Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 33 (1978)

Heft: 4

Rubrik: Kleine Mitteilungen

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Im Falle n = 4m + 3 hat man schliesslich

$$D_{4m+3}=G_3(m)-\frac{1}{2}+\frac{1}{2}\cdot (1^2\cdot z_{2m}+2^2\cdot z_{2m-1}+\cdots).$$

Hier modifiziert man \mathfrak{G}_n etwa so, dass ein Knoten unverändert bleibt, während die übrigen paarweise verbunden werden. Dann hat ein Knoten die Ordnung 2m, die übrigen die Ordnung 2m+1; im komplementären Graphen hat entsprechend ein Knoten die Ordnung 2m+2 und die übrigen die Ordnung 2m+1. Man hat daher bei dieser Zerlegung

$$D_{4m+3}=G_3(m)-\frac{1}{2}+\frac{1}{2}=G_3(m)$$
.

Walter Tietze, Berlin

LITERATURVERZEICHNIS

- 1 A.W. Goodman: On sets of acquaintances and strangers at any party. Am. Math. Monthly 66, 778-783 (1959).
- 2 G. Lorden: Blue-empty chromatic graphs. Am. Math. Monthly 69, 114-119 (1962).
- 3 M. Jeger: Elementare Begriffe und Sätze aus der Theorie der Graphen. Der Mathematikunterricht, Heft 4, S. 11-64 (1974).

Kleine Mitteilungen

Eine Konfiguration von Punkten und Geraden

In Elem. Math. 4 (1977) stellte C. Bindschedler folgende Aufgabe (791):

1. Es sei t eine Tangente an die Ellipse, welche die Seiten des Dreiecks $A_1A_2A_3$ in ihren Mittelpunkten berührt (Steinersche Inellipse). Ferner seien K_1, K_2, K_3 drei Kegelschnitte, von denen jeder zwei Seiten des Dreiecks in den Endpunkten der dritten Seite sowie die Gerade t berührt. Je zwei dieser drei Kurven schneiden sich ausser in einer Ecke A_i noch in genau einem weiteren reellen Punkt S_i .

Man zeige, dass die Geraden $A_i S_i (i = 1, 2, 3)$ parallel sind.

Wir betrachten hier eine Erweiterung, indem wir die Tangente t durch eine beliebige Gerade der Ebene ersetzen. Der obige Satz erscheint dann als Sonderfall.

2. Es werden homogene projektive Punktkoordinaten x_i (i = 1, 2, 3) in bezug auf das Dreieck $A_1A_2A_3$ eingeführt mit beliebig gewähltem Einheitspunkt; t habe die Gleichung $b_1x_1 + b_2x_2 + b_3x_3 = 0$ mit $b_i \neq 0$ (i = 1, 2, 3). Ein Kegelschnitt, der A_1A_2 und A_1A_3 in A_2 und A_3 berührt, gehört zum Büschel, das die Doppelgerade A_2A_3

und das Linienpaar (A_1A_2, A_1A_3) enthält und deshalb eine Gleichung der Gestalt $x_1^2 + 2k x_2 x_3 = 0$ hat. Wie man leicht überprüfen kann, wird er von t berührt und ist ausserdem nicht zerfallen, wenn $k = -2b_2b_3/b_1^2$.

Für die Kegelschnitte K_i (i = 1, 2, 3) findet man somit

$$K_1 = b_1^2 x_1^2 - 2b_2 b_3 x_2 x_3 = 0,$$

$$K_2 = b_2^2 x_2^2 - 2b_3 b_1 x_3 x_1 = 0,$$

$$K_3 = b_3^2 x_3^2 - 2b_1 b_2 x_1 x_2 = 0.$$
(1)

 K_2 und K_3 haben vier Schnittpunkte; einer ist $A_1(1,0,0)$. Aus (1) geht durch Elimination von x_1 hervor, dass die übrigen Schnittpunkte der Gleichung

$$b_2^3 x_2^3 = b_3^3 x_3^3 \tag{2}$$

genügen.

Man findet somit für b_2x_2/b_3x_3 die drei Werte 1, w, w^2 , wobei $w = -\frac{1}{2} + \frac{1}{2}i\sqrt{3}$. Es ist dann einfach nachzuweisen, dass die drei von A_1 verschiedenen Schnittpunkte von K_2 und K_3 , die wir mit S_1 , S_1' , S_1'' bezeichnen, folgende Koordinaten aufweisen:

$$S_1 = (c_1, 2c_2, 2c_3);$$
 $S_1' = (c_1, 2wc_2, 2w^2c_3);$ $S_1'' = (c_1, 2w^2c_2, 2wc_3)$ (3.1)

mit

$$c_1 = b_2 b_3; c_2 = b_3 b_1; c_3 = b_1 b_2.$$
 (4)

 S_1 ist reell; die übrigen Punkte sind konjugiert komplex.

Für die von A_2 verschiedenen Schnittpunkte von K_3 und K_1 und die von A_3 verschiedenen Schnittpunkte von K_1 und K_2 erhält man in derselben Weise

$$S_2(2c_1, c_2, 2c_3);$$
 $S_2'(2c_1w^2, c_2, 2c_3w);$ $S_2''(2c_1w, c_2, 2c_3w^2);$ (3.2)

$$S_3(2c_1, 2c_2, c_3);$$
 $S_3'(2c_1w, 2c_2w^2, c_3);$ $S_3''(2c_1w^2, 2c_2w, c_3).$ (3.3)

Die Gerade $l_1 = A_1 S_1$ hat die Gleichung $c_3 x_2 - c_2 x_3 = 0$, l_2 und l_3 sind analog geformt.

Wenn allgemein eine Gerade $u_1x_1+u_2x_2+u_3x_3=0$ durch ihre Linienkoordinaten bezeichnet wird, hat man:

$$l_{1}(0, c_{3}, -c_{2}); l'_{1}(0, c_{3}w, -c_{2}); l''_{1}(0, c_{3}, -c_{2}w) l_{2}(-c_{3}, 0, c_{1}); l'_{2}(-c_{3}, 0, c_{1}w); l''_{2}(-c_{3}w, 0, c_{1}) l_{3}(c_{2}, -c_{1}, 0); l'_{3}(c_{2}w, -c_{1}, 0); l''_{3}(c_{2}, -c_{1}w, 0).$$
 (5)

Von diesen neun Geraden sind l_1 , l_2 , l_3 reell, die anderen imaginär.

Es zeigt sich nun sofort, dass die drei reellen Geraden durch einen Punkt gehen, da ja die Determinante ihrer Koordinaten verschwindet. Der Schnittpunkt ist offenbar (c_1, c_2, c_3) . Auf diesen Fall bezieht sich die affine Spezialisierung der ursprünglichen Aufgabe. Führt man baryzentrische Koordinaten ein, dann hat be-

kanntlich die uneigentliche Gerade die Gleichung $x_1+x_2+x_3=0$, während die Tangentengleichung der Steinerschen Ellipse $u_2u_3+u_3u_1+u_1u_2=0$ lautet. In unserer Notierung ist dann $b_2b_3+b_3b_1+b_1b_2=0$, d. h. $c_1+c_2+c_3=0$. Daraus geht hervor, dass l_1 , l_2 , l_3 nicht nur konkurrent, sondern auch parallel sind.

3. Da die neun Geraden (5) gleichberechtigt sind, ist zu erwarten, dass nicht nur l_1 , l_2 , l_3 sondern auch andere Tripel konkurrent sind. Wie man leicht bestätigen kann, ist dies der Fall für die folgenden neun Tripel:

Tabelle 1	
Gerade	Schnittpunkt
l_1, l_2, l_3	$B_1(c_1, c_2, c_3)$
l' ₁ , l' ₂ l' ₃	$B_2(c_1, c_2w, c_3w^2)$
l_1'', l_2'', l_3''	$B_3(c_1, c_2w^2, c_3w)$
$\overline{l_1, l_2' l_3''}$	$B_4(c_1, c_2w^2, c_3w^2)$
l_1'', l_2, l_3'	$B_5(c_1,c_2w,c_3)$
l_1', l_2'', l_3	$B_6(c_1,c_2,c_3w)$
l_1, l_2'', l_3'	$B_7(c_1,c_2w,c_3w)$
l_1', l_2, l_3''	$B_8(c_1, c_2w^2, c_3)$
$l_1'', l_2' l_3$	$B_9(c_1, c_2, c_3 w^2)$

Neun Tripel von Punkten B_i sind kollinear. In untenstehender Tabelle sind die neun Geraden aufgeführt, auf denen die Punkte B_i liegen; die Geraden enthalten auch stets einen der Punkte A_j .

Tabelle 2

	B_1	B_2	B_3	B_4	B_5	<i>B</i> ₆	B_7	B_8	B_9	A_1	A_2	A_3
l_1	x			x			x			x		
l_2	x				x			x			x	
l_3	x					x			x			x
$\overline{l'_1}$		x				x		x		x		
l_2'		x		x					x		x	
<u>l'3</u>		x			x		x					х
<i>l</i> "1			x		x				x	x		
<i>l</i> ₂ "			x			x	x				x	
<i>l</i> ″3			x	x				x				x

Auf jeder der neun Geraden gibt es also insgesamt vier Punkte: drei Punkte B_i und einen Punkt A_j ; durch jeden Punkt B_i und jeden Punkt A_j gehen drei Geraden, d.h. es liegt eine Punkt-Geraden-Konfiguration (12₃, 9₄) vor. A_1 , A_2 , A_3 , B_1 sowie l_1 , l_2 , l_3 sind reell, die übrigen Punkte und Geraden sind imaginär.

4. Bekanntlich hat eine allgemeine ebene Kurve dritter Ordnung neun Wendepunkte, die zu dritt auf zwölf Geraden liegen und mit diesen eine Konfiguration $(9_4, 12_3)$ bilden; von den Punkten sind drei, von den Geraden sind vier reell. Die Vermutung, dass unsere Konfiguration zu jener der Wendepunkte dual ist, lässt sich folgendermassen bestätigen. Der Einfachheit halber fassen wir dazu die Linienkoordinaten (5) der Geraden l als Punktkoordinaten (y_1, y_2, y_3) auf, so dass es sich jetzt um neun Punkte P_i handelt, während die zwölf Punkte P_i und A_j mit Geraden übereinstimmen. Man kann leicht nachprüfen, dass die Punkte P_i auf der kubischen Kurve K mit der Gleichung

$$c_1^3 y_1^3 + c_2^3 y_2^3 + c_3^3 y_3^3 = 0 (6)$$

liegen. Die Tangente t_1 im Punkt $(0, c_3, -c_2)$ hat die Gleichung $c_2y_2+c_3y_3=0$. Diese Gerade hat mit K drei zusammenfallende Schnittpunkte. Damit ist $(0, c_3, -c_2)$ als ein Wendepunkt von K erkannt, und dasselbe gilt für jeden anderen der neun Punkte. Wir haben also gezeigt: Unsere Konfiguration $(12_3, 9_4)$ ist zur Konfiguration der Wendepunkte einer allgemeinen ebenen Kubik dual.

O. Bottema (Delft, NL) J. T. Groenman (Groningen, NL)

Bemerkungen zu G. Archinard: Résolution vectorielle de l'équation fonctionelle des applications équiprojectives (El. Math. 32, 59-61, 1977)

Der Beweisgedanke dieser Arbeit lässt sich u.E. übersichtlicher darstellen, wenn man, wie im folgenden ausgeführt, mit Vektormengen arbeitet. Offenbar kann man sich auf den Fall F(0)=0 beschränken und hat dann also eine Abbildung F des dreidimensionalen reellen Vektorraumes $\mathscr{V}(=\mathbf{R}^3)$ in sich mit

$$(F(X) - F(Y)) \cdot (X - Y) = 0 \quad \text{für alle} \quad X, Y \in \mathcal{Y}$$
 (1)

zu untersuchen. Wegen F(0) = 0 folgt aus (1) (mit Y = 0)

$$F(X) \cdot X = 0$$
 für alle $X \in \mathcal{V}$. (1')

Zu jedem $X \in \mathcal{V}$ wird die Menge

$$\mathscr{A}(X) = _{\mathrm{def}} \{ X' \mid F(X) = X' \times X \} \tag{2}$$

eingeführt, die wegen (1') nichtleer ist. Ferner werden mit $\langle X \rangle$, $\langle X, Y \rangle$ die von X bzw. von $X, Y \in \mathcal{Y}$ erzeugten Untervektorräume bezeichnet. Es gilt dann $\mathcal{A}(0) = \mathcal{Y}$ und

$$X \neq 0, \quad X' \in \mathscr{A}(X) \Rightarrow \mathscr{A}(X) = X' + \langle X \rangle.$$
 (3)

Der Durchschnitt aller $\mathcal{A}(X)$ ist nun als nichtleer nachzuweisen. Wie bei Archinard (S. 60, Mitte) erhält man durch einfaches Umrechnen aus (1), (2)

$$X, Y$$
 linear unabhängig, $X' \in \mathcal{A}(X), Y' \in \mathcal{A}(Y) \Rightarrow X' - Y' \in \langle X, Y \rangle$, (4)

und die Umformung einer Darstellung (mit Skalaren a, β) $X' - Y' = aX + \beta Y$ zu $X' - aX = Y' + \beta Y$ ergibt wegen (3) und $\mathscr{A}(X), \mathscr{A}(Y) \neq \emptyset$ dann $\mathscr{A}(X) \cap \mathscr{A}(Y) \neq \emptyset$. Da $\mathscr{A}(X) \cap \mathscr{A}(Y)$ bei linear unabhängigen X, Y wegen (3) und $\langle X \rangle \cap \langle Y \rangle = \{0\}$ aber höchstens ein Element enthält, gibt es in $\mathscr{A}(X) \cap \mathscr{A}(Y)$ genau einen Vektor; dieser wird mit A(X, Y) bezeichnet:

$$X, Y$$
 linear unabhängig $\Rightarrow \mathcal{A}(X) \cap \mathcal{A}(Y) = \{A(X, Y)\}.$ (5)

Man erhält nun

$$X, Y, Z$$
 linear unabhängig $\Rightarrow A(X, Y) = A(Y, Z) = A(Z, X);$ (6)

denn nach (5), (4), (3) ist

$$A(Y,Z)-A(Z,X)\in\langle X,Y\rangle\cap\langle Z\rangle=\{0\},$$

also A(Y,Z) = A(Z,X), und aus Symmetriegründen gilt dann auch A(X,Y) = A(Y,Z). Bei linear unabhängigen X,Y,Z und $0 \neq W \in \langle X,Y \rangle$ sind X,Z,W oder aber Y,Z,W linear unabhängig, so dass sich nach (6) angewandt auf diese Tripel A(X,Z) = A(Z,W) oder A(Y,Z) = A(Z,W), nach (6), (5) also $A(X,Y) \in \mathscr{A}(W)$ ergibt. Wegen (6) und $\mathscr{A}(0) = \mathscr{V}$ gilt daher $A(X,Y) \in \mathscr{A}(Z)$ bei linear unabhängigen X,Y für alle $Z \in \mathscr{V}$.

Wie der Beweis zeigt, gilt die Behauptung, also die Darstellung von F in der Form $F(X) = A \times X$, bei jedem dreidimensionalen Vektorraum $\mathscr V$ über einem beliebigen (kommutativen) Körper, falls man, bezogen auf eine festgewählte Basis, die beiden Multiplikationen und \times in der üblichen Weise mittels Koordinaten definiert. Auf Vektorräume $\mathscr V$ beliebiger endlicher Dimensionen n lässt sich das Ergebnis folgendermassen verallgemeinern: Die Multiplikation wird als Bilinearform vorausgesetzt, die bez. (mindestens) einer Basis $\mathscr B$ von $\mathscr V$ die Einheitsmatrix besitzt; da (1) wegen (1')

$$X \cdot F(Y) = -Y \cdot F(X)$$
 für alle $X, Y \in \mathcal{Y}$ (1")

liefert, erfüllt F genau dann (1) und F(0)=0, falls F eine lineare Abbildung von \mathcal{V} in sich ist, die bez. der Basis \mathcal{B} eine schiefsymmetrische Matrix $(a_{ik})_{i,k=1,\ldots,n}$ (also $a_{ii}=0$, $a_{ik}=-a_{ki}$) besitzt. Die Linearität von F ergibt sich dabei wegen

$$Z \cdot Y = Z' \cdot Y$$
 für alle $Y \in \mathcal{V} \Rightarrow Z = Z'$

aus (1") durch die folgenden Rechnungen:

$$F(X+X') \cdot Y = -F(Y) \cdot (X+X') = -F(Y) \cdot X - F(Y) \cdot X'$$

$$= F(X) \cdot Y + F(X') \cdot Y = (F(X) + F(X')) \cdot Y,$$

$$F(aX) \cdot Y = -F(Y) \cdot (aX) = a(-F(Y) \cdot X) = aF(X) \cdot Y = (aF(X)) \cdot Y.$$

P. Köhler und G. Pickert.

Mathematisches Institut der Justus-Liebig-Universität, D-63 Giessen

Über unitär perfekte Zahlen

Wie bekannt – [1, 2] –, heisst k unitärer Teiler von n, wenn erstens k n teilt und zweitens (k, n/k) = 1 gilt. $\sigma^u(n)$ bezeichne im folgenden die unitäre Teilersumme von n. Hierfür gilt

für
$$n = p_1^{a_1} \cdot p_2^{a_2} \cdots p_r^{a_r}$$
 ist $\sigma^u(n) = (p_1^{a_1} + 1) \cdots (p_r^{a_r} + 1)$. (1)

Hierbei und im folgenden bezeichnen p,q bzw. p_i Primzahlen, a,b,...,n positive ganze Zahlen.

Eine Zahl heisst unitär perfekt, wenn $\sigma^{u}(n) = 2n$ gilt.

Den Quotienten $\sigma^u(n)/n$ bezeichnen wir mit $\phi^u(n)$, er ist ebenso wie $\sigma^u(n)$ eine multiplikative zahlentheoretische Funktion.

Eine wichtige Eigenschaft dieser Funktion ist

$$\phi^{u}(p^{k}) = 1 + p^{-k}. \tag{2}$$

Die Eigenschaften der Funktion $\phi^u(n)$ ermöglichen es, in einfacher Weise eine untere Grenze für unitär perfekte Zahlen, welche nicht durch 3 teilbar sind, zu errechnen.

Satz. Sei $N = 2^m \cdot p_1^{a_1} \cdots p_r^{a_r}$ eine unitär perfekte Zahl mit (N,3) = 1. Dann gilt 1. $m \ge 144, 2. r \ge 144, 3. N > 10^{440}$.

Beweis: Trivialerweise gilt $\phi^u(p_1^{a_1}\cdots p_r^{a_r})=2^{m+1}\cdot (2^m+1)^{-1}$. Ausserdem muss für die Exponenten a_i von Primzahlen $p_i\equiv 2 \mod 3$, $a_i\equiv 0 \mod 2$ gelten. Sortieren wir nun die im Produkt auftauchenden $p_i^{a_i}$ nach Grösse in der Form $N=2^m\cdot f_1\cdots f_r$, mit $f_i < f_j$ für i < j, so gilt wegen (2) $\phi^u(f_i) > \phi^u(f_j)$ für i < j. Sicher gilt $\phi^u(f_1) \le \phi^u(7)$, ..., $\phi^u(f_4) \le \phi^u(5^2)$, ... Mit $A=\{7, 13, 19, ..., 1783, 5^2, 11^2, 17^2, 23^2, 29^2, 41^2\}$, also der Menge der ersten 136 Primzahlen kongruent 1 modulo 3 vereinigt mit der Menge der Quadrate der ersten 6 ungeraden Primzahlen kongruent 2 modulo 3, ergibt sich

$$P = \prod_{k \in A} \phi^{u}(k) < 1,9994 < 2^{143} \cdot (2^{142} + 1)^{-1}.$$

Da $P \cdot \phi^u(1789) > 2$ ist, gilt $m, r \ge 143$; zusammen mit $m \equiv 0 \mod 2$ und $r \equiv 0 \mod 2$, dies sind (3.7) und (3.10) aus [1], ergibt sich $m, r \ge 144$.

Wegen $2^{144} \cdot \prod_{k \in A} k \cdot 1789 \cdot 1801 > 10^{440}$ ergibt sich die letzte Aussage des Satzes.

96 Aufgaben

Anmerkung: Mit etwas verfeinerten Methoden lassen sich die Grenzen vermutlich wesentlich verbessern. Es spricht meines Erachtens einiges dafür, dass 3 jede unitär perfekte Zahl teilt.

Weitere Untersuchungen der Funktion $\phi^u(n)$ – welche hier den Rahmen sprengen würden – führten mich zur Entdeckung einer fünften unitär persekten Zahl – im Widerspruch zu einer Annahme der Autoren von [1], die besagt, dass wahrscheinlich keine unitär persekte Zahl grösser als 87360 existiert.

Bisher bekannt waren $6=2\cdot 3$, $60=2^2\cdot 3\cdot 5$, $90=2\cdot 3^2\cdot 5$ sowie die schon genannte Zahl $87360=2^6\cdot 3\cdot 5\cdot 7\cdot 13$.

Die von mir gefundene unitär perfekte Zahl, von der ich nicht weiss, ob sie die nächste nach 87360 ist, ist

 $146361946186458562560000 = 2^{18} \cdot 3 \cdot 5^{4} \cdot 7 \cdot 11 \cdot 13 \cdot 19 \cdot 37 \cdot 79 \cdot 109 \cdot 157 \cdot 313$

H. A. M. Frey, HRZ Universität, Frankfurt a. M.

LITERATURVERZEICHNIS

- 1 M.V. Subbaro und L.J. Warren: Unitary perfect numbers. Can. Math. Bull. 9, 147-153 (1966).
- 2 P. Hagis Jr.: Unitary Amicable Numbers. Math. Comp. 25, 915-918 (1971).

Aufgaben

Aufgabe 789. Es sei n ganz und nichtnegativ. Man zeige, dass sich 4^n auf unendlich viele Arten als Differenz einer Quadratzahl und einer Trigonalzahl darstellen lässt. Ferner soll die Gesamtheit aller derartigen Darstellungen für den Fall angegeben werden, dass $2 \cdot 4^{n+1} - 1$ eine Primzahl (Mersennesche Primzahl) ist.

E. Trost, Zürich

Lösung: Die Gleichung $4^n = k^2 - {m \choose 2}$ lässt sich in die Form $2 \cdot 4^{n+1} - 1$ $= 8k^2 - (2m-1)^2$ bringen. Setzen wir $p = 2 \cdot 4^{n+1} - 1$, v = 2k und u = 2m - 1, so erhält sie die Gestalt

$$u^2 - 2v^2 = -p. (1)$$

 $(u_0, v_0) = (1, 2^{n+1})$ ist eine Lösung von (1). Mit (u, v) ist auch $(\bar{u}, \bar{v}) = (3u + 4v, 2u + 3v)$ eine Lösung; (1) hat somit unendlich viele Lösungen.

Ist p prim, so liefert die Theorie zur Gleichung (1) alle ihre Lösungen wie folgt (siehe [1], S. 204-212):

Die Lösungsschar zerfällt in zwei disjunkte Klassen mit den Basislösungen (u_0, v_0) = $(1, 2^{n+1})$ und $(u'_0, v'_0) = (4 \cdot 2^{n+1} - 3, 3 \cdot 2^{n+1} - 2) = (-3u_0 + 4v_0, -2u_0 + 3v_0)$. Durch $(u, v) = (xu^* + 2yv^*, yu^* + xv^*)$ erhält man alle übrigen Lösungen, indem man für (u^*, v^*) die beiden Basislösungen einsetzt und (x, y) alle positiven