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Summen als nichtabbrechende (oder identisch verschwindende) Dualbriiche inter-
pretierbar sind: Zwei solche haben verschiedene Werte, sobald sie nicht an allen
Stellen iibereinstimmen. Somit folgt @ (A4) # @ (B).

Als eine bemerkenswerte Konsequenz des hiermit bewiesenen Satzes erwdhnen wir:
& ist wegen der Definitheit und Additivitit monoton: d.h. aus A= B (cbe-
zeichne die strenge Inklusion) folgt jedenfalls @ (4) < @ (B). Wegen der Injektivitit
folgt nun weiter @ (4)<® (B); d.h. @ ist streng monoton. Nach Vorgabe von &
ist somit durch 4 < B<>® (4) < @ (B) eine strenge lineare Ordnung< in R definiert,
welche die bereits vorhandene (nicht lineare) Ordnungsrelation < in R respektiert:
Aus A< B folgt A< B. Damit ist eine bekannte Existenzaussage (die Fortsetz-
barkeit jeder Ordnung zu einer linearen Ordnung) fir den speziellen Fall der
Inklusion eigentlicher Polygone in einer sehr konkreten Weise, gleichsam mittels
«Punktbewertung» (hierzu [3, 4]), nachgewiesen.

Im Hinblick auf die Uberschrift dieser Note sei schliesslich bemerkt, dass unsere
Uberlegungen giiltig bleiben, wenn R die Menge aller eigentlichen Polyeder, fir
beliebige Dimension k, bedeutet. Hierfiir hat man sich nur klarzumachen, dass
auch in diesem Fall ein Isomorphismus ¢ von R auf einen Punktmengenverband
existiert, derart dass mit jedem nichtleeren Polyeder 4 aus R auch A? innere
Punkte besitzt.

Arnold Kirsch, Kassel
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Rektifizierbare vierdimensionale Simplices

Herrn Prof. H. Hadwiger zum 70. Geburtstag gewidmet

1. Ubersicht

Zwei eigentliche Polyeder A, B heissen zerlegungsgleich, geschrieben A ~ B, wenn
siec im Sinne der FElementargeometrie in Teilpolyeder 4,,...,4, bzw. By, ..., B,
so zerlegt werden konnen, dass A; mit'B; kongruent ist (fiir i= 1, ..., n). Insbesondere
nennen wir mit Goldberg [5] jedes Polyeder A, das zu einem Wiirfel zerlegungsgleich
ist, rektifizierbar. Ein Interesse an der Aufsuchung rektifizierbarer Polyeder liegt
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im Umstand, dass ihr Volumen ohne Anwendung der euklidischen Exhaustions-
methode herleitbar ist. Goldberg [3-5] hat alle rektifizierbaren Tetraedertypen
des euklidischen Raumes E> tabelliert; es handelt sich um drei einparametrige
Scharen von Hill [8] sowie um weitere 27 Einzeltetraeder. Es ist bisher nicht abge-
klart, ob die Liste vollstindig ist.

In der vorliegenden Arbeit werden Methoden dargelegt, die zur Auffindung
rektifizierbarer vierdimensionaler Simplices fithren. Als Resultat ergeben sich drei
zu den Hillschen analoge einparametrige Scharen, drei weitere unendliche Scharen,
bei denen alle Diederwinkel rationale Vielfache von n sind und einer davon als gn
mit 0<g<1/2, geQ frei vorgebbar ist, sowie eine noch unvollstindige Reihe von
mindestens 19 Einzelsimplices. Die Resultate sind im Abschnitt 7 zusammengefasst.

2. Grundlagen

Zur Auffindung rektifizierbarer vierdimensionaler Simplices dienen einerseits die
fiir alle Raumdimensionen giiltigen Ergebnisse der von Hadwiger entwickelten
Zerlegungstheorie der Polyeder, die in [6] zusammengefasst sind.

Daraus entnehmen wir speziell das Ausgangsresultat (A):

a) Jedes Parallelotop ist rektifizierbar.

b) Ist das Polyeder B in die Teilpolyeder B, und B, zerlegbar und sind B und B,
rektifizierbar, so ist auch B, rektifizierbar.

¢) Ist das Polyeder B in endlich viele Teilpolyeder zerlegbar, die alle mit dem Polyeder
C=-kongruent sind, und ist B rektifizierbar, so ist auch C rektifizierbar.

Wie in c) unterscheiden wir durchwegs die die Spiegelungen einschliessende
erweiterte Kongruenz von der (orientierungstreuen) Kongruenz durch die Be-
zeichnung +-Kongruenz.

Andererseits stiitzen wir uns auf die von Jessen [9] fiir Polyeder des E* bewiesene
Umkehrung des Satzes von Hadwiger [6], S.51. Durch sie gelingt es, die Zerlegungs-
gleichheit von Polyedern rechnerisch vollstindig zu erfassen, gleich wie im E3
aufgrund der von Sydler [11] bewiesenen Umkehrung des Satzes von Dehn [2].
Wir benétigen nur den folgenden Spezialfall des Satzes von Hadwiger und Jessen als
Ausgangsresultat (B):

Jedes Polyeder des E* mit lauter rationalen Diederwinkeln ist rektifizierbar.
" Dabei nennen wir einen Winkel a rational, wenn gilt a =gz mit ge Q.

Gleich wie Goldberg a.a.O. suchen wir auch im E* durch Zerlegung von Parallelo-
topen und anderen als rektifizierbar erkannten Polyedern sowie durch direkte
Konstruktion gemiss (B) zu rektifizierbaren Simplices zu gelangen.

3. Hadwiger-Hillsche Hypertetraeder

In Verallgemeinerung einer von Hill [8] angegebenen Konstruktion im E3 hat
Hadwiger [7] eine unendliche Schar rektifizierbarer Simplices im E* (fiir jedes k e N)
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aufgewiesen. Gegeniiber der elementargeometrischen Methode Hills ist die Kon-
struktion Hadwigers viel anschaulicher. Wir beschreiben letztere hier fiir unseren
Fall k=4; die entsprechenden Modifikationen fiir beliebiges k sind offensichtlich.
Es bezeichne w eine reelle Zahl im offenen Intervall J=(—1/3, 1). Es gibt dann
Systeme (a;,a,,a3,a,4) von vier linear unabhingigen Einheitsvektoren des E* derart,
dass das Skalarprodukt a,- a;=w ist (fiir 1=i<j=4), so dass die Zwischenwinkel
f=arccosw je zweier dieser Vektoren alle gleich sind. Die Menge Hy(w)
={D4a; l=zA= .-+ = A4=0} ist dann die konvexe Hiille (494,A4,A43A4,4) der
Punkte 43=0, 4;,= Z’l a; (i=1, ..., 4), wobei wir einfachheitshalber Punkte und ihre
Ortsvektoren identifizieren. H,(w) ist ein vierdimensionales Simplex, und wir
nennen jedes zu Hy(w) dhnliche Simplex des E* ein Hadwiger-Hillsches Hyper-
tetraeder vom Grundtyp H,. Aus [7] ibernehmen wir den

Satz 1. Jedes Hadwiger-Hillsche Hypertetraeder ist rektifizierbar.

Dies ergibt sich mit (A) daraus, dass das Parallelotop P={>%4a;; O=i,=1,
i=1,...,4} in 4! Teilsimplices zerlegbar ist, von denen jedes mit H,(w)
+-kongruent ist.

Durch Zerlegung von H,(w) in kongruente Simplices, analog zum urspriinglichen
Verfahren Hills, erweitern wir Satz 1 auf zwei weitere Scharen {H;(w)},., und
{H,(w)},es von abgeleiteten Hadwiger-Hillschen Hypertetraedern. Wir gehen aus
von einem Simplex (49A,4,A43A44) vom Grundtyp Hy; M sei der Mittelpunkt
der Kante 4yA4, und N der Mittelpunkt der Kante 4, 4; (Abb.1). Eine einfache
Rechnung zeigt, dass gilt:

|A0A2|=|A2A4|, |A1A4l=|AoA3|, |A1M|=lA3M|, |A0N|=|A4NL

A
4

Abb. 1
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Die Teilsimplices (AOA1A2A3M) und (A1A2A3A4M) bzw. (A0A1A2A4N) und
(AgA,A3 A4 N) sind also kongruent und damit rektifizierbar. Wir bezeichnen die
zugehorigen Simplices mit H,(w) bzw. H, (w) und nennen jedes zu H, (w) bzw.
H,(w) #hnliche Simplex des E* ein Hadwiger-Hillsches Hypertetraeder vom
Grundtyp H, bzw. H,.

Die drei Scharen {H;(w)} (i=0, 1, 2) sind verschieden, so ist z. B. die Maximalzahl
gleichlanger eindimensionaler Kanten im allgemeinen vier bei Hy(w), drei bei
H, (w) und zwei bei H, (w).

4. Simplexbestimmung im E*

Die Indices i und j sollen im folgenden stets die Indexmenge {0, 1, 2, 3, 4} durch-
laufen. Ein vierdimensionales Simplex S< E* lisst sich durch seine Eckpunkte

=(x;1, ..., X;4) oder auch durch die orientierten Tragerebenen E seiner dreidimen-
smnalen Seltenﬂachen F; charakterisieren; dabei sei E durch den von E aus nach
dem Simplexinnern welsenden Emheltsnormalenvektor n,=(n, ... 14) und den
signierten Abstand 4; zum Ursprung festgelegt, also

Ej——- {xEE4IX > nj+dj=0}
und
. S ={xeEYx-n+d;=0}.

Die fiinf Eckpunkte x; sind frei vorgebbar bis auf die Nebenbedingung (C), dass
keine vier in einer Hyperebene liegen. Die finf Trigerebenen E ; sind durch n; und
d; frei vorgebbar bis auf die Nebenbedingungen (D), dass |n;| =1, dass je vier der

n; linear unabhingig sind und dass positive reelle Zahlen ,l so existieren, dass
2 Am=0 und X31;d>0 (vgl zB. [1], S.184f). Die Inmdenz zwischen Eck-
punkten und Seltenﬂachen wird durch das Gleichungssystem

Xj‘ ll,-+d,-=0 (fﬁri*]) (1)

wiedergegeben, und bei vorgegebenen x; gemiss (C) lassen sich aus (1) eindeutig
n; und d; gemiss (D) bestimmen und umgekehrt. Bezeichnet h;=x;- n;+d; die
‘Simplexhshe von x; auf die gegeniiberliegende Trigerebene E; der Seitenfliche F;,
so kénnen wir die Informationen iiber Ecken und Seitenflichen in den beiden
Matrizen

1 1 1 1 1 : do Rop ... Nog
Xo1 . X41

X= N=
X0o4 sos X44 d4 R4y ... B4y

zusammenfassen, bei denen die Spaltenvektoren von X (bis auf die Eins) die Eck-
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punkte von S und die Zeilenvektoren von N die Seitenflichen von S bestimmen.
“Nun ist das Gleichungssystem (1) und die Zusatzinformation iiber die Héhen A,
ausdriickbar durch die Matrizengleichung

NX={hy, ..., h] E, V)

in welcher E die Einheitsmatrix und der Vorfaktor eine Diagonalmatrix mit den
angegebenen Diagonalelementen bezeichnen. Nach dem zuvor Gesagten be-
stimmen sich N und X gegenseitig mittels (2) ohne Kenntnis der A;. Rechnerisch
besonders einfache Verhiltnisse gewinnt man, wenn man S nur bis auf Kongruenz
festlegen will, weil dann X und N unterhalb der Hauptdiagonalen lauter Nullen
haben diirfen. Dies entspricht der speziellen Lage von S, bei der x, im Ursprung
liegt und bei der fir m=1, ..., 4 die Ecke x,, in dem von den m ersten Koordinaten-
achsen aufgespannten Unterraum von E* liegt. Aus den in der N-Matrix
enthaltenen Normalenvektoren n; lassen sich die fiir unsere Untersuchung wichtigen
Diederwinkel a,; zwischen den Seitenflichen F; und F; berechnen gemiss

a;;=m—arccosm; - ;. 3)

5. Rationale Simplexscharen

Durch direkte Konstruktion passender N-Matrizen gemiss 4 gelingt es, drei un-
endliche Scharen {Q;(q)} (i=0, 1,2) von Simplices mit lauter rationalen Dieder-
winkeln zu finden und damit das Ausgangsresultat (B) auszunutzen.

Satz 2. Fiir jedes rationale q aus dem Intervall 0< q<1/2 sind die folgenden Simplices
00 (9), Q1 (q) und Q,(q) rektifizierbar:

-y 0 0 -y

0 zu-—v 0 O
N(Qo() = 0 0 v —zu O
0 0 0 y -y
o 0 o o 1
-y 0 -y 0
0 zu-—vy 0 O
N(Q:i() = 0 0 v —zu O
0 0 0 y -y
o 0 0 0 1
d-y 0 —1/2-—1/2
Zu —vy 0 0
N(Q:() = 0 v —u -—u

0
0
o 0 o 1 O
o 0 o o 1
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Dabei verwenden wir die Abkiirzungen u=cos(1/2) (1— g)x, v=(cosqn)'/2, y=2"1/2,
z=2172, 50 dass also stets |n;| =1 gilt. Die Diederwinkel a; gemiss (3) sind alle
rational, und a;, hat bei allen drei Scharen den frei vorgebbaren Wert gz mit
0<g<1/2 und geQ. Die drei Simplexscharen sind (abgesehen von speziellen
Parameterwerten) unter sich und von den Hadwiger-Hillschen Scharen verschieden.
So weist etwa Qg (g) zwei Diederwinkel n/4 auf, Q,(g) besitzt eine Seitenfliche,
die mit den iibrigen Seitenflichen drei Rechte und einen Diederwinkel 7 /4 ein-
schliesst, und Q,(g) hat insgesamt nur drei rechte Diederwinkel. Diese Eigen-
schaften kommen den Simplices der anderen Scharen nicht allgemein zu. Zwischen
den drei Scharen {Q;(q)} (i=0,1,2) bestehen die folgenden geometrischen Ver-
wandtschaften: Qy(q) wird durch die Halbierungsebene des Diederwinkels ag; in
zwei zu Q) (¢g) kongruente Simplices zerlegt, und Q,(g) wird durch die Halbierungs-
ebene des Diederwinkels a3, in zwei spiegelbildlich liegende zu Q;(q) =*-kon-
gruente Simplices zerlegt. Schliesslich sind die speziellen Simplices H;(0) und
Qo(1/3) dhnlich.

6. Zerlegung reguliirer Polytope

Miirner [10] hat gezeigt, dass die folgenden reguldren vierdimensionalen
Polytope rektifizierbar sind: der Hyperwiirfel Zg, das Hyperoktaeder Zs das
Vierundzwanzigzell Z,, und das Hyperdodekaeder Z,,,. Wir zerlegen nun diese
Polytope in *-kongruente Teilsimplices wie folgt: P, sei ein beliebiger Eckpunkt
des Polytopes, P;(0<i=4) sei der Mittelpunkt einer i-dimensionalen Kante des
Polytopes, welche Py, ..., P;,_; enthalte, insbesondere P, der Mittelpunkt des Poly-
topes. Die konvexe Hiille der Punkte Py, ..., P4, nennen wir ein charakteristisches
Simplex des reguliren Polytopes. Offenbar setzt sich das rektifizierbare regulire
Polytop aus zum charakteristischen Simplex +-kongruenten Teilsimplices zusam-
men, die wegen (A) rektifizierbar sind. Jedes der angegebenen reguliren Polytope P
lasst sich auch auf andere Weise in lauter t+-kongruente Teilsimplices S zerlegen.

Wie man durch Veranschaulichung im E? leicht sieht, ist jede dreidimensionale
Seitenfliche F von P auf vielfache Weise in lauter *-kongruente, gegeniiber dem
Mittelpunkt P; von F symmetrisch angeordnete Tetraeder T zerlegbar. Die vier-
dimensionale Pyramide mit Basis 7 und Spitze P, ist dann ein solches rektifizier-
" bares Simplex S. Z.B. sind die dreidimensionalen Seitenflichen des reguliren
16-Zells reguldre Tetraeder, von denen jedes symmetrisch in 1, 2, 4, 6, 8, 12 oder 24
t-kongruente Tetraeder zerlegt werden kann. Die letztgenannte Moglichkeit
liefert das erwidhnte charakteristische Simplex des 16-Zells (in der Tabelle: §5), und
die iibrigen Moglichkeiten lassen sich auch als Vereinigung solcher charakteristi-
scher Simplices gewinnen.

Die so entstandenen rektifizierbaren Simplices sind nicht alle verschieden, z. B. sind
die charakteristischen Simplices des 16-Zells und-des 24-Zells dhnlich, und das
charakteristische Simplex des 8-Zells ist ein H,(0); ferner ist das durch die oben
beschriebene Achter-Zerlegung des 16-Zells entstehende Simplex ein H, (0).
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z Z Z_| Z Z < E
Z z T_[ T_ | & 2 | T _ | = < z_ S
Zk Ik ! | R4} Lk ! 2k /3 !
< K4 ¢ z _ 2 4 7
AN 0 _ T 0 0 0 , T g4 s
Z 0 4 Z Z 0 4 z _ 2 4 S
Zk T l 2K T AN K T
Z z Z_ | =z z Z _ z 4
g4} 0 , , ) 0 g4} _ 0 Zk S

z z z z z _ Z 1
% 0 < 0 0 + £ ¥ 7i 0 S
4 z 4 4 4 A
0 |g({b-1)s0d|f(b-1)s0d 0 0 1Lbso> T T (b+t)s0d %Gucmonv (b)o
4 4 4 4 4 |
Zi 0 H@ucms 0 0 wbsod 0 T HrA?cmoU .HAU..cmOU (b ®
z Z z Z 0
H 0 |$b-nsod| o 0 wsod < - 0 | Zb-pso| (b)O

(nZ+1)Z K mZ+i|2 Z mZ+ 1| mZ«ll z

mE + | 0 [ | melt| =X 0 — 0 0 | meaully|  (™H

(mz+1)2 4 4 (mZ+Z) | mel]z mel]z |

mE + 1 0 T g 0 T rg.; mesili| O |meqpy] (MH

(mzel z Z mZel (mZl) 0
i 0 T 0 0 T Mo 0 0 mE * (mH
Y500 | "% 500 | Y500 | o0 | ®esos | wsoo | "rs0s | *%es05 | *es05 | “%sod dky




J. Berger: Rektifizierbare vierdimensionale Simplices

114

7
o | wesi| o £ o |w.my|a-apr| ¥ Lo | aeanl %%
y |
0 | (| o o | a-sl| o |u-gr- £ A R B
7 z 4 ki
0 0 g7 0 0 < £ 0 |(-gh-| (1egn? S
i K 91
o | u-shi| o o |t o Lol o || qegnt s
o)L K4 z y 5L
(legr| o _ 0 0 T 0 0 (=gl | (1eg0i S
K4
0 (Legh| O 0 (1 rmtm 0 0 0 :xm.c.w m. 43
Y €l
0 | (esy| O o |[u-ggl o 0 0 L | £ s
z z z Z z
Z @ Z z z I
i 0 0 0 0 0 T 0 < < S
Z 2 z z z ol
k73 Zr T 0 0 0 T 0 0 T S
< x4 L _ < < _ 4 4 .. 6
/) Zk , Zk P T T v 0 0 S
z z z Z z
z 2 z
% 0 L 0 0 £ £ 0 0 0 L




J. Berger: Rektifizierbare vierdimensionale Simplices 115

7. Weitere Zerlegungen

Die von Goldberg [S] beschriebene Methode ldsst sich leicht auf den vier-
dimensionalen Fall tibertragen: wir legen durch eine zweidimensionale Kante
eines rektifizierbaren vierdimensionalen Simplex S die Winkelhalbierungsebene des
Diederwinkels. Hat eines der beiden Teilsimplices lauter rationale Diederwinkel
oder ist es zu einem bereits als rektifizierbar erkannten Simplex dhnlich, dann sind
beide Teilsimplices rektifizierbar. Diese Zerlegung lisst sich fiir jede zweidimensio-
nale Kante von S durchfithren und bei positivem Ergebnis an den Teilsimplices
iterieren. Verf. hat die umfangreichen Berechnungen der X- und N-Matrizen mit
Hilfe des Computers durchgefiihrt und vorldufig eine 19 rektifizierbare Simplices
umfassende Reihe von verschiedenen Einzelsimplices gefunden.

8. Resultate

Die Tabelle auf S. 113-114 gibt eine Ubersicht iiber die bisher gefundenen rektifizier-
baren vierdimensionalen Simplices. Statt der Diederwinkel a; gemiss (3) werden
ihre Cosinuswerte tabelliert. Die Einzelsimplices S; bis Sg sind Teilsimplices des
8-Zells, die Simplices S; bis §;, sind Teilsimplices des 16-Zells, und die Simplices
S13 bis S} stellen den Anfang der durch Zerlegung des 120-Zells erzeugten Reihe
dar. Die Tabelle gestattet die Konstruktion der zugehorigen N-Matrizen mit lauter
Nullen unterhalb der Hauptdiagonale.
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