Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 33 (1978)

Heft: 2

Rubrik: Aufgaben

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

drei und zwei Nachbarzahlen (z. B. 5, 13, 14, 22, 23, 24)

vier Nachbarzahlen (z. B. 15, 19, 20, 21, 22, 29)

dreimal zwei Nachbarzahlen (z. B. 7, 8, 16, 17, 33, 34)

vier und zwei Nachbarzahlen (z. B. 8, 9, 10, 11, 27, 28)

fünf Nachbarzahlen (z. B. 6, 21, 22, 23, 24, 25)

zweimal drei Nachbarzahlen (z. B. 15, 16, 17, 32, 33, 34)

sechs Nachbarzahlen (z. B. 26, 27, 28, 29, 30, 31)

$$\begin{pmatrix}
3 \\ 1
\end{pmatrix} \cdot \begin{pmatrix}
3 \\ 1
\end{pmatrix} \cdot \begin{pmatrix}
35 \\ 3
\end{pmatrix} : \begin{pmatrix}
40 \\ 6
\end{pmatrix} = 0,00512$$

$$\begin{pmatrix}
2 \\ 1
\end{pmatrix} \cdot \begin{pmatrix}
35 \\ 2
\end{pmatrix} : \begin{pmatrix}
40 \\ 6
\end{pmatrix} = 0,00031$$

$$\begin{pmatrix}
2 \\ 1
\end{pmatrix} \cdot \begin{pmatrix}
35 \\ 2
\end{pmatrix} : \begin{pmatrix}
40 \\ 6
\end{pmatrix} = 0,00031$$

$$\begin{pmatrix}
2 \\ 1
\end{pmatrix} \cdot \begin{pmatrix}
35 \\ 2
\end{pmatrix} : \begin{pmatrix}
40 \\ 6
\end{pmatrix} = 0,00031$$

$$\begin{pmatrix}
35 \\ 2
\end{pmatrix} : \begin{pmatrix}
40 \\ 6
\end{pmatrix} = 0,00016$$
sechs Nachbarzahlen (z. B. 26, 27, 28, 29, 30, 31)
$$\begin{pmatrix}
35 \\ 2
\end{pmatrix} : \begin{pmatrix}
40 \\ 6
\end{pmatrix} = 0,000016$$

H. Egli, Zürich

LITERATURVERZEICHNIS

- 1 Praxis der Mathematik, Jahrgang 13, S. 301.
- 2 A. Engel: Wahrscheinlichkeitsrechnung und Statistik, Band 1, S. 48/166.

Aufgaben

Aufgabe 783. Es bezeichne [x] die grösste ganze Zahl $\leq x$. A sei die durch $a_1 = 1, a_{n+1} = [a_n + 2\sqrt{a_n}], n \in \mathbb{N}$ definierte Teilmenge von N. Ferner seien $B = \{1^2, 2^2, 3^2, ...\}$ und $C = \{1, 16^1, 16^2, ...\}$. Man beweise, dass $A \cap B = C$. (Vgl. Problem E2619*, Amer. Math. Monthly, Vol. 83, p. 740, 1976.)

E. Trost, Zürich

Solution: Soit $a_{n+1} = a_n + [2\sqrt{a_n}]$ pour $n \ge 1$; soit $a_1 > 0$ entier. Si $a_n = N^2$, alors $a_{n+1} = N^2 + 2N$; si $a_n = N^2 + k$ avec $N + 1 \le k \le 2N$, alors $2N + 1 < \sqrt{4a_n} < 2N + 2$, donc $a_{n+1} = (N+1)^2 + k$; et si $a_n = N^2 + k$ avec $1 \le k \le N$, alors $a_{n+1} = (N+1)^2 + k - 1$.

Ainsi, quel que soit a_1 , il existe n_0 tel que a_{n_0} soit carré.

Et en partant d'un carré de la suite, disons de $a_n = N^2$, on aura

$$a_{n+\nu} = (N+\nu-1)^2 + 2N, \qquad \nu = 1, ..., N+1.$$

Aufgaben 47

Puis, après $a_{n+N+1} = (2 N)^2 + 2 N$, on aura

$$a_{n+N+\lambda+1} = (2N+\lambda)^2 + 2N-\lambda, \qquad \lambda = 1, ..., 2N-1.$$

Enfin, pour $\lambda = 2N$

$$a_{n+3N+1} = (4N)^2$$
.

Aucun des termes entre a_n et a_{n+3N+1} n'est un carré, puisque

$$(N+v-1)^2 < (N+v-1)^2 + 2N < (N+v)^2$$
 si $v \ge 1$,

et

$$(2N+\lambda)^2 < (2N+\lambda)^2 + 2N-\lambda < (2N+\lambda+1)^2$$
 si $\lambda < 2N$.

Donc si N_0^2 est le premier carré dans la suite $\{a_n\}$, ses seuls carrés sont les entiers $(4^m N_0)^2$, $m \ge 0$; et si

$$a_{n_m} = (4^m N_0)^2, \qquad m = 0, 1, ...,$$

alors

$$n_{m+1} = n_m + 3 N_0 4^m + 1, \qquad m \geqslant 0,$$

d'où

$$n_m = (4^m - 1) N_0 + m + n_0, \qquad m \ge 1.$$

Voyons maintenant comment n_0 et N_0 dépendent de la condition initiale a_1 . Si

$$a_1 = N^2 + k$$
 avec $1 \le k \le N$,

on a

$$a_{1+\nu} = (N+\nu)^2 + k - \nu, \qquad \nu = 0, ..., k,$$

et le premier carré de la suite est $a_{k+1} = (N+k)^2$. Si

$$a_1 = N^2 + k$$
 avec $N+1 \le k \le 2N$,

alors

$$a_{1+k-N} = k^2 + k$$
, puis $a_{1+k-N+\lambda} = (k+\lambda)^2 + k - \lambda$

 $(\lambda = 1, ..., k)$, et le premier carré de la suite est $a_{2k+1-N} = (2k)^2$.

48 Aufgaben

En remarquant que $k=a_1-[\sqrt{a_1}]^2$ et $N=[\sqrt{a_1}]$, on peut formuler ces résultats de la manière suivante: Toute suite $\{a_n\}$, définie par la récurrence $a_{n+1}=a_n+[2\sqrt{a_n}]$ et par la donnée de l'entier $a_1>0$, contient une infinité de carrés, qu'on peut décrire comme suit:

1. Si a_1 est un carré, les seuls carrés de la suite sont les $a_{n_m} = 4^{2m} a_1$, $m \ge 0$, où $n_0 = 1$ et $n_m = (4^m - 1)\sqrt{a_1} + m + 1$ $(m \ge 1)$.

2. Si $1 \le a_1 - [\sqrt{a_1}]^2 \le [\sqrt{a_1}]$, ce sont les $a_{n_m} = 4^{2m} (a_1 + [\sqrt{a_1}] - [\sqrt{a_1}]^2)^2$, $m \ge 0$, où $n_0 = a_1 - [\sqrt{a_1}]^2 + 1$ et $n_m = (4^m - 1)(a_1 + [\sqrt{a_1}] - [\sqrt{a_1}]^2) + m + n_0$, $m \ge 1$.

3. Si $[\sqrt{a_1}] + 1 \le a_1 - [\sqrt{a_1}]^2 \le 2[\sqrt{a_1}]$, ce sont les $a_{n_m} = 4^{2m+1}(a_1 - [\sqrt{a_1}]^2)^2$, avec $n_0 = 2(a_1 - [\sqrt{a_1}]^2) - [\sqrt{a_1}] + 1$ et $n_m = 2(4^m - 1)(a_1 - [\sqrt{a_1}]^2) + m + n_0, m \ge 1$.

Le problème proposé correspond au cas (1), avec $a_1 = 1$; les seuls carrés de la suite sont les $a_{n_m} = 4^{2m}$ avec $n_m = 4^m + m$, $m \ge 0$.

J. Steinig, Genève

Weitere Lösungen sandten C. Bindschedler (Küsnacht ZH), A. Brunnschweiler (Magadino TI), P. Bundschuh (Köln, BRD), H. Harborth (Braunschweig, BRD), O. P. Lossers (Eindhoven, NL), M. Vowe (Therwil BL).

Aufgabe 784. Ist keine der positiven ganzen Zahlen a, b, ab eine Quadratzahl, so werden durch

$$(1+\sqrt{a}+\sqrt{b}+\sqrt{ab})^n = x_n + y_n\sqrt{a} + z_n\sqrt{b} + w_n\sqrt{ab}, n = 0, 1, ...$$

eindeutig vier ganzzahlige Folgen (x_n) , (y_n) , (z_n) , (w_n) definiert. Man zeige, dass diese vier Folgen derselben 4gliedrigen Rekursionsformel genügen und dass jede derselben als Summe von vier geometrischen Folgen mit verschiedenen Quotienten dargestellt werden kann. Man beweise schliesslich, dass für alle n die Determinante $x_n w_n - y_n z_n = 0$ ist.

J. Binz, Bolligen

Lösung: Es sei

$$s_n := (1 + \sqrt{a})^n (1 + \sqrt{b})^n = x_n + y_n \sqrt{a} + z_n \sqrt{b} + w_n \sqrt{ab}$$
.

Der algebraische Zahlkörper $Q(\sqrt{a}, \sqrt{b})$ besitzt die folgenden drei von der Identität verschiedenen Automorphismen: $\sigma_1: \sqrt{a} \mapsto -\sqrt{a}$, $\sqrt{b} \mapsto \sqrt{b}$, $\sigma_2: \sqrt{a} \mapsto \sqrt{a}$, $\sqrt{b} \mapsto -\sqrt{b}$, $\sigma_3: \sqrt{a} \mapsto -\sqrt{a}$, $\sqrt{b} \mapsto -\sqrt{b}$. Damit erhält man

$$t_{n} := \sigma_{1}(s_{n}) = (1 - \sqrt{a})^{n} (1 + \sqrt{b})^{n}$$

$$= x_{n} - y_{n} \sqrt{a} + z_{n} \sqrt{b} - w_{n} \sqrt{ab} ,$$

$$u_{n} := \sigma_{2}(s_{n}) = (1 + \sqrt{a})^{n} (1 - \sqrt{b})^{n}$$

$$= x_{n} + y_{n} \sqrt{a} - z_{n} \sqrt{b} - w_{n} \sqrt{ab} ,$$

$$v_{n} := \sigma_{3}(s_{n}) = (1 - \sqrt{a})^{n} (1 - \sqrt{b})^{n}$$

$$= x_{n} - y_{n} \sqrt{a} - z_{n} \sqrt{b} + w_{n} \sqrt{ab} .$$

Aufgaben 49

Daraus folgt sofort

$$x_n = \frac{1}{4} (s_n + t_n + u_n + v_n),$$
 $y_n = \frac{1}{4\sqrt{a}} (s_n - t_n + u_n - v_n),$

$$z_n = \frac{1}{4\sqrt{b}} (s_n + t_n - u_n - v_n), \qquad w_n = \frac{1}{4\sqrt{ab}} (s_n - t_n - u_n - v_n).$$

Das beweist die Darstellbarkeit der $(x_n), ..., (w_n)$ als Summen von je 4 geometrischen Folgen mit verschiedenen Quotienten. Die Zahlen s_1, t_1, u_1, v_1 sind die Nullstellen eines über Q irreduziblen Polynoms 4. Grades, welches man leicht zu

$$f(X) = X^4 - 4X^3 + (6 - 2a - 2b - 2ab)X^2 - 4(1 - a)(1 - b)X + (1 - a)^2(1 - b)^2$$

berechnet. Daraus folgt, dass jede der Folgen $(s_n), ..., (v_n)$, und daher auch jede der Folgen $(x_n), ..., (w_n)$ der 4gliedrigen Rekursionsformel

$$X_{n+4} = 4X_{n+3} - (6 - 2a - 2b - 2ab)X_{n+2} + 4(1-a)(1-b)X_{n+1} - (1-a)^2(1-b)^2X_n$$

genügen. Schliesslich ergibt sich nach elementaren Zeilen- und Spaltenumformungen

$$\begin{vmatrix} x_n & y_n \\ z_n & w_n \end{vmatrix} = \frac{1}{4\sqrt{ab}} \begin{vmatrix} s_n & t_n \\ u_n & v_n \end{vmatrix} = 0.$$

A. Bager, Hjørring, DK

Weitere Lösungen sandten O. Buggisch (Darmstadt, BRD), P. Bundschuh (Köln, BRD), J. T. Groenman (Groningen, NL), K. Grün (Linz, A), L. Kuipers (Mollens VS), I. Paasche (München, BRD), W. Pascher (Graz, A), M. Vowe (Therwil BL), R. Wyss (Flumenthal SO).

Aufgabe 785. Als Ableitung einer n-stelligen Folge aus Nullen und Einsen (0-1-Folge) sei diejenige (n-1)-stellige 0-1-Folge definiert, deren i-te Ziffer durch die Summe (mod 2) aus i-ter und (i+1)-ter Ziffer der Ausgangsfolge gegeben ist. Welches ist die grösstmögliche Anzahl von Einsen, die insgesamt in einer n-stelligen 0-1-Folge zusammen mit allen n-1-Ableitungen vorkommen können?

H. Harborth, Braunschweig, BRD

Solution: Let f(n) denote the maximum number of ones in such a triangle. One can easily check that f(1)=1, f(2)=2, f(3)=4. We shall prove by induction that $f(n)=\lceil n(n+1)/3 \rceil$, where $\lceil x \rceil$ denotes the least integer greater than or equal to x. Assume the induction hypothesis for 1,2,...,n-1. Let A be a triangle with f(n) ones and with k ones in the top row. Denote the closest integer to x by $\langle x \rangle$. For $k \le \langle 2n/3 \rangle$ it follows that

$$f(n) \le f(n-1) + k \le \left\lceil \frac{(n-1)n}{3} \right\rceil + \left\langle \frac{2n}{3} \right\rangle = \left\lceil \frac{n(n+1)}{3} \right\rceil.$$

For $\langle 2n/3 \rangle + 1 \le k \le n$, we also count the number of ones in the second row. This number is at most twice the number of zeros in the toprow, i.e. 2(n-k). So now we have $f(n) \le 2(n-k) + k + f(n-2) = 2n - k + f(n-2) \le 2n - \langle 2n/3 \rangle - 1 + [(n-2)(n-1)/3] = [n(n+1)/3]$.

By considering the triangle with toprow $(110)^{n/3}$ for $3 \mid n$, $(110)^{(n-1)/3}$ (1) for $3 \mid (n-1)$ and $(110)^{(n-2)/3}$ (11) for $3 \mid (n-2)$, we can conclude that this inequality is sharp, i.e. f(n) = [n(n+1)/3].

O.P. Lossers, Eindhoven, NL

Weitere Lösungen sandten C. Bindschedler (Küsnacht ZH), L. Kuipers (Mollens VS), M. Vowe (Therwil BL).

Neue Aufgaben

Die Lösungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift erbeten bis 10. Oktober 1978 an Dr. H. Kappus. Dagegen ist die Einsendung von Lösungen zu den mit Problem ... A, B bezeichneten Aufgaben an keinen Termin gebunden.

Bei Redaktionsschluss dieses Heftes sind noch ungelöst: Problem 601A (Band 25, S. 67), Problem 625B (Band 25, S. 68), Problem 645A (Band 26, S. 46), Problem 672A (Band 27, S. 68), Aufgabe 680 (Band 27, S. 116), Problem 724A (Band 30, S. 91), Problem 764A (Band 31, S. 44).

Aufgabe 801. Unter den Voraussetzungen

$$0 < A < a < b < B \tag{1}$$

$$0 < m < 1 \tag{2}$$

$$a^m \cdot b^{1-m} = A^{m'} \cdot B^{1-m'} \tag{3}$$

gilt die Ungleichung

$$ma + (1-m)b < m'A + (1-m')B$$
. (4)

Dies ist zu beweisen.

R. Boutellier, Zürich

Literaturüberschau 51

Aufgabe 802. Man gebe geschlossene Terme für die Summen

$$a_n = \sum_{k=0}^n \binom{2k}{k} \binom{2n-2k}{n-k},$$

$$b_n = \sum_{k=0}^{n} {2k \choose k} {2n-2k \choose n-k+1} = \sum_{k=0}^{n} {2k \choose k+1} {2n-2k \choose n-k} = b'_n$$

und

$$c_n = \sum_{k=0}^{n} {2k \choose k+1} {2n-2k \choose n-k+1}$$

an.

J. Binz, Bolligen

Aufgabe 803. Auf einer Kugel K mit Zentrum O seien die Punkte P_1, P_2, P_3 gegeben. Man bestimme einen Punkt Z auf K so, dass bei der Projektion aus Z auf eine zu OZ normale Ebene die Punkte P_i in die Ecken P_i' eines gleichseitigen Dreiecks abgebildet werden.

C. Bindschedler, Küsnacht

Literaturüberschau

Mathematische Grundlagen der Codierung. Von U. v. Ammon und K. Tröndle. X und 273 Seiten. DM 38,-. Oldenbourg Verlag, München 1975.

Dieses Buch richtet sich vor allem an Ingenieure, welche die für die Codierungstheorie wesentlichen algebraischen Begriffe erarbeiten wollen. Daneben bietet es jedem Leser, wie der Untertitel andeutet, eine breite Einführung in die Gruppentheorie und die Theorie der endlichen Körper.

Der erste Teil behandelt die Grundlagen (Gruppen, Ringe, Körper) mit einer ausführlichen Beschreibung des Restklassenrings modn und des Restklassenkörpers modp. Der Restklassenring modf(x) und der Restklassenkörper modp(x) bilden die Schwerpunkte des zweiten Teils über Polynome. Der dritte Teil ist den Körpererweiterungen und den endlichen Körpern gewidmet.

Diese mathematischen Grundlagen werden im vierten Teil auf die wichtige Klasse der zyklischen Codes angewendet, wobei der Leser mit den Grundproblemen der Codierungstheorie vertraut sein sollte.

Die anhand von Beispielen entwickelten Verfahren sollten dem Leser helfen, speziellere Algorithmen der algebraischen Codierungstheorie zu verstehen und selbständig Codierungsprobleme zu lösen.

P. Nyffeler

Algebraic Topology. A First Course. Von Max K. Agoston. IX und 360 Seiten. \$23.50. M. Dekker, New York und Basel 1976.

Das leicht lesbare Buch soll Studenten der untern Semester einen Zugang zur algebraischen Topologie eröffnen. Als Leitmotiv dient der Aufbau der kombinatorischen Homologietheorie für endliche Komplexe. Motivationen, geometrische Betrachtungen und Bemerkungen zur Entwicklungsgeschichte nehmen eine ausgezeichnete Stellung ein und verdrängen algebraische Aspekte. Die Theorie wird in Anwendungen erprobt.

Es werden wohl zu kleine Vorkenntnisse vorausgesetzt, so, dass die Begriffsbildung oft rudimentär bleiben muss. Trotz der Fülle von Hinweisen auf Ergebnisse aus den letzten Jahrzehnten ist es fraglich,