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Summen als nichtabbrechende (oder identisch verschwindende) Dualbrüche
interpretierbar sind: Zwei solche haben verschiedene Werte, sobald sie nicht an allen
Stellen übereinstimmen. Somit folgt 0(A)^0 (B).

Als eine bemerkenswerte Konsequenz des hiermit bewiesenen Satzes erwähnen wir:
0 ist wegen der Definitheit und Additivität monoton: d.h. aus AaB
(cbezeichne die strenge Inklusion) folgt jedenfalls 0 (A)<.0(B). Wegen der Injektivität
folgt nun weiter 0(A)<0(B); d.h. 0 ist streng monoton. Nach Vorgabe von 0
ist somit durch A < B<^>0 (A)< 0 (B) eine strenge lineare Ordnung< in 9t definiert,
welche die bereits vorhandene (nicht lineare) Ordnungsrelation c m 9t respektiert:
Aus AczB folgt A<B. Damit ist eine bekannte Existenzaussage (die Fortsetz-
barkeit jeder Ordnung zu einer linearen Ordnung) für den speziellen Fall der
Inklusion eigentlicher Polygone in einer sehr konkreten Weise, gleichsam mittels
«Punktbewertung» (hierzu [3,4]), nachgewiesen.

Im Hinblick auf die Überschrift dieser Note sei schliesslich bemerkt, dass unsere
Überlegungen gültig bleiben, wenn 9t die Menge aller eigentlichen Polyeder, für
beliebige Dimension k, bedeutet. Hierfür hat man sich nur klarzumachen, dass
auch in diesem Fall ein Isomorphismus tp von 9t auf einen Punktmengenverband
existiert, derart dass mit jedem nichtleeren Polyeder A aus 9t auch A? innere
Punkte besitzt.

Arnold Kirsch, Kassel
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Rektülzierbare vierdimensionale Simplices

Herrn Prof. H. Hadwiger zum 70. Geburtstag gewidmet

1. Übersicht

Zwei eigentliche Polyeder A, B heissen zerlegungsgleich, geschrieben A~ B, wenn
sie im Sinne der Elementargeometrie in Teilpolyeder Ax,...,An bzw. Bx,...,Bn
so zerlegt werden können, dass Ax mit Bt kongruent ist (für /= 1,..., n). Insbesondere
nennen wir mit Goldberg [5] jedes Polyeder A, das zu einem Würfel zerlegungsgleich
ist, rektifizierbar. Ein Interesse an der Aufsuchung rektifizierbarer Polyeder liegt
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im Umstand, dass ihr Volumen ohne Anwendung der eukhdischen Exhaustions-
methode herleitbar ist. Goldberg [3-5] hat alle rektifizierbaren Tetraedertypen
des euklidischen Raumes E3 tabelliert; es handelt sich um drei einparametrige
Scharen von Hill [8] sowie um weitere 27 Einzeltetraeder. Es ist bisher nicht abgeklärt,

ob die Liste vollständig ist.
In der vorliegenden Arbeit werden Methoden dargelegt, die zur Auffindung
rektifizierbarer vierdünensionaler Simplices führen. Als Resultat ergeben sich drei
zu den Hillschen analoge einparametrige Scharen, drei weitere unendliche Scharen,
bei denen alle Diederwinkel rationale Vielfache von n sind und einer davon als qn
mit 0<q< l/2, qeQ frei vorgebbar ist, sowie eine noch unvollständige Reihe von
mindestens 19 Einzelsimplices. Die Resultate sind im Abschnitt 7 zusammengefasst.

2. Grundlagen

Zur Auffindung rektifizierbarer vierdünensionaler Simplices dienen einerseits die
für alle Raumdimensionen gültigen Ergebnisse der von Hadwiger entwickelten
Zerlegungstheorie der Polyeder, die in [6] zusammengefasst sind.
Daraus entnehmen wir speziell das Ausgangsresultat (A):

a) Jedes Parallelotop ist rektifizierbar.
b) Ist das Polyeder B in die Teilpolyeder Bx und B2 zerlegbar und sind B und Bx

rektifizierbar, so ist auch B2 rektifizierbar.
c) Ist das Polyeder B in endlich viele Teilpolyeder zerlegbar, die alle mit dem Polyeder
C± -kongruent sind, und ist B rektifizierbar, so ist auch C rektifizierbar.

Wie in c) unterscheiden wir durchwegs die die Spiegelungen einschliessende
erweiterte Kongruenz von der (orientierungstreuen) Kongruenz durch die
Bezeichnung ±-Kongruenz.
Andererseits stützen wir uns auf die von Jessen [9] für Polyeder des E4 bewiesene
Umkehrung des Satzes von Hadwiger [6], S. 51. Durch sie gelingt es, die Zerlegungsgleichheit

von Polyedern rechnerisch vollständig zu erfassen, gleich wie im E3

aufgrund der von Sydler [11] bewiesenen Umkehrung des Satzes von Dehn [2].
Wir benötigen nur den folgenden Spezialfall des Satzes von Hadwiger und Jessen als

Ausgangsresultat (B):

Jedes Polyeder des E4 mit lauter rationalen Diederwinkeln ist rektifizierbar.
Dabei nennen wir einen Winkel a rational, wenn gilt a — qn mit q e Q.
Gleich wie Goldberg a. a. O. suchen wir auch im E4 durch Zerlegung von Parallelo-
topen und anderen als rektifizierbar erkannten Polyedern sowie durch direkte
Konstruktion gemäss (B) zu rektifizierbaren Simplices zu gelangen.

3. Hadwiger-Hillsche Hypertetraeder

In Verallgemeinerung einer von Hül [8] angegebenen Konstruktion im E3 hat
Hadwiger [7] eine unendüche Schar rektifizierbarer Simplices im Ek (für jedes keN)



J Berger Rektifizierbare vierdimensionale Simplices 109

aufgewiesen. Gegenüber der elementargeometrischen Methode Hills ist die
Konstruktion Hadwigers viel anschaulicher. Wir beschreiben letztere hier für unseren
Fall k=4; die entsprechenden Modifikationen für behebiges k sind offensichtlich.
Es bezeichne co eine reelle Zahl im offenen Intervall /=(—1/3, 1). Es gibt dann
Systeme (üx,ü2,a3,a4) von vier linear unabhängigen Einheitsvektoren des E4 derart,
dass das Skalarprodukt a, • üj co ist (für 1 ___/</=§4), so dass die Zwischenwinkel
0 arccos co je zweier dieser Vektoren alle gleich sind. Die Menge H0(co)

{Xf^.arz> lü-A^ • • • ___/l4=0} ist dann die konvexe Hülle (A0AXA2A3A4) der
Punkte A0=0, Ax Yjx a, (i 1,..., 4), wobei wir einfachheitshalber Punkte und ihre
Ortsvektoren identifizieren. H0(co) ist ein vierdimensionales Simplex, und wir
nennen jedes zu H0(co) ähnliche Simplex des E4 ein Hadwiger-Hillsches Hyper-
tetraeder vom Grundtyp H0. Aus [7] übernehmen wir den

Satz 1. Jedes Hadwiger-Hülsehe Hypertetraeder ist rektifizierbar.

Dies ergibt sich mit (A) daraus, dass das Parallelotop P^iYAK^i1 0_sA-_gl,
i=l, ...,4} in 4! Teilsimplices zerlegbar ist, von denen jedes mit H0(co)
+-kongruent ist.
Durch Zerlegung von H0(co) in kongruente Simplices, analog zum ursprünglichen
Verfahren Hills, erweitern wir Satz 1 auf zwei weitere Scharen {Hx(co)}coeJ und
{H2(co)}w€j von abgeleiteten Hadwiger-Hillschen Hypertetraedern. Wir gehen aus
von einem Simplex (A0AXA2A3A4) vom Grundtyp H0; M sei der Mittelpunkt
der Kante A0A4 und N der Mittelpunkt der Kante AXA3 (Abb. 1). Eine einfache
Rechnung zeigt, dass gilt:

\A0A2\ \A2A4\, \AXA4\ \A0A3\, \AXM\ \A3M\, \A0N\ \A4N\.

Abb. 1
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Die Teilsimplices (A0AXA2A3M) und (AXA2A3A4M) bzw. (A0AXA2A4N) und
(A0A2A3A4N) sind also kongruent und damit rektifizierbar. Wir bezeichnen die
zugehörigen Simplices mit Hx (co) bzw. H2 (co) und nennen jedes zu Hx (co) bzw.
H2(co) ähnliche Simplex des E4 ein Hadwiger-Hillsches Hypertetraeder vom
Grundtyp Hx bzw. H2.
Die drei Scharen {Hx(co)} (/=0,1,2) sind verschieden, so ist z.B. die Maximalzahl
gleichlanger eindimensionaler Kanten im allgemeinen vier bei H0(co), drei bei
Hx (co) und zwei bei H2 (co).

4. Simplexbestimmung im E4

Die Indices / undy sollen im folgenden stets die Indexmenge {0,1,2, 3,4}
durchlaufen. Ein vierdimensionales Simplex ScE4 lässt sich durch seine Eckpunkte
xx (xlX,..., xl4) oder auch durch die orientierten Trägerebenen E} seiner dreidimensionalen

Seitenflächen F} charakterisieren; dabei sei Ej durch den von E3 aus nach
dem Simplexinnern weisenden Einheitsnormalenvektor nj=(njX, ...,nj4) und den
signierten Abstand d} zum Ursprung festgelegt, also

EJ={xeE4\x-nJ + dj=Q}

und

S ={xe£4|x-n,+4=__0}.

Die fünf Eckpunkte xx sind frei vorgebbar bis auf die Nebenbedingung (C), dass

keine vier in einer Hyperebene hegen. Die fünf Trägerebenen E} sind durch ny und
dj frei vorgebbar bis auf die Nebenbedingungen (D), dass | ny| 1, dass je vier der
n. linear unabhängig sind und dass positive reelle Zahlen k} so existieren, dass

Zo^n^O und XoM>0 (vgl. z.B. [1], S.184f.). Die Inzidenz zwischen
Eckpunkten und Seitenflächen wird durch das Gleichungssystem

x,.nf + 4=0 (fÜrHy) (1)

wiedergegeben, und bei vorgegebenen x} gemäss (C) lassen sich aus (1) eindeutig
ii, und d, gemäss (D) bestimmen und umgekehrt. Bezeichnet ht=xt • nx+dx die
Simplexhöhe von x, auf die gegenüberhegende Trägerebene Ex der Seitenfläche Ft,
so können wir die Informationen über Ecken und Seitenflächen in den beiden
Matrizen

J*>

1 1

*oi

Xfj4

1 1 1

X4X

Xu

N**

d0 «oj «04

d4 n4X... n44

zusammenfassen, bei denen die Spaltenvektoren von X (bis auf die Eins) die Eck-
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punkte von S und die Zeilenvektoren von _V die Seitenflächen von S bestimmen.
"Nun ist das Gleichungssystem (1) und die Zusatzinformation über die Höhen hx

ausdrückbar durch die Matrizengleichung

NX={h0,...,h4]E, (2)

in welcher E die Einheitsmatrix und der Vorfaktor eine Diagonalmatrix mit den
angegebenen Diagonalelementen bezeichnen. Nach dem zuvor Gesagten
bestimmen sich N und X gegenseitig mittels (2) ohne Kenntnis der ht. Rechnerisch
besonders einfache Verhältnisse gewinnt man, wenn man S nur bis auf Kongruenz
festlegen will, weil dann X und N unterhalb der Hauptdiagonalen lauter Nullen
haben dürfen. Dies entspricht der speziellen Lage von S, bei der x0 im Ursprung
hegt und bei der für m= 1,..., 4 die Ecke xm in dem von den m ersten Koordinatenachsen

aufgespannten Unterraum von E4 hegt. Aus den in der JV-Matrix
enthaltenen Normalenvektoren n, lassen sich die für unsere Untersuchung wichtigen
Diederwinkel aXJ zwischen den Seitenflächen Fx und Fj berechnen gemäss

aXJ — n — arccosn; • ny. (3)

5. Rationale Simplexscharen

Durch direkte Konstruktion passender JV-Matrizen gemäss 4 gelingt es, drei
unendliche Scharen {Qt(q)} 0 0,1,2) von Simplices mit lauter rationalen Dieder-
winkeln zu finden und damit das Ausgangsresultat (B) auszunutzen.

Satz 2. Fürjedes rationale q aus dem Intervall 0<q<l/2 sind diefolgenden Simplices
öo (<l)> öi (l) und Q2 (q) rektifizierbar:

N(Q0(q))~

N(Qi(q))~

N(Q2(q))~

d0
0

-y
zu-

0

- V

0 -y
0 0

0 0 V -zu 0

0
0

0
0

0
0

y -y
0 1

do

0
-y

zu •

0

- V
-y 0

0 0

0 0 V -zu 0
0
0

0
0

0
0

y -y
0 1

do
0

-y
zu ¦

0

- V

-1/2 -1/2
0 0

0 0 V -u -u
0 0 0 1 0
0 0 0 0 t
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Dabei verwenden wir die Abkürzungen u=cos (l/2) (l — q)n,v (cjosqn)x'2,y= 2~x'2,

2=2]/2, so dass also stets \nx\ =*1 gilt. Die Diederwinkel aXJ gemäss (3) sind alle
rational, und aX2 hat bei allen drei Scharen den frei vorgebbaren Wert qn mit
0<q<l/2 und qeQ. Die drei Simplexscharen sind (abgesehen von speziellen
Parameterwerten) unter sich und von den Hadwiger-Hillschen Scharen verschieden.
So weist etwa Qo(q) zwei Diederwinkel n/4 auf, Qx(q) besitzt eine Seitenfläche,
die mit den übrigen Seitenflächen drei Rechte und einen Diederwinkel n/4 ein-
schliesst, und Q2(q) hat insgesamt nur drei rechte Diederwinkel. Diese
Eigenschaften kommen den Simplices der anderen Scharen nicht allgemein zu. Zwischen
den drei Scharen {Qt(q)} 0 0,1,2) bestehen die folgenden geometrischen
Verwandtschaften: ßo(#) wird durch die Halbierungsebene des Diederwinkels a03 in
zwei zu Qx (q) kongruente Simplices zerlegt, und Q2(q) wird durch die Halbierungsebene

des Diederwinkels 034 in zwei spiegelbildlich liegende zu Qx(q)
±-kongruente Simplices zerlegt. Schliesslich sind die speziellen Simplices Hx(0) und
ßoO/3) ähnlich.

6. Zerlegung regulärer Polytope

Mürner [10] hat gezeigt, dass die folgenden regulären vierdimensionalen
Polytope rektifizierbar sind: der Hyperwürfel Z8, das Hyperoktaeder Z16, das

Vierundzwanzigzell Z24 und das Hyperdodekaeder ZX20. Wir zerlegen nun diese

Polytope in ±-kongruente Teilsimplices wie folgt: P0 sei ein beliebiger Eckpunkt
des Polytopes, _P/(0</_ü4) sei der Mittelpunkt einer /-dimensionalen Kante des

Polytopes, welche P0, ...,P^X enthalte, insbesondere P4 der Mittelpunkt des
Polytopes. Die konvexe Hülle der Punkte _P0, ...,_P4 nennen wir ein charakteristisches
Süliplex des regulären Polytopes. Offenbar setzt sich das rektifizierbare reguläre
Polytop aus zum charakteristischen Simplex ±-kongruenten Teilsimplices zusammen,

die wegen (A) rektifizierbar sind. Jedes der angegebenen regulären Polytope P
lässt sich auch auf andere Weise in lauter ±- kongruente Teilsimplices S zerlegen.

Wie man durch Veranschaulichung im E3 leicht sieht, ist jede dreidimensionale
Seitenfläche F von P auf vielfache Weise in lauter ±-kongruente, gegenüber dem

Mittelpunkt _P3 von F symmetrisch angeordnete Tetraeder T zerlegbar. Die
vierdimensionale Pyramide mit Basis T und Spitze P4 ist dann ein solches rektifizierbares

Simplex S. Z.B. sind die dreidimensionalen Seitenflächen des regulären
16-Zells reguläre Tetraeder, von denen jedes symmetrisch in 1, 2, 4, 6, 8, 12 oder 24

±-kongruente Tetraeder zerlegt werden kann. Die letztgenannte Möglichkeit
liefert das erwähnte charakteristische Simplex des 16-Zells (in der Tabelle: S7), und
die übrigen Möglichkeiten lassen sich auch als Vereinigung solcher charakteristischer

Simplices gewinnen.

Die so entstandenen rektifizierbaren Simplices sind nicht alle verschieden, z. B. sind
die charakteristischen Simplices des 16-Zells und des 24-Zells ähnlich, und das
charakteristische Simplex des 8-Zells ist ein H0(0); ferner ist das durch die oben
beschriebene Achter-Zerlegung des 16-Zells entstehende Simplex ein H2(0).
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7. Weitere Zerlegungen

Die von Goldberg [5] beschriebene Methode lässt sich leicht auf den
vierdimensionalen Fall übertragen: wir legen durch eine zweidimensionale Kante
eines rektifizierbaren vierdimensionalen Simplex S die Winkelhalbierungsebene des
Diederwinkels. Hat eines der beiden Teilsimplices lauter rationale Diederwinkel
oder ist es zu einem bereits als rektifizierbar erkannten Simplex ähnlich, dann sind
beide Teilsimplices rektifizierbar. Diese Zerlegung lässt sich fiir jede zweidimensionale

Kante von S durchführen und bei positivem Ergebnis an den Teilsimplices
iterieren. Verf. hat die umfangreichen Berechnungen der X- und _V-Matrizen mit
Hilfe des Computers durchgeführt und vorläufig eine 19 rektifizierbare Simplices
umfassende Reihe von verschiedenen Einzelsimphces gefunden.

8. Resultate

Die Tabelle auf S. 113-114 gibt eine Übersicht über die bisher gefundenen rektifizierbaren

vierdimensionalen Simplices. Statt der Diederwinkel aXJ gemäss (3) werden
ihre Cosinuswerte tabelliert. Die Einzelsimphces Sx bis S6 sind Teilsimplices des

8-Zells, die Simplices SV bis Sx2 sind Teilsimplices des 16-Zells, und die Simplices
SX3 bis SX9 stellen den Anfang der durch Zerlegung des 120-Zells erzeugten Reihe
dar. Die Tabelle gestattet die Konstruktion der zugehörigen JV-Matrizen mit lauter
Nullen unterhalb der Hauptdiagonale.
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