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90 Kleine Mitteilungen

Im Falle n=4m+ 3 hat man schliesslich

1 1
D4,,,+3=G3(m)——2—+—i—- (12 23 +22 - 231+ --+).

Hier modifiziert man &, etwa so, dass ein Knoten unverdndert bleibt, wihrend die
iibrigen paarweise verbunden werden. Dann hat ein Knoten die Ordnung 2m,
die iibrigen die Ordnung 2m+ 1; im komplementiren Graphen hat entsprechend
ein Knoten die Ordnung 2m+2 und die iibrigen die Ordnung 2m+ 1. Man hat
daher bei dieser Zerlegung

1 1
Dyp+3=G3(m)— *2‘“" 7=G3(m).

Walter Tietze, Berlin

LITERATURVERZEICHNIS

1 A.W. Goodman: On sets of acquaintances and strangers at any party. Am. Math. Monthly 66,
778-783 (1959).

2 G. Lorden: Blue-empty chromatic graphs. Am. Math. Monthly 69, 114-119 (1962).

3 M. Jeger: Elementare Begriffe und Sitze aus der Theorie der Graphen. Der Mathematikunter-
richt, Heft 4, S. 11-64 (1974).

Kleine Mitteilungen

Eine Konfiguration von Punkten und Geraden
In Elem. Math. 4 (1977) stellte C. Bindschedler folgende Aufgabe (791):

1. Es sei ¢ eine Tangente an die Ellipse, welche die Seiten des Dreiecks A;4,A4;
in ihren Mittelpunkten beriihrt (Steinersche Inellipse). Ferner seien K, K,, K5 drei
Kegelschnitte, von denen jeder zwei Seiten des Dreiecks in den Endpunkten der
dritten Seite sowie die Gerade ¢ beriihrt. Je zwei dieser drei Kurven schneiden
sich ausser in einer Ecke 4; noch in genau einem weiteren reellen Punkt S;.

Man zeige, dass die Geraden 4; S;(i= 1, 2, 3) parallel sind.

Wir betrachten hier eine Erweiterung, indem wir die Tangente ¢ durch eine be-
liebige Gerade der Ebene ersetzen. Der obige Satz erscheint dann als Sonderfall.

2. Es werden homogene projektive Punktkoordinaten x;(i= 1, 2, 3) in bezug auf das
Dreieck A,A4,A; eingefiilhrt mit beliebig gew#hltem Einheitspunkt; ¢ habe die
Gleichung by x;+ by xy+b3x3=0 mit b;#0(i=1, 2, 3). Ein Kegelschnitt, der 4,4,
und A;A4; in A, und A, beriithrt, gehdrt zum Biischel, das die Doppelgerade 4,4,
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und das Linienpaar (4,4,, A;A43) enthélt und deshalb eine Gleichung der Gestalt
x3+2k x,x;=0 hat. Wie man leicht iiberpriifen kann, wird er von ¢ berithrt und
ist ausserdem nicht zerfallen, wenn k= —2 b, b, /b3.

Fiir die Kegelschnitte K;(i=1, 2, 3) findet man somit

K1=b%x%-—2b2b3x2x3=0,
K2=b%x§—2b3b1x3xl=0,
K3=b%x§—-2b1b2x1x2=0. (1)

K, und K; haben vier Schnittpunkte; einer ist A,(1, 0, 0). Aus (1) geht durch Elimi-
nation von x; hervor, dass die iibrigen Schnittpunkte der Gleichung

Bix3=bix] @

geniigen.

Man findet somit fir b,x,/b;x; die drei Werte 1, w, w?, wobei w=—Y%+%i\/3.
Es ist dann einfach nachzuweisen, dass die drei von 4, verschiedenen Schnittpunkte
von K, und Kj;, die wir mit S, S}, S{ bezeichnen, folgende Koordinaten aufweisen:

S]=(C1,2C2,2C3); S;=(C1,2WC2,2W2C3); Si,=(cl,2W2C2,2WC3) (31)
mit

c1=by b3; c;=b3by; c3=bb,. Q)
S, ist reell; die iibrigen Punkte sind konjugiert komplex.

Fiir die von A, verschiedenen Schnittpunkte von K3 und K, und die von A4; ver-
schiedenen Schnittpunkte von K; und K, erhilt man in derselben Weise

S,(2¢y, ¢5,2¢5); S5 Q2 cyw?, ¢y, 2¢3w); S5 (2cyw, ¢y 23w ; (3.2)
S3(2¢y,2¢5,¢3); S5Qciw, 2w ¢y); S7(2ciwh2e,w, ¢y). (3.3)

Die Gerade /;,=A4,S; hat die Gleichung c3x,—c;x3=0, /, und /; sind analog
geformt.

Wenn allgemein eine Gerade u;x;+u;x,+ u3x3=0 durch ihre Linienkoordinaten
bezeichnet wird, hat man:

10,3, —¢c3); 0, c3w, —¢3); 70, c3 —cyw)
12(—6'3, O’ Cl); lé("C3, O’ C]W); lﬁ'(—-c3w, O’CI)
li(cy, —¢1,0); B(cyw, — ¢y, 0); I (c;, —c 1w, 0). (3)

Von diesen neun Geraden sind /}, /;, /; reell, die anderen imaginir.

Es zeigt sich nun sofort, dass die drei reellen Geraden durch einen Punkt gehen,
da ja die Determinante ihrer Koordinaten verschwindet. Der Schnittpunkt ist
offenbar (c,, c,, c3). Auf diesen Fall bezieht sich die affine Spezialisierung der ur-
spriinglichen Aufgabe. Fithrt man baryzentrische Koordinaten ein, dann hat be-
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kanntlich die uneigentliche Gerade die Gleichung x,+ x,+ x3=0, wéhrend die
Tangentengleichung der Steinerschen Ellipse u, u3+ u3u;+ u; u,=0 lautet.

In unserer Notierung ist dann b,b3+b3b+b,;b,=0, d.h. ¢;+c,+c3=0. Daraus
gehthervor,dass /, [, I; nicht nur konkurrent, sondern auch parallel sind.

3. Da die neun Geraden (5) gleichberechtigt sind, ist zu erwarten, dass nicht nur
i, L, I3 sondern auch andere Tripel konkurrent sind. Wie man leicht bestitigen
kann, ist dies der Fall fiir die folgenden neun Tripel:

Tabelle 1

Gerade Schnittpunkt

h, b, 1 Bi(cy, €2, ¢3)
hhi By (cy, caw, c3w?)
1. 5,55 Bs(c), caw?, c3w)
Lol By (cy, caw?, c3w?)
b b Bs(cy, caw, c3)
(A Bg(cy, €3, c3w)
L, 0,5 By (cy, caw, c3w)
bl I3 Bg(cy, caw?, ¢3)
1.1 13 By(cy, ¢z, c3w2)

Neun Tripel von Punkten B; sind kollinear. In untenstehender Tabelle sind die neun
Geraden aufgefiihrt, auf denen die Punkte B, liegen; die Geraden enthalten auch
stets einen der Punkte 4;.

Tabelle 2

Auf jeder der neun Geraden gibt es also insgesamt vier Punkte: drei Punkte B;
und einen Punkt 4;; durch jeden Punkt B; und jeden Punkt 4; gehen drei Geraden,
d.h. es liegt eine Punkt-Geraden-Konfiguration (123, 9,) vor. 4, A,, A3, B, sowie
I}, I, I3 sind reell, die iibrigen Punkte und Geraden sind imaginir.
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4. Bekanntlich hat eine allgemeine ebene Kurve dritter Ordnung neun Wende-
punkte, die zu dritt auf zwolf Geraden liegen und mit diesen eine Konfiguration
(94, 12;) bilden; von den Punkten sind drei, von den Geraden sind vier reell. Die
Vermutung, dass unsere Konfiguration zu jener der Wendepunkte dual ist, l4sst
sich folgendermassen bestétigen. Der Einfachheit halber fassen wir dazu die Linien-
koordinaten (5) der Geraden / als Punktkoordinaten (y,, y,, y3) auf, so dass es sich
jetzt um neun Punkte P; handelt, wihrend die zwolf Punkte B; und 4; mit Geraden
tibereinstimmen. Man kann leicht nachpriifen, dass die Punkte P, auf der kubischen
Kurve K mit der Gleichung

ayi+ayi+cdyi=0 (6)

liegen. Die Tangente ¢; im Punkt (0, ¢;, —c¢,) hat die Gleichung c,y,+c3y;=0.

Diese Gerade hat mit K drei zusammenfallende Schnittpunkte. Damit ist

(0, c3, — ¢,) als ein Wendepunkt von K erkannt, und dasselbe gilt fiir jeden anderen

der neun Punkte. Wir haben also gezeigt: Unsere Konfiguration (125, 9,) ist zur
Konfiguration der Wendepunkte einer allgemeinen ebenen Kubik dual.

O. Bottema (Delft, NL)

J.T. Groenman (Groningen, NL)

Bemerkungen zu G. Archinard: Résolution vectorielle de I’équation fonctionelle des
applications équiprojectives (El. Math. 32, 59-61, 1977)

Der Beweisgedanke dieser Arbeit ldsst sich u.E. tibersichtlicher darstellen, wenn
man, wie im folgenden ausgefiihrt, mit Vektormengen arbeitet. Offenbar kann man
sich auf den Fall F(0)=0 beschrinken und hat dann also eine Abbildung F des
dreidimensionalen reellen Vektorraumes 77 (=R?) in sich mit

(FX)—F(Y)) - (X—Y)=0 furalle X,Ye” (D
zu untersuchen. Wegen F(0)=0 folgt aus (1) (mit Y=0)

F(X)- X=0 furalle Xe7 . (1)
Zu jedem X € 7 wird die Menge

o (X)= 4ot X'| F(X)=X"X X) )
eingefiithrt, die wegen (1’) nichtleer ist. Ferner werden mit (X), {(X,Y) die von
X bzw. von X,Y(e?) erzeugten Untervektorrdume bezeichnet. Es gilt dann

& (0)="7" und

X+£0, Xed (X) = o XN)=X+(X>. 3)
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Der Durchschnitt aller./ (X) ist nun als nichtleer nachzuweisen. Wie bei Archinard
(S. 60, Mitte) erhilt man durch einfaches Umrechnen aus (1), (2)

X,Y linear unabhingig, X'eo (X), Yed (Y)= X'-YelX,Y), @)

und die Umformung einer Darstellung (mit Skalaren a,f) X'—Y'=aX+ Y zu
X'—aX=Y'+BY ergibt wegen (3) und & (X), & (V)+0 danny/(X)nLQ/(Y)+¢
Da .« (X)ne/ (Y) bei linear unabhingigen X, Y wegen (3) und (X) n{Y) = {0} aber
hochstens ein Element enthilt, gibt es in.&/ (X) o/ (Y) genau einen Vektor; dieser
wird mit 4 (X, Y) bezeichnet:

X,Y linear unabhingig = (X)ne (Y)={4(X,Y)}. (5)
Man erhilt nun
X,Y,Z linear unabhingig =AX,YV)=A4(Y,Z2)=A4A(Z,X); (6)

denn nach (5), (4), (3) ist
A(Y,Z2)—A(Z,X)e{X, Y)n(Z)=

also A(Y,Z2)=A(Z,X), und aus Symmetriegrinden gilt dann auch A4(X,Y)
=A (Y,Z). Bei linear unabhingigen X,Y,Z und 0+ We(X,Y) sind X,Z, W oder
aber Y,Z, W linear unabhingig, so dass sich nach (6) angewandt auf diese Tripel
AX,Z2)=AZ,W) oder A(Y,Z)=A(Z,W), nach (6), (5) also A(X,Y)ed (W)
ergibt. Wegen (6) und .o/ (O) 7 gilt daher 4 (X, Y)eo/ (Z) bei linear unabhiingigen
X,Y furalle Ze 7.

Wie der Beweis zeigt, gilt die Behauptung, also die Darstellung von F in der Form
F(X)=A X X, bei jedem dreidimensionalen Vektorraum 7~ iiber einem beliebigen
(kommutativen) Korper, falls man, bezogen auf eine festgewdhlte Basis, die beiden
Multiplikationen - und X in der iiblichen Weise mittels Koordinaten definiert.
Auf Vektorriume 7~ beliebiger endlicher Dimensionen n lisst sich das Ergebnis
folgendermassen verallgemeinern: Die Multiplikation - wird als Bilinearform
vorausgesetzt, die bez. (mindestens) einer Basis #Z von 77~ die Einheitsmatrix
besitzt; da (1) wegen (1’)

X -F)=-Y -F(X) furalle X, Ye 7 1”)
liefert, erfillt F genau dann (1) und F(0)=0, falls F eine lineare Abbildung von”?~

in sich ist, die bez. der Basis #Z eine schiefsymmetrische Matrix (a;); x=1, ... » (also
a;=0, a;. = —ay;) besitzt. Die Linearitit von F ergibt sich dabei wegen

.....

Z-Y=2Z"-Y furalle Ye¥ = Z=2'

aus (1”) durch die folgenden Rechnungen:
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F(X+X')- Y=—F(Y)- (X+X))=—F(Y)- X—F(Y)- X’
=F(X)- Y+F(X) - Y=(F(X)+F(X)) - Y,
F(aX) - Y=—=F): (aX)=a(—F(Y)-X)=aF(X) - Y=(aF(X)) - Y.

P. Kohler und G. Pickert.
Mathematisches Institut der Justus-Liebig-Universitit, D-63 Giessen

Uber unitiir perfekte Zahlen

Wie bekannt - [1, 2] -, heisst k unitirer Teiler von »n, wenn erstens k n teilt und
zweitens (k,n/k)=1 gilt. 6% (n) bezeichne im folgenden die unitire Teilersumme
von n. Hierfir gilt

fur n=p{l-p52---p}r ist ¢“(n)=(Pi1+1)---(pir+1). M

Hierbei und im folgenden bezeichnen p,q bzw. p; Primzahlen, a,b, ..., n positive
ganze Zahlen.

Eine Zahl heisst unitir perfekt, wenn o (n) =2 n gilt.

Den Quotienten o* (n)/n bezeichnen wir mit ¢*(n), er ist ebenso wie o¥(n) eine
multiplikative zahlentheoretische Funktion.

Eine wichtige Eigenschaft dieser Funktion ist

¢ (P)=1+p7*. @)

Die Eigenschaften der Funktion ¢*(n) ermdoglichen es, in einfacher Weise eine
untere Grenze fur unitir perfekte Zahlen, welche nicht durch 3 teilbar sind, zu
errechnen.

Satz. Sei N=2"-p{l...plr eine unitdr perfekte Zahl mit (N,3)=1.
Danngilt 1. m>144, 2. r> 144, 3. N> 10%40,

Beweis: Trivialerweise gilt ¢* (p?1-- - p2r)=2"*1. 2™+ 1)~ 1. Ausserdem muss fiir die
Exponenten a; von Primzahlen p;=2 mod 3, 4;=0 mod 2 gelten. Sortieren wir nun
die im Produkt auftauchenden p¢i nach Grosse in der Form N=2".f---f,, mit
fi<f; fur i<j, so gilt wegen (2) ¢*(f)> ¢* (f)) fiir i <j. Sicher gilt ¢*(f}) < ¢*(7), ...,
()< (5%), ... Mit A={7, 13, 19, ..., 1783, 52, 112, 172, 232, 292, 412}, also der
Menge der ersten 136 Primzahlen kongruent 1 modulo 3 vereinigt mit der Menge
der Quadrate der ersten 6 ungeraden Primzahlen kongruent 2 modulo 3, ergibt sich

P=[] ¢“(k)<1,9994 <2143. (21424 1)~ 1,
keAd
Da P- ¢*(1789)> 2 ist, gilt m,r>143; zusammen mit m=0 mod2 und r=0mod 2,
dies sind (3.7) und (3.10) aus [1], ergibt sich m,r=> 144,

Wegen 2!4. TT k- 1789 - 1801> 10*° ergibt sich die letzte Aussage des Satzes.
keA
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Anmerkung: Mit etwas verfeinerten Methoden lassen sich die Grenzen vermutlich
wesentlich verbessern. Es spricht meines Erachtens einiges dafiir, dass 3 jede unitir
perfekte Zahl teilt.

Weitere Untersuchungen der Funktion ¢*(n) - welche hier den Rahmen sprengen
wiirden - fithrten mich zur Entdeckung einer fiinften unitidr perfekten Zahl - im
Widerspruch zu einer Annahme der Autoren von [1], die besagt, dass wahrscheinlich
keine unitir perfekte Zahl grosser als 87360 existiert.

Bisher bekannt waren 6=2-3, 60=2%2-3.5 90=2-32.5 sowie die schon ge-
nannte Zahl 87360=2%-3.5.7 .13,

Die von mir gefundene unitir perfekte Zahl, von der ich nicht weiss, ob sie die
nichste nach 87360 ist, ist
146361946186458562560000=218.3.54.7.11-13-19-37-79-109 - 157 - 313.

H.A.M. Frey,
HRZ Universitiat, Frankfurt a. M.
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Aufgaben

Aufgabe 789. Es sei n ganz und nichtnegativ. Man zeige, dass sich 4" auf unendlich
viele Arten als Differenz einer Quadratzahl und einer Trigonalzahl darstellen lisst.
Ferner soll die Gesamtheit aller derartigen Darstellungen fiir den Fall angegeben
werden, dass 2 - 47+ 1— 1 eine Primzahl (Mersennesche Primzahl) ist.

E. Trost, Ziirich
Losung: Die Gleichung 4"=k?— (’;
=8k>—(2m—1)? bringen. Setzen wir p=2-4"t'—1, y=2k und u=2m—1, so
erhilt sie die Gestalt

) ldsst sich in die Form 2-4rtl_—]

w—2v?=—p. (D

(g, vo)=(1,2"*1) ist eine Losung von (1). Mit (u, v) ist auch (#,7)=@Bu+4v,2u+3v)
eine Losung; (1) hat somit unendlich viele Losungen.

Ist p prim, so liefert die Theorie zur Gleichung (1) alle ihre Losungen wie
folgt (siehe [1], S.204-212):

Die Losungsschar zerfillt in zwei disjunkte Klassen mit den Basislosungen (i, vg)
=(1,2"*Y und (@W),vp)=@-2"*1=3, 3-2"*1-N=(=3uy+4v, —2ug+3).
Durch (u,v)=(xu*+2yv* yu*+xv*) erhdlt man alle iibrigen Losungen, indem
man fur (u*,v*) die beiden Basislosungen einsetzt und (x,y) alle positiven
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