Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 33 (1978)

Heft: 5

Artikel: Rektifizierbare vierdimensionale Simplices

Autor: Berger, Johann

DOI: https://doi.org/10.5169/seals-32944

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Summen als nichtabbrechende (oder identisch verschwindende) Dualbrüche interpretierbar sind: Zwei solche haben verschiedene Werte, sobald sie nicht an allen Stellen übereinstimmen. Somit folgt $\Phi(A) \neq \Phi(B)$.

Als eine bemerkenswerte Konsequenz des hiermit bewiesenen Satzes erwähnen wir: Φ ist wegen der Definitheit und Additivität monoton: d.h. aus $A \subset B$ (\subset bezeichne die strenge Inklusion) folgt jedenfalls $\Phi(A) \leq \Phi(B)$. Wegen der Injektivität folgt nun weiter $\Phi(A) < \Phi(B)$; d.h. Φ ist streng monoton. Nach Vorgabe von Φ ist somit durch $A < B \Leftrightarrow \Phi(A) < \Phi(B)$ eine strenge lineare Ordnung < in \Re definiert, welche die bereits vorhandene (nicht lineare) Ordnungsrelation \subset in \Re respektiert: Aus $A \subset B$ folgt A < B. Damit ist eine bekannte Existenzaussage (die Fortsetzbarkeit jeder Ordnung zu einer linearen Ordnung) für den speziellen Fall der Inklusion eigentlicher Polygone in einer sehr konkreten Weise, gleichsam mittels «Punktbewertung» (hierzu [3, 4]), nachgewiesen.

Im Hinblick auf die Überschrift dieser Note sei schliesslich bemerkt, dass unsere Überlegungen gültig bleiben, wenn \Re die Menge aller eigentlichen Polyeder, für beliebige Dimension k, bedeutet. Hierfür hat man sich nur klarzumachen, dass auch in diesem Fall ein Isomorphismus φ von \Re auf einen Punktmengenverband existiert, derart dass mit jedem nichtleeren Polyeder A aus \Re auch A^{φ} innere Punkte besitzt.

Arnold Kirsch, Kassel

LITERATURVERZEICHNIS

- 1 G. Aumann: Sind die elementargeometrischen Figuren Mengen? El. Math. 7, 25-28 (1952).
- 2 H. Hadwiger: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Berlin, Göttingen, Heidelberg 1957.
- 3 A. Kirsch: Lässt sich jede «gerechte» Rangordnung durch eine Punktbewertung erzeugen? Math.-Phys. Semesterber. 15, 94-101 (1968).
- 4 A. Kirsch: «Gerechte» lineare Ordnungen und Punktbewertungen. Der Mathematikunterricht 15/1, 64-84 (1969).

Rektifizierbare vierdimensionale Simplices

Herrn Prof. H. Hadwiger zum 70. Geburtstag gewidmet

1. Übersicht

Zwei eigentliche Polyeder A, B heissen zerlegungsgleich, geschrieben $A \sim B$, wenn sie im Sinne der Elementargeometrie in Teilpolyeder $A_1, ..., A_n$ bzw. $B_1, ..., B_n$ so zerlegt werden können, dass A_i mit B_i kongruent ist (für i = 1, ..., n). Insbesondere nennen wir mit Goldberg [5] jedes Polyeder A, das zu einem Würfel zerlegungsgleich ist, rektifizierbar. Ein Interesse an der Aufsuchung rektifizierbarer Polyeder liegt

im Umstand, dass ihr Volumen ohne Anwendung der euklidischen Exhaustionsmethode herleitbar ist. Goldberg [3-5] hat alle rektifizierbaren Tetraedertypen des euklidischen Raumes E^3 tabelliert; es handelt sich um drei einparametrige Scharen von Hill [8] sowie um weitere 27 Einzeltetraeder. Es ist bisher nicht abgeklärt, ob die Liste vollständig ist.

In der vorliegenden Arbeit werden Methoden dargelegt, die zur Auffindung rektifizierbarer vierdimensionaler Simplices führen. Als Resultat ergeben sich drei zu den Hillschen analoge einparametrige Scharen, drei weitere unendliche Scharen, bei denen alle Diederwinkel rationale Vielfache von π sind und einer davon als $q\pi$ mit 0 < q < 1/2, $q \in \mathbb{Q}$ frei vorgebbar ist, sowie eine noch unvollständige Reihe von mindestens 19 Einzelsimplices. Die Resultate sind im Abschnitt 7 zusammengefasst.

2. Grundlagen

Zur Auffindung rektifizierbarer vierdimensionaler Simplices dienen einerseits die für alle Raumdimensionen gültigen Ergebnisse der von Hadwiger entwickelten Zerlegungstheorie der Polyeder, die in [6] zusammengefasst sind.

Daraus entnehmen wir speziell das Ausgangsresultat (A):

- a) Jedes Parallelotop ist rektifizierbar.
- b) Ist das Polyeder B in die Teilpolyeder B_1 und B_2 zerlegbar und sind B und B_1 rektifizierbar, so ist auch B_2 rektifizierbar.
- c) Ist das Polyeder B in endlich viele Teilpolyeder zerlegbar, die alle mit dem Polyeder $C\pm$ -kongruent sind, und ist B rektifizierbar, so ist auch C rektifizierbar.

Wie in c) unterscheiden wir durchwegs die die Spiegelungen einschliessende erweiterte Kongruenz von der (orientierungstreuen) Kongruenz durch die Bezeichnung ±-Kongruenz.

Andererseits stützen wir uns auf die von Jessen [9] für Polyeder des E^4 bewiesene Umkehrung des Satzes von Hadwiger [6], S. 51. Durch sie gelingt es, die Zerlegungsgleichheit von Polyedern rechnerisch vollständig zu erfassen, gleich wie im E^3 aufgrund der von Sydler [11] bewiesenen Umkehrung des Satzes von Dehn [2]. Wir benötigen nur den folgenden Spezialfall des Satzes von Hadwiger und Jessen als Ausgangsresultat (B):

Jedes Polyeder des E^4 mit lauter rationalen Diederwinkeln ist rektifizierbar. Dabei nennen wir einen Winkel a rational, wenn gilt $a = q\pi$ mit $q \in \mathbf{Q}$.

Gleich wie Goldberg a. a. O. suchen wir auch im E^4 durch Zerlegung von Parallelotopen und anderen als rektifizierbar erkannten Polyedern sowie durch direkte Konstruktion gemäss (B) zu rektifizierbaren Simplices zu gelangen.

3. Hadwiger-Hillsche Hypertetraeder

In Verallgemeinerung einer von Hill [8] angegebenen Konstruktion im E^3 hat Hadwiger [7] eine unendliche Schar rektifizierbarer Simplices im E^k (für jedes $k \in \mathbb{N}$)

aufgewiesen. Gegenüber der elementargeometrischen Methode Hills ist die Konstruktion Hadwigers viel anschaulicher. Wir beschreiben letztere hier für unseren Fall k=4; die entsprechenden Modifikationen für beliebiges k sind offensichtlich. Es bezeichne ω eine reelle Zahl im offenen Intervall J=(-1/3, 1). Es gibt dann Systeme $(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4)$ von vier linear unabhängigen Einheitsvektoren des E^4 derart, dass das Skalarprodukt $\mathbf{a}_i \cdot \mathbf{a}_j = \omega$ ist (für $1 \le i < j \le 4$), so dass die Zwischenwinkel $\theta = \arccos \omega$ je zweier dieser Vektoren alle gleich sind. Die Menge $H_0(\omega) = \left\{\sum_{1}^4 \lambda_i \mathbf{a}_i; \ 1 \ge \lambda_1 \ge \cdots \ge \lambda_4 = 0\right\}$ ist dann die konvexe Hülle $(A_0 A_1 A_2 A_3 A_4)$ der Punkte $A_0 = 0, A_i = \sum_{1}^i \mathbf{a}_j \ (i = 1, ..., 4)$, wobei wir einfachheitshalber Punkte und ihre Ortsvektoren identifizieren. $H_0(\omega)$ ist ein vierdimensionales Simplex, und wir nennen jedes zu $H_0(\omega)$ ähnliche Simplex des E^4 ein Hadwiger-Hillsches Hypertetraeder vom Grundtyp H_0 . Aus [7] übernehmen wir den

Satz 1. Jedes Hadwiger-Hillsche Hypertetraeder ist rektifizierbar.

Dies ergibt sich mit (A) daraus, dass das Parallelotop $P = \{\sum_{i=1}^{4} \lambda_i \mathbf{a}_i; 0 \le \lambda_i \le 1, i = 1, ..., 4\}$ in 4! Teilsimplices zerlegbar ist, von denen jedes mit $H_0(\omega)$ \pm -kongruent ist.

Durch Zerlegung von $H_0(\omega)$ in kongruente Simplices, analog zum ursprünglichen Verfahren Hills, erweitern wir Satz 1 auf zwei weitere Scharen $\{H_1(\omega)\}_{\omega\in J}$ und $\{H_2(\omega)\}_{\omega\in J}$ von abgeleiteten Hadwiger-Hillschen Hypertetraedern. Wir gehen aus von einem Simplex $(A_0A_1A_2A_3A_4)$ vom Grundtyp H_0 ; M sei der Mittelpunkt der Kante A_0A_4 und N der Mittelpunkt der Kante A_1A_3 (Abb. 1). Eine einfache Rechnung zeigt, dass gilt:

$$|A_0A_2| = |A_2A_4|, |A_1A_4| = |A_0A_3|, |A_1M| = |A_3M|, |A_0N| = |A_4N|.$$

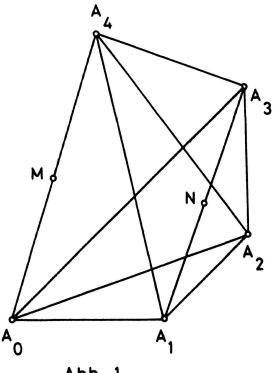


Abb. 1

Die Teilsimplices $(A_0A_1A_2A_3M)$ und $(A_1A_2A_3A_4M)$ bzw. $(A_0A_1A_2A_4N)$ und $(A_0A_2A_3A_4N)$ sind also kongruent und damit rektifizierbar. Wir bezeichnen die zugehörigen Simplices mit $H_1(\omega)$ bzw. $H_2(\omega)$ und nennen jedes zu $H_1(\omega)$ bzw. $H_2(\omega)$ ähnliche Simplex des E^4 ein Hadwiger-Hillsches Hypertetraeder vom Grundtyp H_1 bzw. H_2 .

Die drei Scharen $\{H_i(\omega)\}\ (i=0,1,2)$ sind verschieden, so ist z. B. die Maximalzahl gleichlanger eindimensionaler Kanten im allgemeinen vier bei $H_0(\omega)$, drei bei $H_1(\omega)$ und zwei bei $H_2(\omega)$.

4. Simplexbestimmung im E^4

Die Indices i und j sollen im folgenden stets die Indexmenge $\{0, 1, 2, 3, 4\}$ durchlaufen. Ein vierdimensionales Simplex $S \subset E^4$ lässt sich durch seine Eckpunkte $x_i = (x_{i1}, ..., x_{i4})$ oder auch durch die orientierten Trägerebenen \tilde{E}_j seiner dreidimensionalen Seitenflächen F_j charakterisieren; dabei sei \tilde{E}_j durch den von \tilde{E}_j aus nach dem Simplexinnern weisenden Einheitsnormalenvektor $\mathbf{n}_j = (n_{j1}, ..., n_{j4})$ und den signierten Abstand d_i zum Ursprung festgelegt, also

$$\tilde{E}_j = \{ \mathbf{x} \in E^4 \mid \mathbf{x} \cdot \mathbf{n}_j + d_j = 0 \}$$

und

and
$$S = \{x \in E^4 \mid \mathbf{x} \cdot \mathbf{n}_j + d_j \ge 0\}.$$

Die fünf Eckpunkte x_i sind frei vorgebbar bis auf die Nebenbedingung (C), dass keine vier in einer Hyperebene liegen. Die fünf Trägerebenen \tilde{E}_i sind durch \mathbf{n}_i und d_j frei vorgebbar bis auf die Nebenbedingungen (D), dass $|\mathbf{n}_j| = 1$, dass je vier der \mathbf{n}_{i} linear unabhängig sind und dass positive reelle Zahlen λ_{i} so existieren, dass $\sum_{j=0}^{4} \lambda_{j} \mathbf{n}_{j} = 0$ und $\sum_{j=0}^{4} \lambda_{j} d_{j} > 0$ (vgl. z. B. [1], S. 184f.). Die Inzidenz zwischen Eckpunkten und Seitenflächen wird durch das Gleichungssystem

$$\mathbf{x}_j \cdot \mathbf{n}_i + d_i = 0 \qquad \text{(für } i \neq j\text{)} \tag{1}$$

wiedergegeben, und bei vorgegebenen x_j gemäss (C) lassen sich aus (1) eindeutig n_i und d_i gemäss (D) bestimmen und umgekehrt. Bezeichnet $h_i = \mathbf{x}_i \cdot \mathbf{n}_i + d_i$ die Simplexhöhe von x_i auf die gegenüberliegende Trägerebene \tilde{E}_i der Seitenfläche F_i , so können wir die Informationen über Ecken und Seitenflächen in den beiden Matrizen

$$X = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ x_{01} & \dots & x_{41} \\ \vdots & \vdots & \vdots \\ x_{04} & \dots & x_{44} \end{bmatrix} \qquad N = \begin{bmatrix} d_0 & n_{01} \dots n_{04} \\ \vdots & \vdots & \vdots \\ d_4 & n_{41} \dots n_{44} \end{bmatrix}$$

zusammenfassen, bei denen die Spaltenvektoren von X (bis auf die Eins) die Eck-

punkte von S und die Zeilenvektoren von N die Seitenflächen von S bestimmen. Nun ist das Gleichungssystem (1) und die Zusatzinformation über die Höhen h_i ausdrückbar durch die Matrizengleichung

$$NX = \{h_0, ..., h_4\} E,$$
 (2)

in welcher E die Einheitsmatrix und der Vorfaktor eine Diagonalmatrix mit den angegebenen Diagonalelementen bezeichnen. Nach dem zuvor Gesagten bestimmen sich N und X gegenseitig mittels (2) ohne Kenntnis der h_i . Rechnerisch besonders einfache Verhältnisse gewinnt man, wenn man S nur bis auf Kongruenz festlegen will, weil dann X und N unterhalb der Hauptdiagonalen lauter Nullen haben dürfen. Dies entspricht der speziellen Lage von S, bei der x_0 im Ursprung liegt und bei der für $m=1,\ldots,4$ die Ecke x_m in dem von den m ersten Koordinatenachsen aufgespannten Unterraum von E^4 liegt. Aus den in der N-Matrix enthaltenen Normalenvektoren \mathbf{n}_i lassen sich die für unsere Untersuchung wichtigen Diederwinkel a_{ij} zwischen den Seitenflächen F_i und F_i berechnen gemäss

$$a_{ij} = \pi - \arccos \mathbf{n}_i \cdot \mathbf{n}_j. \tag{3}$$

5. Rationale Simplexscharen

Durch direkte Konstruktion passender N-Matrizen gemäss 4 gelingt es, drei unendliche Scharen $\{Q_i(q)\}\ (i=0,1,2)$ von Simplices mit lauter rationalen Diederwinkeln zu finden und damit das Ausgangsresultat (B) auszunutzen.

Satz 2. Für jedes rationale q aus dem Intervall 0 < q < 1/2 sind die folgenden Simplices $Q_0(q), Q_1(q)$ und $Q_2(q)$ rektifizierbar:

$$N(Q_0(q)) = \begin{bmatrix} d_0 - y & 0 & 0 - y \\ 0 & zu - v & 0 & 0 \\ 0 & 0 & v & -zu & 0 \\ 0 & 0 & 0 & y & -y \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$N(Q_1(q)) = \begin{vmatrix} d_0 - y & 0 & -y & 0 \\ 0 & zu - v & 0 & 0 \\ 0 & 0 & v & -zu & 0 \\ 0 & 0 & 0 & y & -y \\ 0 & 0 & 0 & 0 & 1 \end{vmatrix}$$

$$N(Q_2(q)) = \begin{vmatrix} d_0 - y & 0 & -1/2 - 1/2 \\ 0 & zu - y & 0 & 0 \\ 0 & 0 & y & -u & -u \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{vmatrix}$$

Dabei verwenden wir die Abkürzungen $u=\cos(1/2)$ $(1-q)\pi$, $v=(\cos q\pi)^{1/2}$, $y=2^{-1/2}$, $z=2^{1/2}$, so dass also stets $|\mathbf{n}_i|=1$ gilt. Die Diederwinkel a_{ij} gemäss (3) sind alle rational, und a_{12} hat bei allen drei Scharen den frei vorgebbaren Wert $q\pi$ mit 0 < q < 1/2 und $q \in \mathbf{Q}$. Die drei Simplexscharen sind (abgesehen von speziellen Parameterwerten) unter sich und von den Hadwiger-Hillschen Scharen verschieden. So weist etwa $Q_0(q)$ zwei Diederwinkel $\pi/4$ auf, $Q_1(q)$ besitzt eine Seitenfläche, die mit den übrigen Seitenflächen drei Rechte und einen Diederwinkel $\pi/4$ einschliesst, und $Q_2(q)$ hat insgesamt nur drei rechte Diederwinkel. Diese Eigenschaften kommen den Simplices der anderen Scharen nicht allgemein zu. Zwischen den drei Scharen $\{Q_i(q)\}$ (i=0,1,2) bestehen die folgenden geometrischen Verwandtschaften: $Q_0(q)$ wird durch die Halbierungsebene des Diederwinkels a_{03} in zwei zu $Q_1(q)$ kongruente Simplices zerlegt, und $Q_2(q)$ wird durch die Halbierungsebene des Diederwinkels a_{34} in zwei spiegelbildlich liegende zu $Q_1(q)$ ±-kongruente Simplices zerlegt. Schliesslich sind die speziellen Simplices $H_1(0)$ und $Q_0(1/3)$ ähnlich.

6. Zerlegung regulärer Polytope

Mürner [10] hat gezeigt, dass die folgenden regulären vierdimensionalen Polytope rektifizierbar sind: der Hyperwürfel Z_8 , das Hyperoktaeder Z_{16} , das Vierundzwanzigzell Z_{24} und das Hyperdodekaeder Z_{120} . Wir zerlegen nun diese Polytope in \pm -kongruente Teilsimplices wie folgt: P_0 sei ein beliebiger Eckpunkt des Polytopes, $P_i(0 < i \le 4)$ sei der Mittelpunkt einer i-dimensionalen Kante des Polytopes, welche $P_0, ..., P_{i-1}$ enthalte, insbesondere P_4 der Mittelpunkt des Polytopes. Die konvexe Hülle der Punkte $P_0, ..., P_4$ nennen wir ein charakteristisches Simplex des regulären Polytopes. Offenbar setzt sich das rektifizierbare reguläre Polytop aus zum charakteristischen Simplex \pm -kongruenten Teilsimplices zusammen, die wegen (A) rektifizierbar sind. Jedes der angegebenen regulären Polytope P lässt sich auch auf andere Weise in lauter \pm -kongruente Teilsimplices S zerlegen.

Wie man durch Veranschaulichung im E^3 leicht sieht, ist jede dreidimensionale Seitenfläche F von P auf vielfache Weise in lauter \pm -kongruente, gegenüber dem Mittelpunkt P_3 von F symmetrisch angeordnete Tetraeder T zerlegbar. Die vierdimensionale Pyramide mit Basis T und Spitze P_4 ist dann ein solches rektifizierbares Simplex S. Z.B. sind die dreidimensionalen Seitenflächen des regulären 16-Zells reguläre Tetraeder, von denen jedes symmetrisch in 1, 2, 4, 6, 8, 12 oder 24 \pm -kongruente Tetraeder zerlegt werden kann. Die letztgenannte Möglichkeit liefert das erwähnte charakteristische Simplex des 16-Zells (in der Tabelle: S_7), und die übrigen Möglichkeiten lassen sich auch als Vereinigung solcher charakteristischer Simplices gewinnen.

Die so entstandenen rektifizierbaren Simplices sind nicht alle verschieden, z. B. sind die charakteristischen Simplices des 16-Zells und des 24-Zells ähnlich, und das charakteristische Simplex des 8-Zells ist ein $H_0(0)$; ferner ist das durch die oben beschriebene Achter-Zerlegung des 16-Zells entstehende Simplex ein $H_2(0)$.

COS %	11+3W 2(1+2w)	1+3w 2(1+2w)	$\sqrt{\frac{1+3\omega}{2(1+2\omega)}}$	<u>2</u>	$\frac{\sqrt{2}}{2}$		2 2	<u>12</u> 2	<u> 12</u>	$\frac{\sqrt{2}}{2}$	$\frac{12}{2}$	$\frac{\sqrt{2}}{2}$
COS «	0	0	0	0	0	$\cos(1-q)^{\overline{\Pi}}_{2}$	0	0	0	0	$\frac{\sqrt{2}}{2}$	0
COS %	1/2	1 2	1 2	$\cos(1-q)$	$\cos(1-q)\frac{\pi}{2}$	cos(1-q)¶	- 2	1/2	1 2	1/2	- 1	$\frac{1}{2}$
COS ∝	0	0	$\frac{1}{2} \sqrt{\frac{3w}{1+2w}}$	0	0	0	0	$-\frac{1}{2}$	- 1	1/2	$-\frac{1}{2}$	$-\frac{1}{2}$
COS ≪ 13	0	0	<u>12</u>	0	0	0	0	<u>12</u>	<u>12</u>	0	<u>12</u>	<u>12</u>
21 SOS	$\frac{1}{2}$	$\frac{1}{2}$	0	<u>Jl</u> b soo	¶þ soɔ	<u>∏</u> b soo	1 2	0	0	0	<u>12</u>	0
°08 €00	<u>m2+1</u>	$\sqrt{\frac{1+\omega}{2(1+2\omega)}}$	m - m	<u>2</u> <u>7</u> 2	0	$\frac{1}{2}$	1/2	<u>12</u>	1 2	0	$-\frac{1}{2}$	0
C 05 & 03	0	$-\frac{1}{2}\frac{1+3\omega}{1+\omega}$	0	$-\frac{1}{2}$	1 2	2	- 12	$-\frac{1}{2}$	- 12	$-\frac{1}{2}$	<u>12</u> 2	1/2
COS 402	0	0	0	0	cos(1+q) <u>¶</u>	Ö	2 2	0	12	1 2	<u>12</u>	$-\frac{1}{2}$
10 sos	1+3w 2(1+2w)	1 1+3w 2 1+w	1 1 1 3 m	$\cos(1-q)\frac{\pi}{2}$	cos(1-q)	cos(1-q)#	0	<u>17</u>	1/2	<u>12</u>	$-\frac{1}{2}$	0
Тур	H (w)	(س) 1	H (w)	Q ₀ (q)	(b) to	Q ₂ (q)	S	52	S	S	S	Se

72 2	2 2	<u>12</u>	2/2	242	0	0	0	$\frac{1}{4}(75+1)$	0	0	0	0
0	0	<u>12</u> 2	2 2	0	0	1/(15+1)	1/45+1)	0	$\frac{1}{4}(15 + 1)$	0	1/4 (15+1)	$\frac{1}{4}(75+1)$
- 2	- 2	- 1/2	- 1 - 2	0	0	0	0	- 2	0	$\frac{1}{4}(\sqrt{5}+1)$	0	0
0	0	2/2	0	0	0	0	0	0	0	0	0	- 1
0	1/2	- 1/2	0	0	0	1/4 (15+1)	$\frac{1}{4}(75+1)$	0	$\frac{1}{4}(15+1)$	0	$\frac{1}{4}(75+1)$	0
1-2	$-\frac{1}{2}$	$-\frac{1}{2}$	0	0	0	0	0	$\frac{1}{2}$	0	1/2	0	$\frac{1}{4}(\sqrt{5}+1)$
1 2	$\frac{1}{2}$	$\frac{1}{2}$	1 2	1 2	$\frac{1}{2}$	0	0	0	<u>1</u>	1/2	$-\frac{1}{4}(15-1)$	$\frac{1}{4}(\sqrt{5}-1)$
0	0	0	0	0	$\frac{1}{2}$	0	0	0	0	0	- 1	$\frac{1}{2}$
Ō	0	0	0	1/2	$\frac{1}{2}$	$\frac{1}{2}$	(1→ <u>S</u> 4) ⁷	(1→ <u>G</u> 1) 7 -	(1 +SA) 7/7	(1+ <u>S</u> A) - 7-	$\frac{1}{2}$	$-\frac{1}{2}$
0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	- 2	1 2	1/2	1/45+1)	1/45+1)	1(12·1)	1/45+1)	1/4(V5+1)
5,	S	S ₉	5,0	5,1	5,2	S ₁₃	514	S ₁₅	S ₁₆	S ₁₇	S 18	S ₁₉

7. Weitere Zerlegungen

Die von Goldberg [5] beschriebene Methode lässt sich leicht auf den vierdimensionalen Fall übertragen: wir legen durch eine zweidimensionale Kante eines rektifizierbaren vierdimensionalen Simplex S die Winkelhalbierungsebene des Diederwinkels. Hat eines der beiden Teilsimplices lauter rationale Diederwinkel oder ist es zu einem bereits als rektifizierbar erkannten Simplex ähnlich, dann sind beide Teilsimplices rektifizierbar. Diese Zerlegung lässt sich für jede zweidimensionale Kante von S durchführen und bei positivem Ergebnis an den Teilsimplices iterieren. Verf. hat die umfangreichen Berechnungen der X- und N-Matrizen mit Hilfe des Computers durchgeführt und vorläufig eine 19 rektifizierbare Simplices umfassende Reihe von verschiedenen Einzelsimplices gefunden.

8. Resultate

Die Tabelle auf S. 113-114 gibt eine Übersicht über die bisher gefundenen rektifizierbaren vierdimensionalen Simplices. Statt der Diederwinkel a_{ij} gemäss (3) werden ihre Cosinuswerte tabelliert. Die Einzelsimplices S_1 bis S_6 sind Teilsimplices des 8-Zells, die Simplices S_7 bis S_{12} sind Teilsimplices des 16-Zells, und die Simplices S_{13} bis S_{19} stellen den Anfang der durch Zerlegung des 120-Zells erzeugten Reihe dar. Die Tabelle gestattet die Konstruktion der zugehörigen N-Matrizen mit lauter Nullen unterhalb der Hauptdiagonale.

VERDANKUNG

Ich möchte Herrn Prof. H.E. Debrunner für dessen wertvolle Hilfe bei der endgültigen Fassung dieser Arbeit und für die Angabe der Schar $\{Q_2(q)\}$ meinen besonderen Dank aussprechen.

Johann Berger, Bern

LITERATURVERZEICHNIS

- 1 H.S.M. Coxeter: Regular Polytopes. Methuen & Co., London 1948.
- 2 M. Dehn: Über den Rauminhalt. Math. Ann. 55, 465-478 (1901).
- 3 M. Goldberg: Tetrahedra Equivalent to Cubes by Dissection. El. Math. 13, 107-109 (1958).
- 4 M. Goldberg: Two More Tetrahedra Equivalent to Cubes by Dissection. El. Math. 24, 130-132 (1969).
- 5 M. Goldberg: New Rectifiable Tetrahedra. El. Math. 29, 85-89 (1974).
- 6 H. Hadwiger: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer Verlag, 1957.
- 7 H. Hadwiger: Hill'sche Hypertetraeder. Gazeta Mat. 50, 47, 48 (1951).
- 8 M. Hill: On the Volumes of Certain Species of Tetrahedra. Proc. Lond. math. Soc. 27, 39-53 (1896).
- 9 B. Jessen: Zur Algebra der Polytope. Nachr. Akad. Wiss. Göttingen, math.-phys. Kl. II, S.47-53 (1972).
- P. Mürner: Zwei Beispiele zur Zerlegungsgleichheit 4-dimensionaler Polytope. El. Math. 29, 132– 135 (1974).
- 11 J.P. Sydler: Sur les Tétraèdres équivalents à un cube. El. Math. 11, 78-81 (1956).