbar
ist. Natiirlich gibt es auch Dreiecke mit konstruierbarem K; z.B. lidsst sich, wenn
einer der Winkel a, £,y gleich 135° ist, die Konstruktion des Falles (A) auch noch
anwenden und fithrt auf denselben Kreis wie nach dem Verfahren aus (B). Ferner
wird f(x) beispielsweise fir a=b (gleichschenklige D) reduzibel, nimlich teilbar
durch x +c. Wir erwiéhnen insbesondere als ein pointiertes Gegenstiick zu Satz 6:

Satz 7. Ist ABC gleichschenklig und bei C rechtwinklig, so teilt der Mittelpunkt Z
des optimalen Kreises die Hihe CY im Verhdltnis CZ:ZY=(1/2) (1+\/? ) des
«Goldenen Schnittes».

In der Tat rechnet man nach, dass fiir den Kreis mit diesem Mittelpunkt Z und dem
Radius CY - VV/'5 —2 die Bedingung (H) erfiillt ist (Abb. 6).
Ludwig Stammler, Halle (Saale), DDR
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Uber eine spezielle Klasse von Dreiecken mit ganzzahligen Seiten

Von der Schule her kennt man das Dreieck mit den Seiten 4, 5, 6, in welchem
iiberraschenderweise ein Winkel genau doppelt so gross ist wie ein anderer. Die
Frage liegt nahe, ob vielleicht noch weitere solche Dreiecke mit ganzzahligen, teiler-
fremden Seiten a, b, ¢ und der Winkelbeziehung f=2a existieren. Im nachfol-
genden Abschnitt a werden unter alleiniger Verwendung des Sinussatzes alle
derartigen Dreiecke bestimmt.

Es erhebt sich die ndchste Frage: Gibt es auch Dreiecke mit ganzzahligen, teiler-
fremden a, b, ¢ und f=3a? Im Abschnitt b wird auch fiir diese Dreiecke die
entsprechende Parameterdarstellung hergeleitet.

Die gleiche Fragestellung fiir die Fille $=4a, 5a, ..., ka wird im letzten Abschnitt
¢ weiterverfolgt; die Formeln (5) geben die allgemeine Losung des aufgeworfenen
Problems.

Einen andern Weg zur Losung der vorliegenden Aufgabe hat J.T. Groenman,
Groningen (NL) eingeschlagen; anstelle des Sinussatzes verwendet er weitgehend
elementargeometrische Uberlegungen. Seine Losung erscheint in «Nieuw Tijd-
schrift voor Wiskunde».

a) f=2a. Der Sinussatz ergibt fiir die Seitenverhiltnisse:

sin3a

: =4cosa—1.
sina

_b_____ sin2a
a

c
- =2cosa, —
sina a
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