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Therefore bx b2= • =bn=Q, and the theorem is proved.

Wolfgang Schwarz, Frankfurt am Main

S. Porubsk^ informed me that another simple proof of the theorem of this note and a discussion of its
connections with covering Systems is given in M. Newman: Roots of unity and covering sets. Math. Ann.
191, 279-282 (1971).
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Elementarmathematik und Didaktik1)

Der Kreis mit minimaler Flächendifferenz zum Dreieck

Die folgende Aufgabe, die in der Thematik und in den Behandlungsmethoden
mehrfach verallgemeinerungsfähig ist, bis hin zur Nutzung in manchen
Anwendungsbereichen, kann auch bereits für sich Interesse finden, sowohl als Frage
wie auch wegen der Eigenart des Ergebnisses.

Aufgabe. Gegeben sei in der euklidischen Ebene ein beliebiges Dreieck ABC. Gesucht
ist eine in dem Sinne optimale Kreisfläche K, dass zwischen ihr und der Dreiecksfläche
D die symmetrische Differenz

(KuD)\(KnD)
möglichst kleinen Flächeninhalt F hat.

1) Die für diese Sparte bestimmte Erweiterung des Umfangs von 2 Heften pro Jahrgang um je 8 Seiten
wird durch die Deutschschweizerische Mathematik-Kommission (DMK) des Vereins Schweizerischer
Mathematik- und Physiklehrer (VSMP) finanziert.
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Ein Ansatz zur Behandlung dieser Aufgabe (der z. B. auch brauchbar bleibt, wenn
D und K irgendwelche Ovale sind; vgl. [1]) besteht in folgendem Vorgehen: Es sei

K irgend ein Kreis, der mit D gemeinsame innere Punkte hat; Z sei ein gemeinsamer

innerer Punkt. Wir betrachten die Schar aller aus K durch Streckung mit Z
als Zentrum und jeweils positivem s als Streckfaktor entstehenden Kreise K(s). Die
symmetrische Differenz (K(s)uD)\(K(s)nD) habe den Flächeninhalt F(s). Für
0<sx<s2 zerlegen wir die Ringfläche zwischen den Randern von K(sx) und K(s2)
in Flächenstücke, die zu vier Klassen jeweils mit Flächeninhaltssummen P, Q,p,q so

zusammengefasst werden, wie aus Abb. 1 ersichthch ist. Es ergibt sich

F(s2)-F(sx) P+p-Q-q. (1)

K(s,

KB

12
Abb 1

Dies ermöglicht Monotoniekriterien für F(s) als Funktion von s. Um sie zu formulieren,

zerlegen wir für jedes s>0 die Kreisfläche K=K(l) in Sektoren mit dem
Scheitel Z, die zu zwei Klassen jeweils mit Flächeninhaltssummen G(s), H(s) so

zusammengefasst werden, wie Abb. 2 zeigt.
Für kleine s ist konstant G(s)=0; von einem bestimmten Wert von s an wächst
G(s) streng monoton - hier, für den Fall eines (konvexen) Polygons D und eines
Kreises K, sogar auch stetig (vgl. hierzu allgemeiner [2]) - bis zu einem Wert von s,
von dem an G(s) konstant gleich dem gesamten Flächeninhalt \K\ von K bleibt;
für jedes s ist ausserdem G(s)+H(s)= \K\. Hiernach hat genau eine Zahl s* die
Eigenschaft
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Abb 2

G(s*)=H(s<•>(-», (2)

und es ergibt sich als Diskussion von (1): Gilt (sx<) s2^s*, so ist G(s2)^H(s2),
wegen der Ähnlichkeit also P+p+q^Q und folghch F(s2)-F(sx)^ -2q<0. Gilt
aber s*^sx(<s2), so ist G(sx)=H(sx), also P^Q+p + q und folglich F(s2)-F(sx)
^2p>0. Somit nimmt F(s) als m (0,s*] streng fallende und in [,s*, + oo) streng
steigende Funktion genau an der Stehe s* das globale Minimum an, d. h. wir haben

Satz 1. Bei Einschränkung auf die einparametrige Schar der K(s) ist genau derjenige
Kreis K(s*) optimal,für den die «Halbierungsbedingung» (2) erfüllt ist.

Ist speziell Z der Mittelpunkt von K, so besagt (2) einfach, dass D den Umfang des
Kreises K(s*) halbiert. (Dies lässt sich anderweitig verallgemeinern, z.B. zu folgender

Aussage aus [1]: Bei beliebigem - nicht notwendig konvexem - Polygon D ist
die Umfangshalbierung eines Kreises K notwendig und hinreichend für stationäres
Verhalten von F, wenn K nur eine Schar konzentrischer Kreise durchläuft.)
Jedoch ist es anscheinend unvorteilhaft, nur von den konzentrischen Kreisscharen
auszugehen, wenn man nun durch Variation des Punktes Z über die bisher betrachtete

einparametrige Schar hinausgelangen möchte. Vielmehr eröffnet gerade der
Ansatz, der zu Satz 1 führte, einen besonders einfachen Weg zu Aussagen bei
variablem Z. (In [1] wurde auch dieses Vorgehen in Anpassung an allgemeinere
Ovale formuliert, ohne die hier folgende Nutzung speziell für Kreise K und
Dreiecke D.)
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Wir nennen einen gemeinsamen inneren Punkt Z eines Kreises K und eines
Dreiecks D ein «Halbierungszentrum» von K bezughch D, wenn [wie in (2) für
K(s*) als K\ die Strahlen aus Z zu allen ausserhalb D gelegenen Randpunkten von
K gerade den Flächeninhalt (l/2)\K\ überstreichen. Auch Randpunkte Z von
KnD könnte man zunächst mit zulassen; da sie aber ohnehin aus der Diskussion
ausscheiden (siehe unten die Bemerkung zum 3. Fall), sehen wir sogleich von ihnen
ab.

Satz 2. Die Menge aller Halbierungszentren von K bezüglich D ist der Durchschnitt
des Inneren J von Kn D mit einer nicht nulldimensionalen linearen Mannigfaltigkeit,
d. h. entweder leer oder eine J durchquerende Strecke oder ganz J.

Beweis: Für jeden Punkt ZeJ setzt sich das Flächenstück, das von den Strahlen aus
Z zu allen ausserhalb D gelegenen Randpunkten von K überstrichen wird, zusammen

aus der Vereinigungsmenge von Kreissegmenten, die (bei variablem Z)
konstant sind, und Dreiecken mit je konstanter Gegenseite zu Z. Also ist der
Flächeninhalt dieses überstrichenen Flächenstückes eine hneare Funktion der
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Abb. 3
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kartesischen Koordinaten von Z. Diese nimmt den Wert (1/2) \K\ genau auf einer
Punktmenge der behaupteten Art an.
Somit gelangen wir zu einer Bedingung, die zunächst formuliert sei:

Bedingung (H) wird genau dann (bezughch eines Dreiecks D) von einem Kreis K
erfüllt, wenn die folgenden beiden Aussagen gelten:
(Hi) Das Dreieck D halbiert den Umfang von K, d.h., der Mittelpunkt Z von K ist
(wenn er auch innerer Punkt von D ist) ein Halbierungszentrum von K bezughch D.
(H2) Variiert der gemeinsame innere Punkt Z von D und K, ausgehend von der
Lage als Mittelpunkt von K, in mindestens zwei nichtkollinearen Richtungen, so
bleibt Z Halbierungszentrum (desselben Kreises K bezughch desselben Dreiecks D).

Nach Satz 1 und Satz 2 ist nun diese Bedingung (H) jedenfalls notwendig für die
Optimalität von K. Sie ist sogar, wovon wir im folgenden nicht einmal Gebrauch
machen, (notwendig und) hinreichend für die Optimahtät von K bei Variation über
eine dreiparametrige Schar. - Wir suchen nun für die verschiedenen Fälle einer
Verwirklichung von (Hx) auch (H2) zu erfüllen:

1. Fall. Die Peripherie eines Kreises K, der (Hx) erfüllt, werde durch D in sechs
Teilbögen zerlegt, die abwechselnd innerhalb und ausserhalb D hegen (Abb. 3; auch
Grenzfälle wie _R= T oder S=A — Tkann man zunächst, unabhängig von der Frage
der Optimahtät, mit zulassen).
Für die in Abb. 3 angegebenen Winkel cp,x> V besagt (HO dann
(180°-2^)+(180o~2/)+(180o-2^)=180°, d.h. <p + x + ii/= 180°. Variiert nun Z
parallel zu AB, so bleibt Z dabei genau dann Halbierungszentrum, wenn

hu + kv=const (3)

bleibt. Allgemein stellt aber (3), wenn h,k die Lote (eines variablen Punktes Z) auf
BC bzw. A C sind und wenn u, v gegebene Koeffizienten (nicht beide 0) sind, eine
Gerade dar, deren Richtung eineindeutig durch u: v gegeben ist. Für die Gerade AB
selbst gilt offenbar ha+kb const; also stellt (3) genau dann eine Parallele zu AB
dar, wenn die gegebenen Koeffizienten im Verhältnis u:v=a:b stehen.
Entsprechendes gilt für das Variieren von Z parallel zu den anderen Dreiecksseiten;
damit ist bewiesen:

Satz 3. Ein Kreis K, der (Hx) unter den Bedingungen des 1. Falles erfüllt, erfüllt genau
dann auch (H2), wennfür ihn

u:v:w—a:b:c (4)

(mit u, v, w aus Abb. 3) gilt.

Um zur Gewinnung eines Kreises mit diesen Eigenschaften zu gelangen, nehmen
wir zunächst an, ein solcher Kreis hege vor. Dann gibt es ein Hilfsdreieck LMN
mit <p,x>¥ a*s Innenwinkeln, in welchem sich die Abstände u,v,w des
Umkreismittelpunktes X von den Seiten wie u:v:w=*a:b:c verhalten: Abb.4 zeigt eine
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Abb. 4

Gewinnung von LMN durch Zusammensetzen gewisser Teildreiecke aus Abb. 3.

Auch umgekehrt ergibt sich, sobald die Innenwinkel cp,x, W eines Hilfsdreiecks
LMN mit dieser Eigenschaft vorhegen, im gegebenen Dreieck D ein - sogar
konstruktiver - Weg zu dem gesuchten Kreis K (falls K existiert): Man findet in Abb. 3

etwa zunächst ein zu ZSA T ähnliches Viereck aus der Forderung ZS= ZT und den
Innenwinkeln 180°-#,a, 180°-^ bei S, A bzw. T, daraus schrittweise eine zu ABCZ
ähnhche Figur und dann diese selbst. Erforderlich für die Ausführbarkeit einer
solchen Konstruktion sind die Bedingungen ^ + ^a,^ + ^/?,^ + ;^y; für
welches Dreieck D, wenn zu ihm LMN vorliegt, diese erfüllt sind (und ob sie auch
bereits hinreichend sind), werden wir weiter unten diskutieren.
Vorerst wollen wir allgemein zur Gewinnung eines Hilfsdreiecks LMN gelangen,
wenn u, v, w als gegebene Werte betrachtet werden. Dazu zeigen wir

Satz 4. Ist LMN ein spitzwinkliges Dreieck, in dem r der Umkreisradius und u, v, w
die Abstände des Umkreismittelpunktes von den Seiten sind, so gilt

r3 — (u2+ v2 + w2)r— 2uvw Q. (5)

Beweis: Der Feuerbachkreis von LMN geht durch die Seitenmitten L',M',N' sowie
durch die Höhenschnittpunkte E,E' von N'ML' bzw. M'L'N und hat E'N' als
Durchmesser. Also folgt aus EE' • L'N'=EU • E'N'+EN' - E'L' (Satz des

Ptolemäus)

V^-w2 • Vr2-v2=wr+ uv (6)

und daraus (5).
Bevor wir die übrigen Fälle der Lage von K betrachten und erst dann die Diskussion
auch des 1. Falles abschliessen, begnügen wir uns zunächst noch mit folgender
Feststellung: Gemäss (4) hat man, mit den als Seiten von D gegebenen a,b,c>0, die
Gleichung (5) in der Form

f(x):~x3-(a2+b2+c2)x~2abe~0 (7)
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zu behandeln, und diese Gleichung (7) besitzt genau eine positive Lösung x. Denn

/' (x) hat genau eine positive Nullstelle; es gilt/(0)<0, lim f(x)= + oo usw.
x-+ + 00

2. Fall. Die Peripherie eines Kreises K, der (H^ erfüllt, werde durch D in vier
Teilbögen zerlegt, die abwechselnd innerhalb und ausserhalb D liegen (Abb. 5).
Sind die Teilbögen, im Sinne eines Kreisumlaufs angeordnet, etwa RS, ST, TU, UR,
so ist (Hj) äquivalent mit RT± SU. Variiert weiterhin Z parallel zu RS, so bleibt Z
dabei genau dann Halbierungszentrum, wenn UT\\RS gilt; entsprechend bei
Variation parallel zu RU genau für ST\\RU. Also erfüllt ein Kreis, der (H^ unter
den Bedingungen des 2. Falles erfüllt, genau dann auch (H2), wenn RSTU ein
Quadrat ist. Dabei muss dann eine der Strecken RS, ST, TU, UR ganz in einer Seite

von D hegen, etwa RS in AB, und C im Innern von K. Hieraus folgt %.ACB> 135°.
Die Diskussion auch dieses Falles schhessen wir weiter unten ab.

Abb. 5

Als einzige Möglichkeit, (Ht) zu erfüllen (freilich nur mit dem Kreismittelpunkt Z
auf dem Rand von D), verbleibt noch der

3. Fall. Die Peripherie eines Kreises K, der (Hx) erfüllt, werde durch D in zwei
Teilbögen zerlegt.
Dann kann (H2) nicht erfüllt werden; um dies zu sehen, variiere man Z
nichtparallel zu der Sehne, die die beiden Teilbögen trennt, und wende Satz 2 an.
(Natürlich lässt sich ohnehin ein Kreis K, dessen Mittelpunkt Z nicht in / liegt,
sogleich als nicht optimal erkennen.)
Damit sind wir zur Möglichkeit einer abschliessenden Diskussion vermittels der
folgenden endgültigen Fallunterscheidung (A), (B) geführt worden. Als Ergebnis
wird sich herausstellen:

Existenz- und Eindeutigkeitssatz zur Aufgabe: Für jedes Dreieck D existiert genau
ein optimaler Kreis K.

(A) Das gegebene Dreieck D enthalte einen Innenwinkel grösser als 135 °, etwa

y ZACB>l35*. (8)

Als Hilfsaussage zum Beweis des Existenz- und Eindeutigkeitssatzes verwenden
wir hier noch den folgenden
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Satz 5. Es seien cp,x,y die Innenwinkel eines spitzwinkligen Dreiecks LMN, in dem
die Abstände u,v,w des Umkreismittelpunktes X von den Seiten die Bedingung (4)
erfüllen. Dabei seien a,b,c und a,ß,y die Seitenlängen bzw. Winkelgrössen in einem
Dreieck D, das (8) erfüllt. Dann gilt cp+x<y>

Beweis: Zunächst zeigen wir ^<45°: Wäre ^__=.45°, so ergäbe ein Vergleich
zwischen dem - nach (4) zu D ähnlichen - Dreieck mit den Seitenlängen u,v,w
und dem Dreieck L'XM' aus Abb.4 wegen *L'XM'= ISO0-y/z* 135°<y den
Widerspruch UM' <w_s w • tan yt MN'. Damit ist gezeigt:

— cosy> — v 2

2w2r-r3>0,

nach (5) also

2u2 v2 — 2uv(uv+ wr) + (w2—u2— v2)r2> 0

und daher nach (6)

uv y/fZ—u2 • Vr2—v2 u2+v2 — w2

-pT ^ > ^7—>
cos(<p+x)>cosy •

Aus Satz 5, Satz 3 und den Betrachtungen nach Satz 3 und Satz 4 folgt: Gilt (A),
so ist (H) nicht unter den Bedingungen des 1. Falles erfüllbar; denn die hierzu
erforderliche Gültigkeit von (4) fuhrt über (7) auf genau ein x, also eindeutige
cp,x>y> aus denen sich wegen cp+x<y nicht Abb.3 zurückgewinnen lässt. Da aber
nach dem Satz von Weierstrass ein optimaler Kreis. K existieren muss, geschieht
dies unter den Bedingungen des 2. Falles. Damit ergibt die folgende Konstruktion
den eindeutig bestimmten optimalen Kreis (Abb. 5):

Man beschreibt - in bekannter Weise sogar mit Zirkel und Lineal - dem Dreieck D
das Quadrat RSTU ein. Sein Umkreis ist der gesuchte Kreis K.

(B) Alle Innenwinkel von D seien a,ß,y^l35°.
Dann kann nach den Betrachtungen zum 2. Fall unter dessen Bedingungen die
Forderung (H) nicht erfüllt werden. Also wird das nach dem Satz von Weierstrass
auftretende niiiiimale F unter den Bedingungen des 1. Falles angenommen. Wieder
führt (4) über (7) auf eindeutige cp,x, W, und da nur sie in der als existent erkannten
Abb. 3 auftreten können, erfüllen sie auch zu deren Rückgewinnung hinreichende
Bedingungen. Das besagt, dass es genau den folgendermassen zu erhaltenden
optimalen Kreis gibt:

Man ermittelt die einzige positive Lösung x von (7), zu ihr mit u:V:w:r*°*a:b:c:x die
Winkel cp, x, yi in Abb. 4 und rekonstruiert mit deren Hilfe Abb. 3.
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abccoscp——, cosy —, cosu/ —xxx[x aus (7)], wie ohne weitere Zwischenrechnungen mitgeteilt sei, auf die Formeln

c 2c
_4r=— • sin/? • (sin^-f sin(^-a)) 77*== — • sina • sin/? • cos^,

2_

Nropt= 77 ' ru ' sina • sinß • siny

(ru: Umkreisradius von_4_BC; ropt: Radius des optimalen Kreises;
_V:=sina • sincp + sinß • sin/ + siny • sin^).

Damit ist die Existenz- und Eindeutigkeitsaussage sowohl im Fall (A) als auch im
Fall (B) bewiesen. Bemerkenswert ist hierbei:

Satz 6. Gilt (B), so ist der optimale Kreis im allgemeinen nicht mit Zirkel und Lineal
aus D konstruierbar.

Dies folgt z.B., indem man Dreiecke D mit ganzzahhgen a,b,c findet, für dief(x)
aus (7) über dem Körper der rationalen Zahlen irreduzibel wird. Für a=3, b — 4,
c=5 etwa ist dies der Fall; zugleich zeigt dieses Beispiel, dass K sogar zu recht-

X*

*f IW-i}

// i^"1' /TX\^5f'-11

/ I arccos(i(^-,|)_

l arcs,n[l(l?-l])-
<^ hin-2 1 \^

\ -|(3-1(5)

71

A N. Y
B

idLfsir- 11 «—
Abb. 6
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winkligen Dreiecken D im allgemeinen nicht mit Zirkel und Lineal konstruierbar
ist. Natürlich gibt es auch Dreiecke mit konstruierbarem K; z.B. lässt sich, wenn
einer der Winkel a,ß,y gleich 135° ist, die Konstruktion des Falles (A) auch noch
anwenden und führt auf denselben Kreis wie nach dem Verfahren aus (B). Ferner
wird/(x) beispielsweise für a b (gleichschenkhge D) reduzibel, nämlich teilbar
durch x + c. Wir erwähnen insbesondere als ein pointiertes Gegenstück zu Satz 6:

Satz 7. Ist ABC gleichschenklig und bei C rechtwinklig, so teilt der Mittelpunkt Z
des optimalen Kreises die Höhe CY im Verhältnis CZ:ZY= (l/2)(l + vT) des

«Goldenen Schnittes».

In der Tat rechnet man nach, dass für den Kreis mit diesem Mittelpunkt Z und dem
Radius CY • \A/T--2 die Bedingung (H) erfüllt ist (Abb. 6).

Ludwig Stammler, Halle (Saale), DDR
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Über eine spezielle Klasse von Dreiecken mit ganzzahligen Seiten

Von der Schule her kennt man das Dreieck mit den Seiten 4, 5, 6, in welchem
überraschenderweise ein Winkel genau doppelt so gross ist wie ein anderer. Die
Frage hegt nahe, ob vielleicht noch weitere solche Dreiecke mit ganzzahhgen,
teilerfremden Seiten a, b, c und der Winkelbeziehung ß 2a existieren. Im nachfolgenden

Abschnitt a werden unter alleiniger Verwendung des Sinussatzes alle
derartigen Dreiecke bestimmt.
Es erhebt sich die nächste Frage: Gibt es auch Dreiecke mit ganzzahligen,
teilerfremden a, b, c und /? 3a? Im Abschnitt b wird auch für diese Dreiecke die
entsprechende Parameterdarstellung hergeleitet.
Die gleiche Fragestellung für die Fälle /? 4a, 5a,..., ka wird im letzten Abschnitt
c weiterverfolgt; die Formeln (5) geben die allgemeine Lösung des aufgeworfenen
Problems.
Einen andern Weg zur Lösung der vorhegenden Aufgabe hat J.T. Groenman,
Groningen (NL) eingeschlagen; anstelle des Sinussatzes verwendet er weitgehend
elementargeometrische Überlegungen. Seine Lösung erscheint in «Nieuw Tijd-
schrift voor Wiskunde».

a) /?== 2 a. Der Sinussatz ergibt für die Seitenverhältnisse:

b sinla ^ c sin3a 0— as—; «2 cosa, — —; — 4cos^a — 1.
a sma a sma
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