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Das Problem der Dreiercliquen. -
Ein Beitrag zur Graphentheorie

1. Einleitung

In der Unterhaltungsmathematik wird die folgende Frage behandelt: «Befinden
sich unter 6 Personen, die sich untereinander mit Du oder Sie anreden, stets 3 Per-
sonen, die sich gleich anreden?»

Die Antwort lautet, wenn man 3 Personen der Gesellschaft, die sich gleich anreden,
eine Dreiercligue nennt: In einer Gesellschaft von 6 Personen gibt es mit Sicher-
heit stets eine Dreierclique.

Die Begriindung dafiir kann etwa so gefithrt werden ([3], S.23): Eine beliebige
Person A hat im Verhiltnis zu den anderen 5 Personen sicher zu dreien die gleiche
Anredeform. Das mogen die Personen B, C und D sein. Wenn nun diese 3 Personen
eine Dreierclique bilden, ist eine solche vorhanden. Wenn nicht, dann miissen sich
mindestens 2 dieser Personen so anreden, wie A die Personen B, C und D an-
redet. Dann bildet A mit diesen beiden Personen eine Dreierclique.

Die genauere Untersuchung fithrt zu der Erkenntnis, dass unter 6 Personen stets
wenigstens 2 Dreiercliquen existieren. Allgemeiner stellt sich die Frage nach der
Anzahl der Dreiercliquen in einer Gesellschaft von » Personen. Zur Veranschauli-
chung liegt es nahe, die n Personen als Punkte darzustellen und die (§) méglichen
Verbindungen, dem Du und Sie entsprechend, in zwei verschiedenen Farben,
etwa Rot und Blau, anzulegen. Damit wird man auf ein Firbungsproblem iiber
Graphen gefithrt. Die Frage lautet jetzt: Wie gross ist bei einem gefirbten voll-
staindigen Graphen die Mindestzahl der Dreiecke mit gleichfarbigen Seiten, der
sog. chromatischen Dreiecke? Wir bleiben hier bei der einfachen Bezeichnung:
das Problem der Dreiercliquen.

Zur Aufhellung der Problematik kann man die Du- und Sie-Beziehungen auch
in zwei getrennten Graphen & und & gleicher Knotenzahl darstellen: Die Ver-
bindungen in & bedeuten dann etwa das Du, die Verbindungen in & entsprechend
das Sie. Zwei solche Graphen haben die Eigenschaft, dass zwei Knoten in dem
einen genau dann verbunden sind, wenn im anderen die Verbindung fehlt. Sie
heissen in der Graphentheorie komplementdr. Damit kann unsere Frage schliesslich
auch so formuliert werden: Wie viele der (%) Dreiecke eines vollstindigen Graphen
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mit n Knoten bleiben mindestens erhalten, wenn dieser in beliebiger Weise in
komplementire Graphen aufgeteilt wird?

Die erste Losung des Dreiercliquenproblems hat offenbar A.W. Goodman im Jahre
1959 veroffentlicht [1]. Sein Ergebnis soll hier einfach als die Goodman-Formel
bezeichnet werden. Unabhingig von dem Minimalproblem kann man allgemein
nach der genauen Zahl der chromatischen Dreiecke bei einer beliebigen Kanten-
farbung eines vollstindigen Graphen fragen. Hierzu hat G. Lorden 1962 ein sehr
niitzliches Lemma entwickelt [2].

Die vorliegende Untersuchung wurde durchgefiihrt ohne Kenntnis der fritheren
Arbeiten. Sie benutzt jetzt den schonen Ansatz von Lorden und entwickelt fiir die
Zahl D, der Dreiecke bei beliebiger Zerlegung eines vollstindigen Graphen einen
bemerkenswert einfachen Ausdruck (Satz 1). Eine spezielle zweite Form der Dar-
stellung von D, (Satz 2) fithrt dann leicht auf die Goodman-Formel.

2. Das Lemma von Lorden

Die Zahl der Kanten, die in einem Graphen mit einem Knoten K inzidieren,
heisst die Ordnung des Knotens K. Haben alle Knoten eines Graphen & die
gleiche Ordnung r, dann heisst & ein regulidrer Graph von der Ordnung r. Der
vollstindige Graph mit n Knoten ist regulir von der Ordnung n— 1. Er mége mit
3. bezeichnet werden. Er hat (3) Kanten und enthélt (%) Dreiecke.

Wir richten unser Augenmerk zunichst auf die Zahl der nichtchromatischen
Dreiecke eines gefirbten $,. Diese Dreiecke haben entweder die Seitenfarben
Blau-Blau-Rot oder Rot-Rot-Blau (Fig. 1). In jedem dieser Dreiecke gibt es genau
zwel Ecken, an denen verschiedenfarbige Seiten zusammenstossen. Das sind die

v v N v v N

Figur 1

Ecken an der Seite, deren Farbe nur einmal vorkommt. Solche Ecken mégen
V-Ecken heissen. Man kann die Gesamtzahl dieser Ecken leicht bestimmen, wenn
man etwa die Zahl r; der roten Kanten kennt, die mit dem Knoten K; (i=1,2,... n)
inzidieren. Mit dem Knoten K; inzidieren dann n—1—r; blaue Kanten. Da jede
Kombination einer roten mit einer blauen Kante eine V-Ecke ergibt, liegen in dem
Knoten K; genau r;- (n—1—r;) V-Ecken. Damit ergibt sich die Gesamtzahl der
V-Eckenin %,

S,,=§:lr,-- (n—1-=r). D
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Da nun zu je zwei V-Ecken genau ein wohlbestimmtes nichtchromatisches Dreieck
gehort, ist die Zahl der nichtchromatischen Dreiecke (1/2) S,. Damit folgt das
Lemma von Lorden: Inzidieren in einem gefirbten vollstindigen Graphen J,(n>3)
mit dem Knoten K; genau r; rote Kanten, dann ist die Zahl der chromatischen
Dreiecke von 5,

D,=(3) =5 S n m1-n. @

3. Die Zahl D, durch Zerlegung eines vollstindigen Graphen <,

Die Zahl D, der chromatischen Dreiecke soll nun dadurch bestimmt werden,
dass wir von einer Aufteilung von $, in zwei komplementire Graphen @&, und &,
ausgehen. Unter ®,+ &, wollen wir den Graphen verstehen, der aus den getrennt
liegenden Graphen &, und &, besteht. Er hat 2n Knoten und (%) Kanten. Figur
2 zeigt eine Summenzerlegung &, + &, von ,,. Es gilt der folgende

Satz 1. Zerlegt man einen vollstdndigen Graphen 3, (n>3) in beliebiger Weise in
die Summe von komplementdren Graphen &,+ ®,, und gibt z, die Zahl der Knoten
in &,+®, an, die die Ordnung k haben, dann gilt fiir die Anzahl D, der Dreiecke in
G,+6,

n=1 sk n—1
(n—3)-D,=3 ( ) g ¥ z=2an. 3)
k=0\3 k=0
Im Beispiel der Figur 2 ergibt sich
3
(4—3)D4=<3)Z3=1, D4=1

o ©

y < N
3. A 9,

Figur 2
Die Werte z;,
k|01 23
Zkl 1 3 3 1

haben naturgemiss die Summe 8 =2n,
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Beweis:
a) Sei etwa &, der rote, &, der blaue Teilgraph des gefirbten <,. Aus der
Voraussetzung beim Lorden-Lemma, dass mit dem Knoten K; von ¥, genau r;
rote Kanten inzidieren, folgt jetzt: die Knoten K, K,, ... K, von &, haben die
Ordnungen

Fi,7y ... ¥y, OSr,-sn—l.
Wir fassen in der Summe (1)

Sp=ri-(n=1=r)+ry-(n—1=r))+---+r,- (n—1-r,)

die Glieder mit gleichen r-Werten zusammen.
Moge etwa der Wert 0, 1, ... n—1:

ug, Uy, ... U,_; mal vorkommen.
Man erhilt
S,=uyg-0-n—D+u;-1-n—=2)+uy-2-(n—=3)+---+u, - (n—1)-0

n—1
=k§=)0uk.k-(n—1—k). 4)

b) Weil u;, Knoten in @, die Ordnung k haben, haben u, Knoten in &, die Ord-
nung n— 1~k und u,_,_, Knoten in §, die Ordnung k.
Die Gesamtzahl der Knoten in &, + &, mit der Ordnung k ist daher

zk=uk+ U, 1-k-

n—1
Esistz,_,_z=z, und ), z;=2n (bestitigt im Beispiel).
k=0
c) Neben (4) gilt
n—1
Sn=kZ,0un—1—k'(n—1—k)'k- (5)

Die Summe ergibt
n—1
28,=> k- (n—1-k)- z.
k=0
Damit folgt aus dem Lorden-Lemma

Dn=(g>——i—-kr2;k-(n—l—k)-zk. (6)
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d) Um (%) in die Summe einbeziehen zu konnen, verwenden wir

n—1 B » .
2n=3 7 undsetzen 2-(n=3)-(7)=2n- (" 1)=(n ) T a
- g 3 3] &

Damit wird

n_1>_(n——1-—k)'k'("_3):|_ (7

R [y R

Wir formen nun die Klammer um unter Benutzung der fiir beliebige a, beZ
und neN giltigen Beziehung

(=260 0

Daraus folgt insbesondere

(300 () () Q)+ ()-)o(0) 22z

oder

(37)-=57=2-6)+6).

Die Klammer in (7) kann damit wie folgt umgeformt werden

((n—l;k)+k)_ (n—1-k)k(n2—1—k+k—2) =(n—;——k)+<l3c).

Wir erhalten aus (7)

20 2B [()+(75 )]
NS (R PRES

k=0

Wegen der Gleichheit der beiden Summen ist damit (3) erreicht.

4. Differenzierte Darstellung der Anzahl D,

Im Hinblick auf das Minimalproblem erweist sich die getrennte Darstellung der
Fillen=2m,n=4m+ 1 und n=4m+ 3 als niitzlich.

1) Man kann diese Beziehung bestitigen, indem man im Binomialreihenprodukt
(1+x)2*+b=(1+x)2(1+ x)P beidseitig den Koeffizienten von x” betrachtet.
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Satz 2. Zerlegt man einen volistindigen Graphen 3,(n>3) in beliebiger Weise in
komplementdre Graphen &, und &, und gibt es in &,+ ®, genau z, Knoten der
Ordnung k, dann gilt fiir die Anzahl D, der Dreiecke in &, + @,

m (k -1 -2
Dzm=G,(m)+Z()-zm,k mit Gl(m)=m(m ) (o ), (8a)
k=2\2 3
1 im ) 2m(m—1)4m+1
Dims1=Ga(m)+ 5+ 3Ky mit Gymy= D o
1 1 2m+1 .
Dymr3=Gs(m)— =+ 3> k- zypyq_y mit
2 2 =
2m(m+1)(4m—1)
Gy(m)= ) . (8¢c)

3

Die Zahlen G;(m) sind ganz, da die Faktoren im Zihler jeweils alle Restklassen
mod 3 reprisentieren.

Beweis:
1. Aus (7) folgt
n=l 1 m—1 (n—1-k)- k
2-D = = - :
=27 (7) ) ")

Daraus wird im Falle n=2m

: 2m-1 1 /12m—1 k+1

2 Dam= 2 z"'[_s”( 2 )”"’”( 2 >] , ©

Hier kann man die Klammer wiederum mit der bereits schon einmal benutzten
Beziehung iiber Binomialkoeffizienten auf eine zweckmissigere Form bringen.
Wegen

(" )-GO+ (G)-6)-me ()
(7 ) (5) =30 )+ () ()
()5 (),
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Aus (9) wird damit
1 -1 2m- 2m—1 -
2-D2m=—( ) Z +°y <m k)-zk=A+B
3 =0 £=0 2

1 rm—1
A——j—( ) >-4m=2-G1(m).

In der Summe B sind symmetrisch liegende Glieder

-k k+1—
(mz )'Zk und < 2 m)'sz_.l_k O<k<m-—1

gleich, weil

—(m—-k—1) m—k
(D)) et e
ist. Man erhalt
m—k
2D, =2 G (m)+2- 2( ) )-zk

und damit (8a).

2. Firn=2r+1 folgt entsprechend aus (7)
2 1 2rn kQr—k)
2Dy, = = —_at
el kgozk [3 <22 > 2 ]
Der Klammerausdruck wird mit k - 2 r—k)=r*— (r—k)*

1n2r _f_ (r—=k)y*  (r=k)*  r(r—=2)
3(22> T2 T2 e

Damit hat man

2.D, = i [r(r (r—2k)2]

r(r—2)
6

1 2
Dypiy= -(2r+l)+z—~kz_io(r—-k)z-zk=A+B.

Im Falle r=2m,n=4m+ 1 wird A=(2m(m—1)) /3 (dm+1)=G,(m).

87

(10)
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In der Summe B entsteht fiir k=2m ein Mittelglied, welches verschwindet. Die
iibrigen symmetrisch liegenden Glieder

2m—k)?-z, und 2m—@m—Kk) - z4p,_;

sind wieder gleich. Damit erhidlt man

1 2m=1
Dims1=Ga(m)+ o kZO Qm—k):- z

und schliesslich (8b).
Ganz entsprechend folgt im Falle r=2m+ 1, n=4m+ 3 aus (10)
1 1 2
Dymi3=Gs(m)— o+ > Cm+1-k) -z
2 2 =0

und (8c).

5. Die Goodman-Formel

Als einfache Konsequenz ergibt sich nun aus dem Satz 2 sofort die Goodman-Formel.
Die Mindestzahl der chromatischen Dreiecke in einem vollstindigen gefdrbten
Graphen mit » Knoten ist

nn—2)(n—4) .
24 bei n=2m, (11a)
M- e D@E=d) bei n=4m+1, (11b)
24
(nt1) (n2—;3) (n—4) bei n=4m+3. (11¢)

Bei jedem n existieren Farbungen mit diesen Mindestzahlen.

Die ersten Werte von M, zeigt die folgende Tabelle:
n | 4 7 8 9 10
M, |0 4 8 12 20

5 6
0 2
Beweis:

Man erkennt leicht, dass die hier auftretenden Zahlen M, mit den Zahlen G;(m)

von Satz 2 iibereinstimmen. Da dort alle Zusitze zu den Zahlen G;(m) ganzzahlig
und grosser oder gleich — (1/2) sind, folgt sofort: Es ist stets D, > M,
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Es muss nur noch nachgewiesen werden, dass es stets Zerlegungen oder Firbun-
gen gibt, bei denen alle in Satz 2 auftretenden Zahlen z, verschwinden, mit einer
kleinen Modifikation im Falle n=4m+ 3. Das ist sehr einfach.

Die in (8a) auftretenden Summen sind

: 2 3 2m
bei n=4m: (2>22m_2+(2)22m_3+---+( ) )zo,

| ) 3 2m+1
bei n=4m+2: (2>22m_1+(2)22m_2+---+< 2 )zo.

Die hier vorkommenden z-Werte kann man bei der Zerlegung ,=®,+ &, ver-
meiden, indem man &, regulir von der Ordnung r=2m wihlt. Bei n=4m ist
dann &, reguldr von der Ordnung 7=2m— 1, bei n=4m+2 entsprechend von der
Ordnung 7r=2m+1.

Den betreffenden Graphen &, kann man schrittweise etwa so aufbauen: Man
verbindet in einem 1.Schritt jeden der n Knoten, die in einem geschlossenen
Ring liegen mogen, mit seinen beiden Nachbarn, in einem 2.Schritt zusétzlich
mit den beiden iibernichsten Nachbarn usw. bis zum m-ten Schritt, der auf die
Ordnung 2m fithrt. Fir diese Konstruktion sind geniigend Knoten vorhanden:
Man benoétigt zum 2.Schritt insgesamt 1+4, zum m-ten Schritt 1+2m Knoten.
Das gilt auch firn=4m+1 und n=4m+3.

Beispiel: n= 28 (Fig. 3).

%9 Eﬁs

Figur 3 o

Auch bei n=4m+1 fithrt die Zerlegung mit dem Graphen &, der Ordnung
r=2m zum gewiinschten Ziel. Hier hat der komplementire Graph dieselbe
Ordnung. Daher verschwinden alle in der Summe von (8b)

1

5 (1% z3m_1+2% Zypypt )

auftretenden z-Werte.
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Im Falle n=4m+ 3 hat man schliesslich

1 1
D4,,,+3=G3(m)——2—+—i—- (12 23 +22 - 231+ --+).

Hier modifiziert man &, etwa so, dass ein Knoten unverdndert bleibt, wihrend die
iibrigen paarweise verbunden werden. Dann hat ein Knoten die Ordnung 2m,
die iibrigen die Ordnung 2m+ 1; im komplementiren Graphen hat entsprechend
ein Knoten die Ordnung 2m+2 und die iibrigen die Ordnung 2m+ 1. Man hat
daher bei dieser Zerlegung

1 1
Dyp+3=G3(m)— *2‘“" 7=G3(m).

Walter Tietze, Berlin
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Kleine Mitteilungen

Eine Konfiguration von Punkten und Geraden
In Elem. Math. 4 (1977) stellte C. Bindschedler folgende Aufgabe (791):

1. Es sei ¢ eine Tangente an die Ellipse, welche die Seiten des Dreiecks A;4,A4;
in ihren Mittelpunkten beriihrt (Steinersche Inellipse). Ferner seien K, K,, K5 drei
Kegelschnitte, von denen jeder zwei Seiten des Dreiecks in den Endpunkten der
dritten Seite sowie die Gerade ¢ beriihrt. Je zwei dieser drei Kurven schneiden
sich ausser in einer Ecke 4; noch in genau einem weiteren reellen Punkt S;.

Man zeige, dass die Geraden 4; S;(i= 1, 2, 3) parallel sind.

Wir betrachten hier eine Erweiterung, indem wir die Tangente ¢ durch eine be-
liebige Gerade der Ebene ersetzen. Der obige Satz erscheint dann als Sonderfall.

2. Es werden homogene projektive Punktkoordinaten x;(i= 1, 2, 3) in bezug auf das
Dreieck A,A4,A; eingefiilhrt mit beliebig gew#hltem Einheitspunkt; ¢ habe die
Gleichung by x;+ by xy+b3x3=0 mit b;#0(i=1, 2, 3). Ein Kegelschnitt, der 4,4,
und A;A4; in A, und A, beriithrt, gehdrt zum Biischel, das die Doppelgerade 4,4,
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