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Verbinden wir (4.3) und (4.4) mit den Einsätzen (2.1) und (2.2), so resultiert die
Behauptung (1.10).
Im verbleibenden Fall V<.cokak lässt sich in analoger Weise auf (1.10) schhessen,
womit der Beweis für das Hauptergebnis erbracht ist.

Marcel Iseh, Oberwangen1)
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On a Statistical approach to Bertrand's problem

Dedicated to Prof. H. Hadwiger on the occasion of his 70th birthday

Probabihty theory is the branch of mathematics which constructs and analyzes
mathematicai modeis for random phenomena. In the early stages of the exammation

of such a phenomenon there are usually different mathematicai modeis con-
ceivable, each one of them representing a possible explanation of our empirical
observations. Statistical methods may then be applied to evaluate the appropriate-
ness of these modeis and to help decide which one of them should be adopted.
It is the purpose of this note to demonstrate on a particular example the use-
fulhess of Statistical methods for the treatment of geometrical stochastics, i.e. of
their apphcations to the analysis of randomly generated stets.
The example to be discussed is the following: Denote by E2 a Euchdean plane
with an origin Z and a system of Cartesian x—j-coordinates, by G(q, 0) [0^q<oo,
0^0<2n] the straight line in E2 whose distance from Z is q and whose angle,
formed by the perpendicular on G through Z and the x-axis, is 0, and by Cx and
C2 the two circle-lines in E2 with the same centre Z and radius 1 and 1/2,
respectively. Let (§) be a random vector whose components take values in the
above specified ranges according to a density function h. It is of interest to calculate

hP:~?r(G(Q,0)nC2^\G(Q,0)nCx^:h)

the probabihty that the random straight line G(Q,0) intersects C2 conditionnally
on it üitersecting Cx. The result is given by the formula

*^-[!f p(q,0)d0dqj • [j p(q,0)d0dqjl (*)

1) Bemerkung der Redaktion: Der Verfasser dieser Note, ein hochbegabter Schüler von Prof. Hadwiger,
ist am 12.5.78, etwas mehr als ein Jahr nach seiner Diplomierung, nach schwerer Krankheit gestorben.
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and depends on the choice of h. In the literature three stochastic modeis are
proposed which have some intuitive appeal and which amount to the following
choicesof h:

Model A: hA (q, 0) n~ xq,
ModelB: hB(q,0) n-2(l-q2)-1/2 [O<Zq<Ll,O<z0<2n],
ModelC: hc(q,0) (2n)-1.

It is well known and easy to derive from (*) that

>up==7> x*p=y> and *cp==y-

Failure to understand that these results are the Solutions of three different
problems produces the so-called 'paradoxon of Bertrand'. In particular adoption
of the model C is equivalent to making the assumption that the probabihty law
of G(Q,0) is induced by the integral geometrie kinematic density of straight lines
in E2. For further indications on the history of the problem see [2, 5] and on
integral geometry see [4,7].
Although the probabüistic aspects of calculating hP are nowdays well understood,
there remains the problem of deeiding which model actually to use in each concrete
Situation. In the following we present a comprehensive Solution of the problem
of pairwise comparison of the modeis A, B and C by optimal Statistical tests
extending earlier remarks made in [9].
Suppose a realization G(qx,0x),..., G(qn,0n) of a random sample of n straight lines
has been observed and that we choose one of the modeis as null hypothesis
and another as alternative hypothesis. The table (see p. 136, 137) characterizes
most powerful tests of size a [0<a < 1] (i.e. tests with a probabihty of committing
an error of the first kind smaller than a and with minimal probabihty of committing
an error of the second kind among all tests satisfying this restriction). The
hypotheses are listed in the columns (la) and (lb). According to the fundamental
theorem of Neyman and Pearson [6, 10] these tests depend on the random
sample only in terms of the likelihood-ratio statistics, which are given in column (2)
for the six different possible cases. Instead of using these statistics we may use
equivalent formulations of the decision rules, which are based on the random
quantities

tf«:—2>(ß,), Vn:=-±ln(l-Qf), Wn:=Un+~Vn.
i-1 *- i 2

In column (3) is speeified which one of these statistics is relevant in any particular
case and in column (4) the corresponding critical regions are characterized, i.e. it
is indicated under which condition the null hypothesis is rejeeted. In order to apply
the tests, knowledge of the critical values is required. In this context we note that
Un, Vn and Wn are sums of independently identically distributed random variables.
It thus follows that for n~+ oo these quantities are asymptotically normally distributed

provided that the corresponding mean-values and variances are finite [8]. More
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Statistical analysis of Bertrand's problem.

Hypotheses Likelihood-ratio Equivalent Critical
Model under Model under statistic statistic region
null alternative
hypothesis hypothesis

(la) (lb) (2) (3) (4)

A B ^""{^[l-ß?]1/2)}"1 wn wn>Wn(\-a)

A C Hfl»}"' Un Un>U„(\-a)

B A «"{ffan-cä"2)} w„ w„<W„(a)

B C (f)"{ft«'-flW.} Vn vB< V„(a)

C A Hfl»} u„ u„<U„(a)

C B ^{fl«-«*}"' Vn v->K„(l-a)

Generally Tn(a) (resp. Tn(l~-a)) denotes the left-hand (resp. right-hand) critical value of the statistic
Tn of size a under the corresponding null hypothesis. z(i) is defined by the relation

(27t)-1/27*exp -yt/2|<fo=/ [0<r<l].

or less involved calculations [for an example see the appendix of this paper] yield
the moments shown in the columns (5) and (6) df the table. The variance of Wn
is equal to n a\A, if model B is vahd. o\A is defined by the expression

^-^-^[lna^
•[^(v+l)-Vf(v+y)])

with

rfln(r(Q)

and F denoting the gamma function; its numerical value is 0.819. The optimal
procedure for sufficiently large n is thus easy to implement. It consists in com-
paring the standardized statistics with the critical value z(a) resp. z(l—a) of the
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Expected value
of (3) under
model (la)

Vanance
of (3) under
model (la)

Cntical region for large n

(5) (6)

•H)
(7)

-1/2

["VU")] \.wn-n]>z(\-a)

n
2

n

4
n-l/2[2un-n]>z(l-a)

2nln(2) n°BA lnc72BA]-^[wn-2nln(2)]<z(a)

2/2 ln (2)
TL2

n—
3 \n—\ [vB-2»ln(2)]<z(o)

n n n~x'2[un — n]<z{a)

2#i(l-ln(2)) »f 4- i) Lu--yJJ [v„-2/i + 2/iln(2)]>z(l-a)

normal distnbution with mean 0 and variance 1. Tables of such values are given in
most books on statistics.

Appendix

Determination of the expectation E[Wn] and Var[FT„] of Wn under validity of
the model B:

E[Wn] E[Un]+jE[Vn]

-2/.7T-1 f [ln(^r)] [l-^2]-1/2^^/!^"11 [InCl-^Jfl-^2]-1/2^

nln(2)-^(27r)-1[r(|)]2^(l)-^(i)]

2«ln(2).

For the transformations the formulae (6.3.2) and (6.3.3) of [1], p. 258, and the
formulae [4.241 (7)] and [4.253 (1)] of [3], p. 535,538, were used.
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Var[Wg=Var[£/.]+ jVat[Vn)+E[Un V„)-E[Un]E[Vn]

2 n n ~ • f [ln (?)]2 [ 1 - ?2]_ l/2 <ty- n [In (2)]2

+ n(2„)-1f[ln(l-^2)]2[l-?2]-1/2^-n[ln(2)]2

+ 2«(„)-1j[ln(9)][ln(l-?2)][l-92]-1/2^-2«[ln(2)]2

n„2[6]-1-2«[ln(2)]2

+ «(2„1/2)-1£(v-1r(v+y)[r(v+l)]-1[V.(v+l)-V/(v+y)])

m re2naBA'

For the transformations the formulae (6.3.2), (6.3.3), (6.4.2), (6.4.4) and (23.2.24) of
[1], p.258, 260, 807, and the formulae (4.256), [4.261(17)] and [4.261(21)] of [3],

p. 539,541, were used.
F. Streit, Gendve

REFERENCES

1 M. Abramowitz and I.A. Stegun: Handbook of Mathematicai Functions. Dover, New York 1970.

2 J. Bertrand: Calcul des probabilites, p. 4-5. Gauthier-Villars, Paris 1907.

3 LS. Gradshteyn and LW. Ryzhik: Table of Integrals, Series and Products. Academie Press,

New York 1965.

4 H. Hadwiger: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, chap. 6. Springer, Berlin
1957.

5 M.G. Kendall and P. A.P. Moran: Geometncal Probability, p. 9,10. Griffin, London 1963.

6 E.L. Lehmann: Testing Statistical Hypotheses, p. 63-68. Wiley, New York 1966.

7 L.A. Santalo: Integral Geometry and Geometrie Probabihty. Addison-Wesley, Reading 1976.

8 L. Schmetterer: Einführung in die mathematische Statistik, p. 127. Springer, Wien 1966.

9 F. Streit: On Methods and Problems of Geometncal Stochastics. Bull. ISI46 (2), 600-605 (1976).
10 B.L. van der Waerden: Mathematische Statistik, p. 251-258. Springer, Berlin 1965.

Kleine Mitteilungen

Eine Asymptotenkonstruktion der Hyperbel

Den allgemein bekannten affinen Eigenschaften der Hyperbel1) sei mit diesem
Beitrag noch eine weitere hinzugefügt, die zur raschen Konstruktion der Asymptoten

einer Hyperbel herangezogen werden kann. Diese Eigenschaft lautet:

1) Siehe Literaturangabe.
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