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Polyederfunktionale, die nicht translationsinvariant,
aber injektiv sind

Herrn Professor H. Hadwiger zum 70. Geburtstag

Im folgenden sei R zunichst die Menge aller eigentlichen Polygone, d.h. die Menge
aller Vereinigungen von je endlich vielen abgeschlossenen und nicht entarteten
Dreiecken. Offenbar ist R abgeschlossen bzgl. Vereinigungsbildung, nicht aber
bzgl. Durchschnitts- und Differenzbildung. Versteht man jedoch die letztgenannten
Operationen, in «unbewusster Abstraktion» (G. Aumann [1]), wie folgt:

AN’ B=abgeschlossene Hiille des offenen Kerns von A n B,
A\'B = abgeschlossene Hiille von 4\B,

dann ist (R, U, n’, V), kurz R, ein abschnittskomplementirer distributiver Ver-
band!) (mit Nullelement @, ohne Einselement); d.h. % ist abgeschlossen bzgl.
der beschriebenen Operationen, und es gelten die vertrauten Regeln der Mengen-
algebra.

Ein Inhaltsfunktional (oder: eine Inhaltsmasszahl) auf der Menge R ist nach
H. Hadwiger [2] eine Abbildung @ von R in R, die translationsinvariant ist und
dariiber hinaus

einfach additiv: ® (AU B)=® (A)+® (B), falls An’'B=;
(nichtnegativ-)definit?): @ (4)>0;
normiert: @ (Q)=1 (Q das Einheitsquadrat).

Wir zeigen nun, dass man bei Verzicht auf Translationsinvarianz injektive Funk-

1) Hierzu etwa H. Hermes: Einfithrung in die Verbandstheorie. Berlin, Gottingen, Heidelberg 1955
(insb. S. 48, 49).

2) Infolge der Beschrinkung auf eigentliche Polygone ist & sogar positiv definit, d.h. aus @(4)=0
folgt A=
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tionale auf R angeben kann, die alle iibrigen Eigenschaften eines Inhaltsfunktionals
haben. Mit anderen Worten, wir beweisen den

Satz. Es gibt injektive Abbildungen @ von R in R, die einfach additiv, definit und
normiert sind.

Zur Vorbereitung des Beweises erinnern wir an die Arbeit [1], in der (zur Illustra-
tion des Darstellungssatzes von Stone) zwei elementare Darstellungen von R als
Mengenverbdnde, also mit ungednderter Bedeutung der Mengenoperationen U,
N, \ gegeben werden. Im Gegensatz zu G. Aumann interessiert uns priméar
diejenige Darstellung, bei der die Mengen, welche die eigentlichen Polygone?)
reprisentieren, selbst Punktmengen sind: Dabei besteht fiir 4eR die reprisen-
tierende Menge A7 aus allen inneren Punkten von A4 und (falls 4 7&}6) den Punkten
derjenigen Randstrecken von A4, deren nach innen weisende Normalen einen
Richtungswinkel zwischen O einschliesslich und # ausschliesslich haben; in dhnli-
cher Weise wird iiber die Eckpunkte verfugt ([1], S.26, 27). Diese Darstellung ¢
ist, wie man sich nach [1] «leicht iiberlegt», ein Isomorphismus von R auf einen
Punktmengenverband. Natiirlich gilt #*=@. Man beachte ferner, dass im Falle
A# das eigentliche Polygon 4 und damit auch die Punktmenge A¢ innere Punkte
besitzt.

Zum Beweis des Satzes wihlen wir eine abzidhlbare, in der Ebene dicht liegende
Menge D von Punkten xj, x,, ... (Wobei x;# x; fiir i#j). Sodann definieren wir fir
jedes Polygon A4 e R:

D(A)=c! DY 27 mit c= Y 27,
x;eA? x;€ Qf

Da in Q¢ jedenfalls Punkte von D liegen, ist ¢ streng positiv und die Zahl @ (4)
wohldefiniert. Es gilt @ (§)=0. Im Falle 4 #{ enthilt 4% innere Punkte und folglich
unendlich viele Punkte aus D; die angeschriebenen Summen sind dann also
unendliche Reihen mit streng positiven Gliedern.

Offenbar ist das Funktional @ definit und normiert. Auch die einfache Additivitdt
ist sofort zu sehen: Fiir A, Be® mit An’B=§ hat man (4uUB)?=4?U B? und
A?NB?=(An'B)?={?*=0, also

D(AUB)=c1 Y 27i=c1 Y 2747l Y 27=0 (4)+ D (B).
x;€ A? U B? x;€A? x;€ B?
Nun zur Injektivitit: Es sei A# B, also ohne Beschrinkung der Allgemeinheit
AVB#. Dann enthilt die Menge (4\'B)?=A\B? innere Punkte, also auch Punkte
aus D. Es folgt (A°\B?)nD=(4?D)\(B*~D)#{, also A?~D#B?nD. Das
bedeutet: Die Summen », 27 und ), 2~/ stimmen nicht in allen Gliedern

x€A? xcBe

iberein und haben folglich verschiedene Werte. Hjerzu beachte man, dass diese

3) Bei Aumann: Die «elementargeometrischen Figuren».
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Summen als nichtabbrechende (oder identisch verschwindende) Dualbriiche inter-
pretierbar sind: Zwei solche haben verschiedene Werte, sobald sie nicht an allen
Stellen iibereinstimmen. Somit folgt @ (A4) # @ (B).

Als eine bemerkenswerte Konsequenz des hiermit bewiesenen Satzes erwdhnen wir:
& ist wegen der Definitheit und Additivitit monoton: d.h. aus A= B (cbe-
zeichne die strenge Inklusion) folgt jedenfalls @ (4) < @ (B). Wegen der Injektivitit
folgt nun weiter @ (4)<® (B); d.h. @ ist streng monoton. Nach Vorgabe von &
ist somit durch 4 < B<>® (4) < @ (B) eine strenge lineare Ordnung< in R definiert,
welche die bereits vorhandene (nicht lineare) Ordnungsrelation < in R respektiert:
Aus A< B folgt A< B. Damit ist eine bekannte Existenzaussage (die Fortsetz-
barkeit jeder Ordnung zu einer linearen Ordnung) fir den speziellen Fall der
Inklusion eigentlicher Polygone in einer sehr konkreten Weise, gleichsam mittels
«Punktbewertung» (hierzu [3, 4]), nachgewiesen.

Im Hinblick auf die Uberschrift dieser Note sei schliesslich bemerkt, dass unsere
Uberlegungen giiltig bleiben, wenn R die Menge aller eigentlichen Polyeder, fir
beliebige Dimension k, bedeutet. Hierfiir hat man sich nur klarzumachen, dass
auch in diesem Fall ein Isomorphismus ¢ von R auf einen Punktmengenverband
existiert, derart dass mit jedem nichtleeren Polyeder 4 aus R auch A? innere
Punkte besitzt.

Arnold Kirsch, Kassel
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Rektifizierbare vierdimensionale Simplices

Herrn Prof. H. Hadwiger zum 70. Geburtstag gewidmet

1. Ubersicht

Zwei eigentliche Polyeder A, B heissen zerlegungsgleich, geschrieben A ~ B, wenn
siec im Sinne der FElementargeometrie in Teilpolyeder 4,,...,4, bzw. By, ..., B,
so zerlegt werden konnen, dass A; mit'B; kongruent ist (fiir i= 1, ..., n). Insbesondere
nennen wir mit Goldberg [5] jedes Polyeder A, das zu einem Wiirfel zerlegungsgleich
ist, rektifizierbar. Ein Interesse an der Aufsuchung rektifizierbarer Polyeder liegt
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