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Im Falle n 4m + 3 hat man schliesslich

Z>4m+3 G3(m)- — + — • (I2 • z2m + 22 • z2m_x+ • • •).

Hier modifiziert man %n etwa so, dass ein Knoten unverändert bleibt, während die
übrigen paarweise verbunden werden. Dann hat ein Knoten die Ordnung 2m,
die übrigen die Ordnung 2m+l\ im komplementären Graphen hat entsprechend
ein Knoten die Ordnung 2m+ 2 und die übrigen die Ordnung 2m+l. Man hat
daher bei dieser Zerlegung

D4m+3=G3(m)-—+ — G3(m).

Walter Tietze, Berlin
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Kleine Mitteilungen

Eine Konfiguration von Punkten und Geraden

In Elem. Math. 4 (1977) stellte C. Bindschedler folgende Aufgabe (791):

1. Es sei t eine Tangente an die Ellipse, welche die Seiten des Dreiecks AXA2A3
in ihren Mittelpunkten berührt (Steinersche Inelhpse). Ferner seien KX,K2,K3 drei
Kegelschnitte, von denen jeder zwei Seiten des Dreiecks in den Endpunkten der
dritten Seite sowie die Gerade t berührt. Je zwei dieser drei Kurven schneiden
sich ausser in einer Ecke At noch in genau einem weiteren reellen Punkt Sx.

Man zeige, dass die Geraden Ax,SX(/= 1,2,3) parallel sind.
Wir betrachten hier eine Erweiterung, indem wir die Tangente t durch eine
behebige Gerade der Ebene ersetzen. Der obige Satz erscheint dann als Sonderfall.

2. Es werden homogene projektive Punktkoordinaten xf(i= 1,2,3) in bezug auf das

Dreieck AXA2A3 eingeführt mit beliebig gewähltem Einheitspunkt; / habe die
Gleichung bxxx + b2x2+b3x3 0 mit ^^0(1=1,2,3). Ein Kegelschnitt, der AXA2
und AXA3 in A2 und A3 berührt, gehört zum Büschel, das die Doppelgerade A2A3
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und das Linienpaar (AXA2,AXA3) enthält und deshalb eine Gleichung der Gestalt
x\ + 2k x2x3 0 hat. Wie man leicht überprüfen kann, wird er von t berührt und
ist ausserdem nicht zerfallen, wenn k= —2b2b3/b2.
Für die Kegelschnitte Kx (i=l, 2, 3) findet man somit

K\ b2x2—2b2b3x2x3 0,
K2 b2x2—2b3bxx3xx 0,
K3 b\x23-2bxb2xxx2 0. (1)

K2 und K3 haben vier Schnittpunkte; einer ist A x (1,0,0). Aus (1) geht durch
Elimination von xi hervor, dass die übrigen Schnittpunkte der Gleichung

b\x\=b3x\ (2)

genügen.
Man findet somit für b2x2/b3x3 die drei Werte 1, w, w2, wobei w= — xf2+ ^a/T-
Es ist dann einfach nachzuweisen, dass die drei von A x verschiedenen Schnittpunkte
von K2 und K3, die wir mit Sx, S\9 S'{ bezeichnen, folgende Koordinaten aufweisen:

Si (ci,2c2,2c3); S'x (cx,2wc2,2w2c3); S'{ (cx, 2w2c2, 2wc3) (3.1)

mit

cx b2b3; c2=b3bx\ c3 bxb2. (4)

Sx ist reell; die übrigen Punkte sind konjugiert komplex.
Für die von A2 verschiedenen Schnittpunkte von K3 und Kx und die von A3
verschiedenen Schnittpunkte von Kx und K2 erhält man in derselben Weise

S2(2ci, c2,2c3); Sf2(2cx w2, c2, 2c3w); S'{(2cxw, c2, 2c3w2); (3.2)
S3(2ch 2c2, c3); S'3 (2cx w,2c2w2, c3); S'{(2cx w2,2c2w, c3). (3.3)

Die Gerade lx=AxSx hat die Gleichung c3x2—c2x3 0, l2 und l3 sind analog
geformt.
Wenn allgemein eine Gerade uxxx + u2x2+u3x3 0 durch ihre Linienkoordinaten
bezeichnet wird, hat man:

h (0, c3, - c2); l\ (0, c3 w, - c2); V[ (0, c3, - c2 w)
h(~c3^,cx)\ l2(-c3,0,cxw); l'i(-c3w,0,cx)
h(fii> ~cx,0); l'3(c2w, -cx,0); l'3'(c2, -cxw,0). (5)

Von diesen neun Geraden sind lx, l2, l3 reell, die anderen imaginär.
Es zeigt sich nun sofort, dass die drei reellen Geraden durch einen Punkt gehen,
da ja die Determinante ihrer Koordinaten verschwindet. Der Schnittpunkt ist
offenbar (ch c2, c3). Auf diesen Fall bezieht sich die affine Spezialisierung der
ursprünglichen Aufgabe. Führt man baryzentrische Koordinaten ein, dann hat be-
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kanntlich die uneigentliche Gerade die Gleichung XiH-x2 + x3 0, während die
Tangentengleichung der Steinerschen Ellipse u2u3 + u3ux + uxu2 0 lautet.
In unserer Notierung ist dann b2b3 + b3bx + bxb2 0, d.h. cx + c2 + c3 0. Daraus
geht hervor,dass lx, l2, l3 nicht nur konkurrent, sondern auch parallel sind.

3. Da die neun Geraden (5) gleichberechtigt sind, ist zu erwarten, dass nicht nur
lx, l2, l3 sondern auch andere Tripel konkurrent sind. Wie man leicht bestätigen
kann, ist dies der Fall für die folgenden neun Tripel:

Tabelle 1

Gerade Schnittpunkt

h,hh B\{cx, c2,c3)

hhh B2{cx,c2w,c3w2)

l'lJll'3 B3(chc2w2,c3w)

h,hl'i B4(chc2w2,c3w2)

l'lhJl B5(chc2w,c3)

l'lJlh Be(c\,c2,c3w)

lu H h B7(cx, c2w, c3w)

hhJ'i B8(cbc2w2,c3)

H h h B9(cx,c2,c3w2)

Neun Tripel von Punkten Bx sind kollinear. In untenstehender Tabelle sind die neun
Geraden aufgeführt, auf denen die Punkte Bx liegen; die Geraden enthalten auch
stets einen der Punkte Ay

Tabelle 2

Bi B2 B3 B4 Bs B6 Bi Bb B9 Ax A2 A3

h X X X X

h X X X X

h X X X X

n X X X X

h X X X X

_
X X X X

n X X X X

ri X X X X

ri X X X X

Auf jeder der neun Geraden gibt es also insgesamt vier Punkte: drei Punkte Bx

und einen Punkt Ay, durch jeden Punkt Bx und jeden Punkt Aj gehen drei Geraden,
d.h. es hegt eine Punkt-Geraden-Konüguration (123, 94) vor. Ax, A2, A3, Bx sowie
lx, l2, l3 sind reell, die übrigen Punkte und Geraden sind imaginär.
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4. Bekanntlich hat eine allgemeine ebene Kurve dritter Ordnung neun Wendepunkte,

die zu dritt auf zwölf Geraden hegen und mit diesen eine Konfiguration
(94, 123) bilden; von den Punkten sind drei, von den Geraden sind vier reell. Die
Vermutung, dass unsere Konfiguration zu jener der Wendepunkte dual ist, lässt
sich folgendermassen bestätigen. Der Einfachheit halber fassen wir dazu die
Linienkoordinaten (5) der Geraden / als Punktkoordinaten (yx, y2, y3) auf, so dass es sich
jetzt um neun Punkte Px handelt, während die zwölf Punkte Bx und Aj mit Geraden
übereinstimmen. Man kann leicht nachprüfen, dass die Punkte Px auf der kubischen
Kurve K mit der Gleichung

c\y\ + c32y32 + c33y\ 0 (6)

liegen. Die Tangente tx im Punkt (0, c3, -c2) hat die Gleichung c2y2 + c3y3 0.
Diese Gerade hat mit K drei zusammenfallende Schnittpunkte. Damit ist
(0, c3, — c2) als ein Wendepunkt von K erkannt, und dasselbe gilt für jeden anderen
der neun Punkte. Wir haben also gezeigt: Unsere Konfiguration (123, 94) ist zur
Konfiguration der Wendepunkte einer allgemeinen ebenen Kubik dual.

O. Bottema (Delft, NL)
J.T. Groenman (Groningen, NL)

Bemerkungen zu G. Archinard: Resolution vectorielle de l'Equation fonctionelle des

apphcations Equiprojectives (El. Math. 32, 59-61,1977)

Der Beweisgedanke dieser Arbeit lässt sich u.E. übersichtlicher darstellen, wenn
man, wie im folgenden ausgeführt, mit Vektormengen arbeitet. Offenbar kann man
sich auf den Fall F(0) 0 beschränken und hat dann also eine Abbildung F des

dreidimensionalen reellen Vektorraumes 7^( R3) in sich mit

(F(X)-F(Y)) • (X-Y) 0 füralle X,Ye^ (1)

zu untersuchen. Wegen F(0) 0 folgt aus (1) (mit Y= 0)

F(X)X=0 für alle XeT'. (V)

Zu jedem Xe ^wird die Menge

^(X) dQf{X'\F(X) X'xX} (2)

eingeführt, die wegen (V) nichtleer ist. Ferner werden mit {X}, {X, Y} die von
X bzw. von X, Y(eJ^) erzeugten Untervektorräume bezeichnet. Es gilt dann

j^(0)=^und

X*0, X'es/(X) =>s/(X) X'+(X). (3)
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Der Durchschnitt allerg (X) ist nun als nichtleer nachzuweisen. Wie bei Archinard
(S. 60, Mitte) erhält man durch einfaches Umrechnen aus (1), (2)

X, Y hnear unabhängig, X'es/(X), Y'es/(Y) => X'-Y'e (X, Y}, (4)

und die Umformung einer Darstellung (mit Skalaren a,ß) X'—Y' aX+ßY zu

X'-aX= T+ ßY ergibt wegen (3) und s/(X), j/(Y)*0 dannj/(X)nj^(Y)+0.
Da s/(X)ns/ (Y) bei linear unabhängigen X, Y wegen (3) und <*> n(Y) {0} aber
höchstens ein Element enthält, gibt es ins/(X)ns/(Y) genau einen Vektor; dieser

wird mit A (X, Y) bezeichnet:

X,Y hnear unabhängig =>s/(X)ns/(Y)={A(X,Y)}. (5)

Man erhält nun

X,Y,Z linear unabhängig =>A(X, Y)=A(Y,Z)=A(Z,X); (6)

denn nach (5), (4), (3) ist

A(Y,Z)-A(Z,X)e(X,Y)n(Z) {0},

also A(Y,Z)=A(Z,X), und aus Symmetriegründen gilt dann auch A(X, Y)
~A(Y,Z). Bei hnear unabhängigen X, Y,Z und 0+ We (X, T) sind X,Z, W oder
aber Y, Z, W linear unabhängig, so dass sich nach (6) angewandt auf diese Tripel
A(X,Z)=A(Z,W) oder A(Y,Z)=A(Z, W), nach (6), (5) also A(X,Y)ss/(W)
ergibt. Wegen (6) unds/ (0)= 2^gilt daher A (X, Y)es/ (Z) bei linear unabhängigen
*, t für alle ZeT\
Wie der Beweis zeigt, gilt die Behauptung, also die Darstellung von F in der Form
F(X)=AxX, bei jedem dreidimensionalen Vektorraume über einem beliebigen
(kommutativen) Körper, falls man, bezogen auf eine festgewählte Basis, die beiden
Multiplikationen • und x in der üblichen Weise mittels Koordinaten definiert.
Auf Vektorräume Tf behebiger endhcher Dimensionen n lässt sich das Ergebnis
folgendermassen verallgemeinern: Die Multiplikation • wird als Bilinearform
vorausgesetzt, die bez. (mindestens) einer Basis 38 von f die Einheitsmatrix
besitzt; da (1) wegen (10

XF(Y)=-YF(X) für alle IJeT (1")

liefert, erfüllt F genau dann (1) und ir(0)=0, falls F eine lineare Abbildung von >^
in sich ist, die bez. der Basis 09 eine schiefsymmetrische Matrix (atk\k^x^ n (also

an 0, alk— — akl) besitzt. Die Linearität von F ergibt sich dabei wegen

Z Y~Z'- Y für alle Y^T^> Z~Z'

aus (l'O durch die folgenden Rechnungen:



Kieme Mitteilungen 95

F(X+X') • Y= -F(Y) • (X+X')= -F(Y>- X-F(Y) • _Y'

F(X)- 7+F(X0- Y=(F(X)+ F(X')) • 7,
F(a*)' 7=-F(Y)(aX) a(-F(y)X)=aF(_Y)- Y=(aF(X)) • y.

P. Köhler und G. Pickert.
Mathematisches Institut der Justus-Liebig-Universität, D-63 Giessen

Über unitär perfekte Zahlen

Wie bekannt - [1, 2] -, heisst k unitärer Teiler von n, wenn erstens k n teilt und
zweitens (k, n/k) 1 gilt. ou (n) bezeichne im folgenden die unitare Teilersumme
von n. Hierfür gilt

für n=p\\-pa22...p«r ist au(n) (paxi+l)'--(parr+l). (1)

Hierbei und im folgenden bezeichnen p,q bzw. px Primzahlen, a,b, n positive
ganze Zahlen.
Eine Zahl heisst unitär perfekt, wenn au (n) 2n gilt.
Den Quotienten ou(n)/n bezeichnen wir mit 4>u(n), er ist ebenso wie ou(n) eine
multiphkative zahlentheoretische Funktion.
Eine wichtige Eigenschaft dieser Funktion ist

<ßu(pk)=l+p-k. (2)

Die Eigenschaften der Funktion (j)u(n) ermöglichen es, in einfacher Weise eine
untere Grenze für unitär perfekte Zahlen, welche nicht durch 3 teilbar sind, zu
errechnen.

Satz. Sei N= 2m -p\x • • -tffr eine unitärperfekte Zahl mit (N, 3)= 1.

Dann gilt l.m^ 144,2. r;> 144,3. N> 10440.

Beweis: Trivialerweise gilt (ßu (pp •. -parr)=2m+ x
• (2m+ l)~x. Ausserdem muss für die

Exponenten ax von Primzahlen pt=2 mod 3, ^ 0 mod 2 gelten. Sortieren wir nun
die im Produkt auftauchenden/?f* nach Grösse in der Form _V=2m -fx- -fr, mit
fx<fj für i<j, so gilt wegen (2) (/>"&)>(/>»$) für i<j. Sicher gilt </>u(fx)<_c/>u(1),...,
(fiu(f4)^cf>u(52), Mit A {1, 13, 19, 1783, 52, ll2, 172, 232, 292, 412}, also der
Menge der ersten 136 Primzahlen kongruent 1 modulo 3 vereinigt mit der Menge
der Quadrate der ersten 6 ungeraden Primzahlen kongruent 2 modulo 3, ergibt sich

P= II (f>u(k)< 1,9994<2143. (2142+ l)"1.
keA

Da P- (/)U(US9)>2 ist, gilt m,r_> 143; zusammen mit m==0 mod2 und r=0 mod2,
dies sind (3.7) und (3.10) aus [1], ergibt sich m,r_> 144.

Wegen 2144 • IJ k • 1789 • 1801 > 10440 ergibt sich die letzte Aussage des Satzes.
keA
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Anmerkung: Mit etwas verfeinerten Methoden lassen sich die Grenzen vermutlich
wesentlich verbessern. Es spricht meines Erachtens einiges dafür, dass 3 jede unitär
perfekte Zahl teilt.
Weitere Untersuchungen der Funktion 0" (n) - welche hier den Rahmen sprengen
würden - führten mich zur Entdeckung einer fünften unitär perfekten Zahl - im
Widerspruch zu einer Annahme der Autoren von [1], die besagt, dass wahrscheinlich
keine unitär perfekte Zahl grösser als 87360 existiert.
Bisher bekannt waren 6 2-3, 60 22 • 3 • 5, 90 2 • 32 • 5 sowie die schon
genannte Zahl 87360 26 .35713.
Die von mir gefundene unitär perfekte Zahl, von der ich nicht weiss, ob sie die
nächste nach 87360 ist, ist
146361946186458562560000 218 • 3 • 54 7 • 11 • 13 19 • 37 • 79 • 109 157 313.

H.A.M. Frey,
HRZ Universität, Frankfurt a.M.
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Aufgaben

Aufgabe 789. Es sei n ganz und nichtnegativ. Man zeige, dass sich 4n auf unendlich
viele Arten als Differenz einer Quadratzahl und einer Trigonalzahl darstellen lässt.
Ferner soll die Gesamtheit aller derartigen Darstellungen für den Fall angegeben
werden, dass 2 • 4M+ *

— 1 eine Primzahl (Mersennesche Primzahl) ist.
E. Trost, Zürich

Lösung: Die Gleichung 4n k2-( J lässt sich in die Form 2-4n+1-l

Sk2-(2m-l)2 bringen. Setzen wir p 2 • 4n+l- 1, v=2/c und u 2m-l, so
erhält sie die Gestalt

u2-2v2=-p. (1)

(u0, v0)=(l,2w+I) ist eine Lösung von (1). Mit (u,v) ist auch (ü,v) (3u + 4v,2u + 3 v)
eine Lösung; (1) hat somit unendlich viele Lösungen.
Ist p prim, so liefert die Theorie zur Gleichung (1) alle ihre Lösungen wie
folgt (siehe [1],S. 204-212):
Die Lösungsschar zerfallt in zwei disjunkte Klassen mit den Basislösungen (u0, v0)

(1,2»+1) und 04v6) (4.2»+1-3, 3 • 2»+1-2)=(-3Wo+4v0, -2Wo + 3v0).
Durch (u,v)=(xu* + 2yv*,yu* + xv*) erhält man alle übrigen Lösungen, indem
man für (u*,v*) die beiden Basislösungen einsetzt und (x,y) alle positiven
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