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Das Problem der Dreiercliquen. -
Ein Beitrag zur Graphentheorie

1. Einleitung

In der Unterhaltungsmathematik wird die folgende Frage behandelt «Befinden
sich unter 6 Personen, die sich unteremander mit Du oder Sie anreden, stets 3

Personen, die sich gleich anreden9»
Die Antwort lautet, wenn man 3 Personen der Gesellschaft, die sich gleich anreden,
eine Dreierchque nennt In einer Gesellschaft von 6 Personen gibt es mit Sicherheit

stets eine Dreierchque
Die Begründung dafür kann etwa so gefuhrt werden ([3], S 23) Eine behebige
Person A hat im Verhältnis zu den anderen 5 Personen sicher zu dreien die gleiche
Anredeform Das mögen die Personen B, C und D sein Wenn nun diese 3 Personen
eine Dreierchque bilden, ist eine solche vorhanden Wenn nicht, dann müssen sich
mindestens 2 dieser Personen so anreden, wie A die Personen B, C und D
anredet Dann bildet A mit diesen beiden Personen eine Dreierchque
Die genauere Untersuchung fuhrt zu der Erkenntnis, dass unter 6 Personen stets

wenigstens 2 Dreierchquen existieren Allgemeiner stellt sich die Frage nach der
Anzahl der Dreierchquen in einer Gesellschaft von n Personen Zur Veranschauh-
chung hegt es nahe, die n Personen als Punkte darzustellen und die (f) möglichen
Verbmdungen, dem Du und Sie entsprechend, in zwei verschiedenen Farben,
etwa Rot und Blau, anzulegen Damit wird man auf ein Farbungsproblem uber
Graphen geführt Die Frage lautet jetzt Wie gross ist bei einem gefärbten voll-
standigen Graphen die Mindestzahl der Dreiecke mit gleichfarbigen Seiten, der
sog chromatischen Dreiecke9 Wir bleiben hier bei der einfachen Bezeichnung
das Problem der Dreierchquen
Zur Aufhellung der Problematik kann man die Du- und Sie-Beziehungen auch
in zwei getrennten Graphen © und © gleicher Knotenzahl darstellen Die
Verbmdungen in © bedeuten dann etwa das Du, die Verbmdungen m © entsprechend
das Sie Zwei solche Graphen haben die Eigenschaft, dass zwei Knoten m dem
emen genau dann verbunden sind, wenn im anderen die Verbindung fehlt Sie
heissen m der Graphentheorie komplementär Damit kann unsere Frage schliesslich
auch so formuliert werden Wie viele der (") Dreiecke eines vollständigen Graphen
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mit n Knoten bleiben mindestens erhalten, wenn dieser in behebiger Weise in
komplementäre Graphen aufgeteilt wird?
Die erste Lösung des Dreiercliquenproblems hat offenbar A.W. Goodman im Jahre
1959 veröffentlicht [1]. Sein Ergebnis soll hier einfach als die Goodman-Formel
bezeichnet werden. Unabhängig von dem Minimalproblem kann man allgemein
nach der genauen Zahl der chromatischen Dreiecke bei einer beliebigen Kanten-
farbung eines vollständigen Graphen fragen. Hierzu hat G. Lorden 1962 ein sehr
nützliches Lemma entwickelt [2].
Die vorliegende Untersuchung wurde durchgeführt ohne Kenntnis der früheren
Arbeiten. Sie benutzt jetzt den schönen Ansatz von Lorden und entwickelt für die
Zahl Dn der Dreiecke bei beliebiger Zerlegung eines vollständigen Graphen einen
bemerkenswert einfachen Ausdruck (Satz 1). Eine spezielle zweite Form der
Darstellung von Dn (Satz 2) führt dann leicht auf die Goodman-Formel.

2. Das Lemma von Lorden

Die Zahl der Kanten, die in einem Graphen mit einem Knoten K inzidieren,
heisst die Ordnung des Knotens K. Haben alle Knoten eines Graphen © die
gleiche Ordnung r, dann heisst © ein regulärer Graph von der Ordnung r. Der
vollständige Graph mit n Knoten ist regulär von der Ordnung n—l. Er möge mit
3„ bezeichnet werden. Er hat (2) Kanten und enthält (5) Dreiecke.
Wir richten unser Augenmerk zunächst auf die Zahl der nichtchromatischen
Dreiecke eines gefärbten %n. Diese Dreiecke haben entweder die Seitenfarben
Blau-Blau-Rot oder Rot-Rot-Blau (Fig. 1). In jedem dieser Dreiecke gibt es genau
zwei Ecken, an denen verschiedenfarbige Seiten zusammenstossen. Das sind die

b b r

v v •\T _> ^
Figur 1

Ecken an der Seite, deren Farbe nur einmal vorkommt. Solche Ecken mögen
V-Ecken heissen. Man kann die Gesamtzahl dieser Ecken leicht bestimmen, wenn
man etwa die Zahl rt der roten Kanten kennt, die mit dem Knoten Kt (i= 1,2,... n)
inzidieren. Mit dem Knoten Kt inzidieren dann n—l — rt blaue Kanten. Da jede
Kombination einer roten mit einer blauen Kante eine V-Ecke ergibt, hegen in dem
Knoten K, genau rt- (n—l — rt) V-Ecken. Damit ergibt sich die Gesamtzahl der
V-Ecken in %

Sn-trrfr-l-r,). (1)
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Da nun zu je zwei V-Ecken genau ein wohlbestimmtes nichtchromatisches Dreieck
gehört, ist die Zahl der nichtchromatischen Dreiecke (1/2) Sn. Damit folgt das
Lemma von Lorden: Inzidieren in einem gefärbten vollständigen Graphen ^w(n^ 3)
mit dem Knoten Kx genau rx rote Kanten, dann ist die Zahl der chromatischen
Dreiecke von %n

ln\ 1 AzH)-y|>'-("-1-'<>- (2)

3. Die Zahl Dn durch Zerlegung eines vollständigen Graphen vSn

Die Zahl Dn der chromatischen Dreiecke soll nun dadurch bestimmt werden,
dass wir von einer Aufteilung von §„ in zwei komplementäre Graphen ©w und ®w

ausgehen. Unter ©„+©„ wollen wir den Graphen verstehen, der aus den getrennt
liegenden Graphen ©n und (S„ besteht. Er hat 2n Knoten und (^) Kanten. Figur
2 zeigt eine Summenzerlegung @W + ®M von %n. Es gilt der folgende

Satz 1. Zerlegt man einen vollständigen Graphen y$n(n>3) in beliebiger Weise in
die Summe von komplementären Graphen ©„+©„, und gibt zk die Zahl der Knoten
in &n + @„ an, die die Ordnung k haben, dann gilt für die Anzahl Dn der Dreiecke in
©„+(_.„

(»-3) •/>„«£ (,)•-*, Zz,=2«.
Ä:=0\3y jt 0

(3)

Im Beispiel der Figur 2 ergibt sich

(4-3)-D4=[3yz3=l-, D4=l.

x
Die Werte zk

*k

0 12 3

13 3 1

Figur 2

+

%

haben naturgemäss die Summe 8 2 n.
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Beweis:

a) Sei etwa ©w der rote, (S„ der blaue Teilgraph des gefärbten §„. Aus der
Voraussetzung beim Lorden-Lemma, dass mit dem Knoten Kx von %n genau rx

rote Kanten inzidieren, folgt jetzt: die Knoten Kx, K2, Kn von ©„ haben die
Ordnungen

rx,r2,...rn, 0<rx<Ln-l.

Wir fassen in der Summe (1)

Sn >V (n-l-rx)+ r2- (n- l-r2)+ • - • +rn • (n-l-rn)
die Glieder mit gleichen r-Werten zusammen.
Möge etwa der Wert 0, 1,... n— 1:

u0,ux,...un-X mal vorkommen.

Man erhält

Sn u0*0 • (ji-l) + i*r 1 • (n-2)+u2-2- (n-3)+'-+un_x- (n-l)-0

^uk'k-(n-l-k). (4)
k 0

b) Weil uk Knoten in @„ die Ordnung k haben, haben uk Knoten in (Sn die

Ordnung n — 1 — k und un_ x __k Knoten in ®„ die Ordnung k.
Die Gesamtzahl der Knoten in ©„+ ®„ mit der Ordnung k ist daher

zk=*uk+un-\-k-
w-1

Es ist z„_ X-k=zk und X. zk^^n (bestätigt im Beispiel).
k 0

c) Neben (4) gilt

Sn=Zun-i-k-("-l-k)'k. (5)
*=o

Die Summe ergibt

2Sn=Zk(n-l~k)zk.
£=0

Damit folgt aus dem Lorden-Lemma

(6)
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d) Um (£) in die Summe einbeziehen zu können, verwenden wir
H-i /n\ /n—\\ /n—l\ w_i

2n ^Zk undsetzen 2 • (n-3) • (_) 2« •

3 3 £-_.

Damit wird

n-\
^-^yD^4(n~3l)-(n~l~k)2k(n~3)] (7)

Wir formen nun die Klammer um unter Benutzung der für beliebige a, beZ
und «eN gültigen Beziehung

(°:b)=u:-Xy>-
Daraus folgt insbesondere

(a + b\ fa\ fa\ fb\ /a\ fb\ /b\ (a\ (b\ ab(a + b — 2)

oder

(a + b\ ab(a + b-2) (a\ (b\{3)—_—-Ü+U-
Die Klammer in (7) kann damit wie folgt umgeformt werden

/(n-l-k) + k\ (n-l-k)k(n-l-k + k-2) /n-l-k\ /k\

Wir erhalten aus (7)

Wegen der Gleichheit der beiden Summen ist damit (3) erreicht.

4. Differenzierte Darstellung der Anzahl Dn

Im Hinblick auf das Minimalproblem erweist sich die getrennte Darstellung der
Fälle n 2m,n 4m+ 1 und« 4m + 3 als nützlich.

1) Man kann diese Beziehung bestätigen, indem man im Binomialreihenprodukt
(1 + x)a+b= (1 + x)a(l + xf beidseitig den Koeffizienten von xn betrachtet.
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Satz 2. Zerlegt man einen vollständigen Graphen %n(n>3) in beliebiger Weise in
komplementäre Graphen @„ und ©„ und gibt es in @n+(Sn genau zk Knoten der
Ordnung k, dann giltfür die Anzahl Dn der Dreiecke in ©„ + ($n

^ x v2* /*\ m(m-l)(m-2)
»2m=Gx(m)+Z2[2)'Zm„k mit Gx(m)=^ ^ L, (8a)

D4m^G2(m)+^ fk2 .z2m_k mit G2(m)= lm^' \)(4"* + *>, (8b)
2 *=_ 3

1 1 2m+x
E>Am + l G3(™)--^+^' Z k2'z2m+l-k mi*

2/n(m+l)(4m-l)
G3(m)= - (8c)

Die Zahlen G,(m) sind ganz, da die Faktoren im Zähler jeweils alle Restklassen
mod 3 repräsentieren.

Beweis:
1. Aus (7) folgt

,^,.[iC;y___?___].
Daraus wird im Falle n 2m

•'¦^-£V[i(*--')-"*+CT

Hier kann man die Klammer wiederum mit der bereits schon einmal benutzten
Beziehung über Binomialkoeffizienten auf eine zweckmässigere Form bringen.
Wegen

(Tm™k)(>cm--+(T)
ist

ßm-\\ (k+l\ 1 ßm-1\ (m-k\ (m\
2 )-mk+ { 2 )-y( 2

+
2 )-(2)

(m-k\ 1 (m-l\-( 2 )+y( 2 )•



W Tietze Das Problem der Dreierchquen - Ein Beitrag zur Graphentheorie 87

Aus (9) wird damit

1 fm-l\ 2^-r1 2^r1 (m-k\^ ^
1 (m-l\ 2m^l 2/n^-l/m_Ä;\

1 /m-l\^=y( 2 )-4w=2-Gi(m)-

In der Summe B sind symmetrisch liegende Güeder

(m-k\ J //c+l-m\ rt
{ 2 )'Zk \ 2 )'z2m-\-k O^k^m-l

gleich, weil

(-(m-k-l)\ (m-k\
\ 2 r\ 2

und z^=z^-^

ist. Man erhält

v ~ m^x(m-k\
2.D2m 2-Gx(m) + 2. £^ 2 J • **

und damit (8 a).

2. Für /? 2 r + 1 folgt entsprechend aus (7')

,^,-jU.[lf;)-^].
Der Klammerausdruck wird mit k - (2r-k)=r2—(r-k)2

l ßr\ r2 (r-k)2 (r-k)2 r(r-2)XirT'
Damit hat man

3....-+—.—^+

,^,.^,[^a+i^]
D2r+l='^Lr^-(2r+l)+]-- £(r-k)2-zk=A + B. (10)

O 4 & 0

Im Falle r=2w,/t 4m+1 wird^ (2m(m~ l))/3 • (4m+l)=G2(m).
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In der Summe B entsteht für k=2m ein Mittelglied, welches verschwindet. Die
übrigen symmetrisch liegenden Glieder

(2m-k)2-zk und [2m-(4m-k)f • z4m_k

sind wieder gleich. Damit erhält man

1 2m-1
D4m+i G2(m)+--' £ (2m-k)2-zkl k=0

und schliesslich (8 b).
Ganz entsprechend folgt im Falle r=2m+l,n 4m + 3 aus (10)

1 1 2m

E>4m+3=G3(m)--- + -- X (2m+l-k)2-zk
2 l k 0

und (8 c).

5. Die Goodman-Formel

Als einfache Konsequenz ergibt sich nun aus dem Satz 2 sofort die Goodman-Formel.
Die Mindestzahl der chromatischen Dreiecke in einem vollständigen gefärbten
Graphen mit n Knoten ist

M

n(n-2)(n-4)
24

n(n-l)(n-5)
24

(n+l)(n-3)(n-4)
24

bei n 2m,

bei n 4 m + 1,

bei n 4m + 3.

(IIa)

(IIb)

(11c)

Bei jedem n existieren Färbungen mit diesen Mindestzahlen.
Die ersten Werte von Mn zeigt die folgende Tabelle:

n 4 5 6 7 8 9 10

Mn 0 0 2 4 8 12 20

Beweis:
Man erkennt leicht, dass die hier auftretenden Zahlen Mn mit den Zahlen Gx(m)
von Satz 2 übereinstimmen. Da dort alle Zusätze zu den Zahlen Gx (m) ganzzahlig
und grösser oder gleich - (l/2) sind, folgt sofort: Es ist stets Dw_> Mn.
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Es muss nur noch nachgewiesen werden, dass es stets Zerlegungen oder Färbungen

gibt, bei denen alle in Satz 2 auftretenden Zahlen zk verschwinden, mit einer
kleinen Modifikation im Falle n 4m + 3. Das ist sehr einfach.

Die in (8 a) auftretenden Summen sind

(2\ (3
bei n 4m: (2)*2m-2+(2)^-3 + +

2m
2

Zo>

bei n 4m + 2: (2)z2m-i + (2)*2m-2+•''+( 2 )z0.

Die hier vorkommenden z-Werte kann man bei der Zerlegung 3«=®« + ®«
vermeiden, indem man ©„ regulär von der Ordnung r=2m wählt. Bei n 4m ist
dann @M regulär von der Ordnung r=2m—l,bein 4m + 2 entsprechend von der
Ordnung f= 2m + 1.

Den betreffenden Graphen ©„ kann man schrittweise etwa so aufbauen: Man
verbindet in einem 1. Schritt jeden der n Knoten, die in einem geschlossenen
Ring hegen mögen, mit seinen beiden Nachbarn, in einem 2. Schritt zusätzlich
mit den beiden übernächsten Nachbarn usw. bis zum m-ten Schritt, der auf die

Ordnung 2 m führt. Für diese Konstruktion sind genügend Knoten vorhanden:
Man benötigt zum 2.Schritt insgesamt 1 + 4, zum m-ten Schritt l + 2m Knoten.
Das gilt auch für « 4m + 1 und n 4m + 3.

Beispiel: n= 8 (Fig. 3).

<_,

Figur 3

Auch bei n 4m+l führt die Zerlegung mit dem Graphen @n der Ordnung
r=2m zum gewünschten Ziel. Hier hat der komplementäre Graph dieselbe

Ordnung. Daher verschwinden alle in der Summe von (8 b)

1

(l2'Z2m_x + 22'Z2m_2+'")

auftretenden z-Werte.
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Im Falle n 4m + 3 hat man schliesslich

Z>4m+3 G3(m)- — + — • (I2 • z2m + 22 • z2m_x+ • • •).

Hier modifiziert man %n etwa so, dass ein Knoten unverändert bleibt, während die
übrigen paarweise verbunden werden. Dann hat ein Knoten die Ordnung 2m,
die übrigen die Ordnung 2m+l\ im komplementären Graphen hat entsprechend
ein Knoten die Ordnung 2m+ 2 und die übrigen die Ordnung 2m+l. Man hat
daher bei dieser Zerlegung

D4m+3=G3(m)-—+ — G3(m).

Walter Tietze, Berlin
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Kleine Mitteilungen

Eine Konfiguration von Punkten und Geraden

In Elem. Math. 4 (1977) stellte C. Bindschedler folgende Aufgabe (791):

1. Es sei t eine Tangente an die Ellipse, welche die Seiten des Dreiecks AXA2A3
in ihren Mittelpunkten berührt (Steinersche Inelhpse). Ferner seien KX,K2,K3 drei
Kegelschnitte, von denen jeder zwei Seiten des Dreiecks in den Endpunkten der
dritten Seite sowie die Gerade t berührt. Je zwei dieser drei Kurven schneiden
sich ausser in einer Ecke At noch in genau einem weiteren reellen Punkt Sx.

Man zeige, dass die Geraden Ax,SX(/= 1,2,3) parallel sind.
Wir betrachten hier eine Erweiterung, indem wir die Tangente t durch eine
behebige Gerade der Ebene ersetzen. Der obige Satz erscheint dann als Sonderfall.

2. Es werden homogene projektive Punktkoordinaten xf(i= 1,2,3) in bezug auf das

Dreieck AXA2A3 eingeführt mit beliebig gewähltem Einheitspunkt; / habe die
Gleichung bxxx + b2x2+b3x3 0 mit ^^0(1=1,2,3). Ein Kegelschnitt, der AXA2
und AXA3 in A2 und A3 berührt, gehört zum Büschel, das die Doppelgerade A2A3
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