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Extremaleigenschaften rotationssymmetrischer Kegelstiimpfe
im gewohnlichen Raum (2.Teil)

Nachdem im 1.Teil dieser Arbeit (vgl. El. Math., Bd. 33, S. 7-14) die Ergebnisse

dargelegt wurden, folgt hier nun die in Aussicht gestellte Beweisfithrung.

Unter Ausniitzung der Ahnlichkeitsinvarianz von (1) berechnet man:

8(L2—1)
[rL—(nsecy—2tg -y —2)’

x=

e 2(3L>—6secy - L+4sec?y—1)?
(L2—1)} '

I=1, 2 L=reduzierte Meridiankurvenlidnge,

v = Winkel zwischen Rotationsachse und Seitenlinie,
w=0- Zylinder, L= Ly=secy +tg v — Kegel,
L=1, y=0- Strecken,

L — o0, v beliebig— Kreisscheiben,

0= c//én/Z, secy =cosy |, 1§L0§L< 0.

)

Das Extremalproblem wird als Abbildungsproblem aufgefasst, wobei in erster Linie
der Rand des Bildes C interessiert. Nun sind diese Randpunkte entweder Bilder von
Randpunkten von G(L,y) oder dann Bilder von inneren Punkten von G mit ver-
schwindender Funktionaldeterminante. G (L, w) ist nicht beschrinkt. Dieser Um-
stand bietet keine ernsthafte Schwierigkeit, handelt es sich doch bloss um eine Sin-

gularitit der Parameterdarstellung, die sofort beseitigt werden kann.
Nun gilt mit der Substitution

L=/ -secy?)
— 6(x,z) - .13 .12 .
q)*a(L,t//) AW) - V+Bly) - A*—C(y) - A+D(y).

A(y)=3sec’y Ry +sinQy)—rnsiny],
B(w)=6sec’y [2y (2—sin*y)+sin(Qw)—nsiny],

C (w)=sec?y [y (22 sin?y — 30)+ zsin y (1 + 3 sin®y) +sin (2 y) (3sin’y — 7)],

D(y)=2[6y+3sin(RQy)+nsiny],
A0)=B(0)=C(0)=D0)=0,

I8 3n 4 n n
A(?)'"z_’ B(‘z")—”’ C(*z‘)““‘”’ D(?)"S“-

(3

4)

)

2) Diese Substitution hat den Zweck, Monotonie zu erzwingen. Es hat sich als zweckmissig erwiesen, sie

nicht schon in (2) einzufithren.
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® (1.0)=0: @(A,%) = C3134+1822—32+16,

2
<p<,1,%> =0- 4= 5(3-V3) ~08453,

].222,
2
/13=?(3+\/?)~3,1546. (6)
Man braucht noch:
0D (4, v)
czjo=—“ﬂ—=—31‘1(1//)'/12+2B(!//)'/1'*C(!//)- 7

Im Intervall 0=y = /2 sind

A (w) und B () monoton wachsend und konvex,
C (w) und D () monoton wachsend und konkav. (8)

Als Kernstiick der Beweisfithrung folgt nun die Aufstellung und vollstindige Dis-
kussion der Diskriminanten von @ und @, die wir ¥ und ¥, nennen. Es ist:

YW)=Py)-0(),
P(y)=B2C*+ 18 ABCD,
O(y)=4B*D+4A4C3+2742D?,
¥o(w)=B>-3AC,
¥ (0)=%,(0)=0; W(%)=487z4, Wo(g—)=9n2. )

P und Q sind monoton, was aber fiir ¥ keineswegs zutrifft. Die Informationen des
Computers ermoglichen die Erstellung eines aufschlussreichen, allerdings nicht
maBstabgetreuen Schaubildes (Fig.4). Diese Informationen sind nun durch scharfe
Aussagen zu ersetzen. Dies erfolgt in drei Schritten.

a) Fiir ¥ <0 ist hinreichend ¥ (<0. Dies ist aber fir das Teilintervall Osy=x /4
schon bewiesen ([13], S.178). Wir miissen also zeigen, dass ¥ <0 noch gilt in
n /4 <y < i. Zu diesem Zweck konstruieren wir negative Majoranten von der Form

¥ (y,)=P(y+0-Q(y); 0<r=4. (10)

Mit 4=10"3 ist ¥ (n/4,4)<0, wegen der Monotonie von P(y) aber auch
¥ (n/4,1) <0 im ganzen zuldssigen Intervall und erst recht

7(-},A>=P<§—+A>—Q(%+A><O. (11)

Nun ersetzt man y durch y + 4 und wiederholt das Verfahren. Es wird notwendig,
4 zu verkleinern, So gelangt man beliebig nahe an die Nullstelle ¥ = heran. Er-
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Figur 4

reichen wird man sie aber nie; denn mit der Abnahme von 4 wichst die Rechenzeit
des Computers iiber alle Grenzen.

b) Figur 4 lehrt, dass von einem gewissen y = 7 — ¢ an die Ableitung von ¥ (y) sehr
gross ist und offenbar dauernd wéchst. Man fithrt also mit Vorteil d ¥ /dy ein und

diskutiert (d/dy = 0).

'1”(!//) —P(w) 0 (w),

j2 =A - 18BCD+B(2BC*+184CD)
‘ +C(2B*C+184BD)+D - 184BC,
o) =A(4C3+544D%+ B - 12B?D

+C- 12AC2+ D (4 B3+ 54 A2D),
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. (T (T
P<~5> =340992 3, Q(;) =340096 73,

‘P(—Z—) — 896 73~27776. (12)

Jetzt konstruieren wir Minoranten, welche im zulédssigen Intervall positiv bleiben.
Dabei muss man gebiithrend auf (8) achten.
Wir setzen an:

¥ (w,)=P(y,)—Q(y.1); 0<t=4. (13)

In P ist fir C und D das Argument (y +¢), sonst iberall (v —t) einzusetzen. Fiir 0
aber ist gerade umgekehrt zu verfahren.

¥ (y,?) ist eine sehr starke Minorante. Bleibt sie fiir geniigend kleines 4 positiv, so
hat sie diese Eigenschaft im ganzen Intervall 0<¢= 4, und

Y (w,)=Pw+0)—-0yw+ t) ist erst recht positiv.

Wie in a) dargelegt, funktioniert das Verfahren, die kritische Stelle = § miihelos
passierend, bis in grosse Nidhe von y=rn /2. Weil die Minorante zu stark ist, wird
man diese kritische Stelle nie erreichen, doch lisst sich die verbleibende Liicke auf
andere Art schliessen.

c) Esist ¥ (n/2)=48 n*. Dann ist

¥ w=Pw)-0(%) (v<3) (14)

Minorante, und wegen der Monotonie von P () existiert eine einzige Nullstelle der
Gleichung ¥ (w)=0. Diese Nullstelle ldsst P () — Q (y) positiv. Jetzt setzen wir an

Y (y.0=Py—1)— Q) (15)

und verfahren analog zu a).

Entscheidend ist nun der Umstand, dass die giinstigen Intervalle von a), b), ¢) einan-
der paarweise iiberdecken, so dass das Vorzeichen von ¥ () im vollen Intervall
7 /4=y = /2 sichergestellt ist.

Zusammenfassend halten wir fest: Im Intervall O<y < ist ¥ () negativ, und
@ () besitzt genau 1 reelle Wurzel A= 4,. In der Note ([13], S. 180) konnte ich be-
kanntgeben, dass dieselbe fir das Kegelstumpfproblem nur im Teilintervall

1
O=w=arcsin (?) (16)

Bedeutung hat. Im Intervall iy < w = n /2 aber ist ¥ (w) positiv, und & besitzt 3 reelle
Waurzeln 44, 45, 15, von denen die kleinste, A,, ausfillt. Fiir y =0 ist auch @ =0, und
fir y = ist wieder ¥ =0, und 4, und /; fallen zusammen. Beim Durchgang durch
diese Stelle wechselt das Vorzeichen von @ nicht.
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e

T-2
A%=2

A~ 135523

A3~ 31546

/\z = 1..-2

A’ ~ 08453

Figur 5

L2~ 848411

——

Li=V2
Ly~ 1,35523

¥

Figur 6

Y —

Y=arcsin(f3) Wy 125762 = 72°03'22%"
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Wir gehen jetzt iiber zur Beschreibung der Originalbereiche G (y,4) und G (y, L)
(Fig.5, 6). Zur besseren Ubersicht ist noch notwendig, die einparametrige Kurven-
schar (2) mit y=konst. zu diskutieren. Jede einzelne dieser Kurven beginnt mit
Ao=1+siny, durchlduft mit A* =2 das einzige Maximum von z und hernach mit

2

T COS“y
A¥¥ = 17
n—2siny - w—2cosy an

das einzige Maximum von x, um schliesslich von rechts horizontal in .S einzumiin-
den. Unter Beriicksichtigung von

® (L, w)<0in A*=A=1** ([13], S. 180)

kann festgestellt werden:

1
0= t//<arcsin<-3—>:/10</11</1*</1**< 00
1
arcsin(;) <Y<Y Ay<i*<iA**<oo(®#0)

T
V<y= ~2—:,10<A*</1**<12</13<oo

Jetzt ist noch die Abb.2 und ihre Auswirkung ins Auge zu fassen. Diese Abbildung
ist als Ganzes nicht bijektiv. Doch lassen sich durch Zerschneiden von G in 6 Teil-
bereiche bijektive Teilabbildungen gewinnen. Beim Zusammenlegen kommt es zu
Uberlappungen, und ein Teil der Bildrinder gerit ins Innere von G (Fig. 3).

Der Bogen E| E, bleibt Randstiick. Zu E; gehort der ausgezeichnete Zylinder mit
I=1,a~0,177615. E, aber ist das Bild des speziellen Kegels mit dem Fldchenwinkel
des reguldren Tetraeders.

Die Doppelwurzel 4,; induziert den Punkt D. Von ihm gehen zwei Enveloppeniste
aus, die der Computer punktweise berechnet. Der linksseitige (innere) wird mit
A= A3 durchlaufen, schneidet die Kegelkurve in W, wird sodann innerer Bildrand
und miindet in S mit der Steigung

2 9 /4
p-———z—-°z—(2\/§-—3)~]—-1,044. (18)

Der rechtsseitige (dussere) Ast wird mit 1=/, durchlaufen und bleibt offenbar mit
Ausnahme von S oberhalb der Zylinderkurve. Die letztere Behauptung lésst sich
teilweise noch exakt beweisen.
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Es gibt ndmlich eine Kurve aus (2) mit y =konst., die in V' beginnt und D durch-
lauft. Gemiss (17) berechnet man x**. Die Achsenparallele x=x%* (x§* > xp!)
schneidet die Zylinderkurve unten genau einmal. Wegen der Monotonie von x**
[mit Hilfe von (17) und (2) zu errechnen] kann rechts von dieser Parallelen keine
Kurve aus (2) verlaufen, und somit liegt auch der Enveloppenbogen links. Damit ist
die Randeigenschaft der Zylinderkurve bis in sehr grosse Ndahe von S bewiesen.

V. Schlussbetrachtung

Der &dussere Bildrand unseres Kegelstumpfproblems ist in der vollen Klasse aller
konvexen Rotationskorper ohne Bedeutung, sind doch alle Extremalkorper bekannt
([1), § 28). Was aber den inneren Bildrand betrifft, so vermute ich, dass er mit Aus-
nahme des Bogens SU fiir die volle Klasse seine Giiltigkeit beibehilt. Diese Vermu-
tung stiitzt sich auf ein Teilresultat (Fig.2) sowie auf gesicherte Extremaleigenschaf-

ten von Kegeln?).
H. Bieri, Wabern (Koniz)

3) In einer noch unveréffentlichten Note konnte ich zeigen, dass im Intervall 8 /7% < x=0,842153 mit
0<a=a*=0431365 symmetrische Kugellinsen, hernach im Intervall 0,842153 <x=0,857102 symme-
trische Kappenkorper der speziellen Linse mit a=a* und 0< f=23,528356° notwendige Bedingungen
fiir ein Maximum von ¥V erfiillen und somit mit grosser Wahrscheinlichkeit das fehlende Stiick des inne-
ren Bildrandes liefern werden.

Kleine Mitteilungen

Uber eine Primzahlkongruenz

1. Einleitung
In [1] wird eine Matrix 4 folgendermassen definiert:

Definition 1.1. p sei eine Primzahl; A=(a;) ist die Matrix, deren Elemente durch
folgendes Rekursionsschema gegeben sind:

a,-,1=i, i=1,2,...,p“‘1,

i
ai,k:izaj,kuh k>1 und i=1,2,...,p—1.
j=1
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