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Algorithmische Kombinatorik mit Kleinrechnern!)
Einleitung

Am Beispiel der Klasseneinteilungen endlicher Mengen werden die drei Grund-
probleme der Kombinatorik erldutert und fiir den betrachteten Fall durch Angabe
von Algorithmen «geldst». Diese Algorithmen sind auf Kleinrechnern program-
mierbar, und es werden entsprechende Programme fiir den HP-25 angegeben.

Eine Klasseneinteilung der Menge E ist eine Menge K von nichtleeren Teilmengen
von E mit der Eigenschaft, dass es zu jedem a mit a € E genau ein 4 gibt mit ae 4
und 4 € K. Es ist also etwa {{1, 3}, {2}} eine Klasseneinteilung von {1, 2, 3}. Bezeich-
nen wir sie kiirzer mit «(13/2)», so sicht eine Liste aller Klasseneinteilungen der
Menge {1, 2, 3} folgendermassen aus:

(1/2/3)  (1273)  (13/2)  (1/23)  (123).

Fiir die vorgesehene algorithmische Behandlung eignet sich diese Darstellung nicht.
In Anlehnung an die in der Poétik iibliche Bezeichnung der Reimschemen wollen
wir vielmehr die Klasseneinteilungen der Menge {1,2,...,n} (—die im folgen-
den mit «E,» bezeichnet sei) durch Abbildungen von E, in E, repridsentieren. Und
zwar wird der Klasseneinteilung K von E, die folgende (rekursiv definierte) Funk-
tion fy zugeordnet:

fx()=1;

Sk () ist fur 2<j < n auf Grund einer Fallunterscheidung definiert:

1. Gibt es ein i mit i<j, so dass i,j zur selben Menge von K gehoren, so sei i, das
kleinste solche i und

Se(D=/x (o).

1) Ausarbeitung eines Vortrages, gehalten im Rahmen des mathematikdidaktischen Seminars an der
ETH Zurich, WS 1976/77.
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2. Gibt es kein i mit i <j, so dass i,j zur selben Menge von K gehéren, so sei

Jx()= l\lfI:}XfK(i) +1.

Werden die Abbildungen von E, in E, in der iiblichen Weise durch Folgen
dargestellt, so sind den 5 Klasseneinteilungen von E; die folgenden Folgen zu-
geordnet:

(1,2,3); (1,1,2); (1,2,1); (1,2,2%; (1,1,1).
(Die Anordnung ist beibehalten.)

Aus der Folge fy kann die Klasseneinteilung als Menge der «Niveauflichen»
zuriickgewonnen werden. Unter allen Folgen f (mit positiven Werten), deren
Menge von Niveauflichen gleich K ist, steht die Folge f in der alphabetischen
Ordnung an erster Stelle.

Folgen fi werden «Reimschemen» genannt. Reimschemen sind also etwa

(1,2,1,3,1,4>, (1),  (1,1,2,1,2).

Die Folge (2,1,4,1) ist kein Reimschema; das Reimschema der Klasseneinteilung
von E4, welche von dieser Folge induziert wird, ist (1,2, 3,2.

Klasseneinteilungen werden im folgenden durch Reimschemen dargestellt, und die
drei Grundprobleme der Kombinatorik sind auf diese Darstellung bezogen.

Das erste Problem ist das Problem ERKENNEN.

Die Losung dieses Problems besteht in der Angabe eines Algorithmus, der die
Eingabe einer Folge f mit JA oder NEIN beantwortet, je nachdem ob f ein Reim-
schema ist oder nicht.

Das zweite Problem ist das Problem ERZEUGEN.

Die Losung besteht in der Angabe eines Algorithmus, der die Eingabe einer
natiirlichen Zahl n mit der Aufzihlung simtlicher Reimschemen der Linge n
beantwortet.

Das dritte Problem ist das Problem ZAHLEN.

Die Losung besteht in der Angabe eines Algorithmus, der die Eingabe einer
natiirlichen Zahl n mit der Ausgabe der Anzahl der Reimschemen der Linge n
beantwortet. (Diese Anzahl von Reimschemen oder verschiedenen Klasseneintei-
lungen einer n-zahligen Menge wird «n-te Bellsche Zahl» genannt. Es gibt dariiber
eine schon recht umfangreiche Literatur, welche in [2, 3] zusammengestellt ist.)

Fiir die genauere Behandlung der beiden ersten Probleme ist noch anzugeben,
in welcher Form Folgen dargestellt werden. Da der den Programmen zugrunde
gelegte Rechner HP-25 nur 8 Speicher besitzt, erscheint es am giinstigsten, sich auf
Folgen der Zahlen 1,2,...,9 zu beschrinken und solche Folgen durch Zahlen mit
der entsprechenden Dezimalziffernfolge darzustellen - die Folge (1,2,1,3) also
durch die Zahl 1213. Es ergibt sich daraus allerdings eine Beschrinkung fiir die
Linge n der Reimschemen, und zwar n< 10 fiir das erste und n<9 fiir das zweite
Problem.



E. Specker: Algorithmische Kombinatorik mit Kleinrechnern 27

Ein Vorteil der Darstellung von Folgen durch Dezimalziffern liegt darin, dass das
letzte Glied und das Anfangsstiick einer Folge durch eine Befehlsfolge berechnet
werden konnen, welche unabhiingig ist von der Linge der Folge - dass also in
einem gewissen Sinn indirekt adressiert werden kann. Ist etwa {f},....f,) in Ry
gespeichert, so speichert die folgende Befehlsfolge (f},....f,_;> in R, und f, ins
X-Register:

M1 (@20 @)STO+ (@) RCLO (5) gFRAC
(6) STO—0  (7)*

Abgesehen von dieser speziellen Behandlung der Folgen unterscheiden sich die
Algorithmen fur die beiden ersten Probleme kaum von den Algorithmen, die man
fur grossere Rechner aufstellen wiirde.

Wesentlich anders verhilt es sich fir den Algorithmus, der die Anzahl B, (n-te
Bellsche Zahl) der Reimschemen der Linge n bestimmt. Der natiirliche Algo-
rithmus fiir die Berechnung von B, beniitzt nimlich eine Speicherzahl, die linear
mit n wichst, und eignet sich somit nicht fiir den HP-25. Er wird deshalb ersetzt
durch einen Algorithmus, der mit beschrinkter Speicherzahl auskommt und so -
wenigstens theoretisch - die Berechnung von B, fiir 1<n<33 auf dem HP-25
erlaubt. Da aber die Einsparung an Speicherplatz durch eine Rechenzeit erkauft
wird, welche exponentiell mit n wichst, so ist schon einige Geduld nétig: Die
Berechnung von B¢ dauert etwa 30 Tage, jene von Bs; schon etwa 30000 Jahre.

Der hier beschriebene Algorithmus fiir die Bellsche Funktion ldsst sich ohne
weiteres libertragen auf beliebige Funktionen F, fir welche eine Rekursionsformel
gilt von der Gestalt

—1
F(n)=:§___:0F(k>qk,,,

mit Koeffizienten gq,,, welche in Abhingigkeit von k,n leicht zu berechnen sind.
P. Henrici hat die Methode in [1] auf Algorithmen iibertragen, welche Koeffizien-
ten von Potenzreihen berechnen.

Es ist vielleicht nicht ganz iiberfliissig, darauf hinzuweisen, dass es sich bei den
besprochenen Grundproblemen der Kombinatorik um «echte Probleme» handelt.
Dies in dem Sinne, dass es viele Losungen gibt und dass die Kriterien, nach wel-
chen diese Losungen zu vergleichen sind, nicht in der Problemstellung selbst ent-
halten sind. Von Extremfillen abgesehen kénnen Algorithmen erst dann verglichen
werden, wenn bekannt ist, fiir welche Art Rechner sie bestimmt sind. Ferner ist zu
fragen, ob es geniigt, dass der Programmierer allein sein Programm versteht -
und wenn ja, ob nur heute oder auch im nichsten Jahr.

Dem aufmerksamen Leser diirfte bei den ersten beiden Programmen nicht ent-
gehen, dass versucht worden ist, diesen Gesichtspunkt zu beriicksichtigen. Beim
dritten Programm war dies kaum moglich, die Anzahl der zur Verfiigung stehenden
Programmschritte ist dafiir wohl allzu knapp.
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1. Erkennen

Der Algorithmus ERKENNEN akzeptiert eine Eingabe x genau dann, wenn x
(gelesen als Folge der Ziffern) ein Reimschema ist. Es werden also akzeptiert
1, 11, 12, 121314; nicht akzeptiert werden 2, 132, 141312 sowie alle x, die keine
natiirlichen Zahlen sind oder die Ziffer O enthalten.

Nach der Definition der einer Klasseneinteilung K zugeordneten Funktion fyx
(gemiss welcher der Funktionswert an der Stelle j entweder gleich dem Wert an
einer fritheren Stelle ist oder aber gleich der kleinsten natiirlichen Zahl verschieden
von f(1), ...,f(j— 1)) ist klar, dass f genau dann ein Reimschema ist, wenn gilt

f=1;  fG+DH<Max(f(Q),....f()) +1 G=1,2,..).
Es ist leicht moglich, diese Bedingungen algorithmisch nachzupriifen.

Soll der Algorithmus ERKENNEN aber fiir den HP-25 programmiert werden und
gleichzeitig leicht erkliarbar sein, so empfiehlt sich ein etwas anderer Ansatz. Wir
fragen dazu zunichst nach der Bedingung dafiir, dass Folgen wie

gj=<1’g2""’gm—l’3’j> (i=192"")

Reimschemen seien.

Fiirj:=1, 2, 3, 4 giltoffenbar: ¢/ ist ein Reimschema, genau wenn {1, g5, ..., §n—1, 3)
ein Reimschema ist.

Fiir j:=5,6,7, ... dagegengilt: g/ ist ein Reimschema, genau wenn {1, g,, ..., gp— 1,/
ein Reimschema ist. .

Entsprechend gilt allgemein: {1,f, ..., f,,_1,fmfm+1y ist ein Reimschema, genau
wenn

<1’f2’ '°'sfm—lafrn>
ein Reimschema ist, wobei f%=f,, oder f%=f,,+1, je nachdem ob f,,, ;<f,+ 1 oder
fm+ ]<fm+l'

Ferner ist {f|) genau dann ein Reimschema, wenn f; = 1.

Diese Bedingungen ergeben einen durchsichtigen Algorithmus. Es wird dazu fiir
natiirliche Zahlen x mit 10<x eine Funktion ¢ definiert, so dass gilt: Besitzt x die
Dezimalziffernfolge {f}, ..., fm—1>Smfm+1) SO besitzt 1(x) die Dezimalziffernfolge
s voosSm—1.1y (Wobei f¥ aus f,,, f,,+1 gemiss der obigen Definition zu berechnen
sind). Der Algorithmus verlduft nun so, dass zu x die Werte ¢ (x), (x), ... berechnet
werden, bis ein k mit ¥ (x) < 10 erreicht ist; dafiir wird dann ¥ (x)= 1 nachgepriift.

Das Programm ERKENNEN realisiert diesen Algorithmus fiir den HP-25.

Es ist im Programmschritt 00 ein Wert x einzugeben und mit R/S zu beginnen. Fir
die Eingabe 121314 werden dann kurz die sukzessiven -Werte angezeigt:

12134, 1213, 123, 12, 1;
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der Rechner hilt im Schritt 00 mit Ausgabe 121314, was AKZEPTIEREN bedeuten
soll.
Die Eingabe 141312 ergibt:

14131, 1413, 143, 14, 4; ERROR,

was ABLEHNUNG bedeutet. (Das Programm ist so konzipiert, dass es auch vom
Schritt 45, in dem es bei ERROR anhilt, mit einer neuen Eingabe durch R/S auf-
gerufen werden kann.)

Enthilt die Eingabe x die Ziffer 0, so wird x ebenfalls verworfen. Da bei der
Berechnung von ¢ (x) nur die zwei letzten Stellen von x isoliert werden, so geschieht
dies, sobald eine der beiden letzten Ziffern von #*(x) gleich 0 ist. Auf die Eingabe
1210314 folgen somit die Ausgaben 121034, 12103, ERROR.

Ist x negativ oder nicht ganz, so wird es ebenfalls verworfen; dies wird gleich zu
Anfang gepriift und ERROR erscheint ohne andere Ausgaben.

2. Erzeugen

Der zweite Algorithmus erzeugt bei Eingabe einer natiirlichen Zahl n, 1<n<9, die
samtlichen Reimschemen der Linge n, und zwar in der natiirlichen Reihenfolge.
Fiir n:=3 also:

111, 112, 121, 122, 123.

Am Schluss wird noch die Anzahl der Schemen angegeben, fiir n:=3 also 5.0.

Die n-stellige Zahl 11---1 ist leicht als [10”/9] zu berechnen, und die wesentliche
Aufgabe besteht somit darin, zu einem Schema das nichste zu bilden. Wir betrach-
ten den Anfang fiir n:=4:

1111, 1112, 1121, 1122, 1123, 1211, 1212.

Man bemerkt, dass in den meisten Fillen auf f einfach f+1 folgt. In dem obigen
Beispiel gibt es zwei Ausnahmen: (1112; 1121) und (1121; 1211); auch in diesen
Fillen wird eine Ziffer um 1 erhdht. Was vor dieser Ziffer steht, wird nicht ver-
dndert; in der neuen Folge steht nach der erhohten Ziffer 1---1. Wann ist nun
f+1 der Nachfolger von f? Offenbar genau wenn f+ 1 selbst ein Reimschema ist,
oder - gleichbedeutend - wenn die letzte Ziffer von f kleiner oder gleich einer
fritheren Ziffer ist.'In 121312 erkennt man, dass die letzte Ziffer erhoht werden
kann auf Grund der Ziffer 3. Falls fur eine Folge f - wie etwa 1123 - feststeht,
dass die letzte Ziffer nicht erhoht werden darf, so gehe man zu f~ iiber, der Folge,
die aus f durch Streichen der letzten Ziffer entsteht. Ist - wie im Falle 1123 -
auch bei dieser Folge die letzte Ziffer nicht zu erhéhen, so werde das Verfahren
iteriert. Im betrachteten Fall gelangt man so zu 11; hier kann die letzte Ziffer zu
12 erh6ht werden und der Nachfolger von 1123 wird als 1211 erhalten, indem
noch «11» angefiigt wird.
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Um diesen Prozess einfach beschreiben und programmieren zu kénnen, fithren wir
eine Funktion w ein, welche Paare (f,p) (wobei f ein Reimschema und p eine
Potenz von 10 ist) in ebensolche Paare oder aber in eine Zahl abbildet. Die Funk-
tion w wird durch eine Fall-Unterscheidung definiert:

1. w({1,p))=0 (fur alle p).
2. Ist (f+ 1) ein Reimschema, so ist w({f, p>)=(f+1) - p+[p/9].
3. w({f,p))={([f/10], 10p) in den iibrigen Fillen.

([r710] stelit das Schema dar, welches durch Streichen der letzten Stelle entsteht.)
Man iiberlegt sich nun leicht, dass es zu jedem Reimschema f eine natiirliche Zahl
gibt, so dass

w (1))

eine Zahl ist.

Ist diese Zahl verschieden von 0, so ist sie der gesuchte Nachfolger von f; andern-
falls ist f das letzte Reimschema derselben Linge wie f- im Fall 4 also 1234,

Statt eines formalen Beweises betrachten wir zwei Spezialfille: (1,1,2,3) und
{1,2,3,4).

w1123,1))=(112,10) ;
w({112,105)= {11,100} ; 00
w({11,100)=(11+ 1) 100+[T}=1211.

w(1234,1))= (123,10} ;
w(<123,10))={12,100) ;
w(<12,100%)={1,1000 ;
w(<1,1000%)=0.

Der Ablauf des Programmes ist damit klar vorgezeichnet. Das Paar {f,p) wird mit
Hilfe von zwei Speichern dargestellt und die Funktion w in einer Schleife be-
rechnet, welche durchlaufen wird, bis der Wert eine Zahl ist.

3. Ziihlen

Der Algorithmus ZAHLEN berechnet zu der natiirlichen Zahl n die Anzahl B, der
Reimschemen der Linge n - oder auch die Anzahl der Klasseneinteilungen einer
n-zahligen Menge. Esist B;=1, B,=2, B3=5; B, ist gleich 1 zu setzen.

Die Funktion B erfiillt eine einfache Rekursionsgleichung. Um sie zu erhalten,
zerlegen wir die Menge R, aller Reimschemen der Linge n in n disjunkte Teil-
mengen R}, (0<jsn—1). Das Schema f gehort zu R/, wenn f an genau (j+ 1)
Stellen den Wert 1 hat. Die Anzahl von R/, bestimmt sich nun leicht folgender-
massen: An erster Stelle von f steht 1; fiir die iibrigen j Stellen mit 1 stehen somit
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noch (n—1) Moglichkeiten zur Wahl, und es gibt somit (";!) Verteilungen der
Werte 1 auf die n Stellen. An den restlichen (n—j— 1) Stellen stehen die Werte
2,3,... Dafir gibt es B,_;_, Moglichkeiten, denn offenbar werden die Teilfolgen
mit diesen Werten durch Subtraktion von 1 bijektiv auf die Reimschemen der
Linge (n—j— 1) abgebildet. Die Anzahl von R/, ist somit

Bn——j—l (n‘;l) ’

und es gilt
n—1
B,= ; Bn—j—l ("}1) ’
Wir setzen k:=n—j— 1 und erhalten

0

() B,= 2 Be("t)s  Bo=l.
Aus diesen Beziehungen lassen sich die Werte By, B,, ... schrittweise berechnen.
Dabei miissen aber fiir die Berechnung von B, die Werte B,_, B,_,, ..., B; ge-
speichert sein, und die Rekursion liefert somit in einer direkten Anwendung keinen
Algorithmus, der sich fiir einen Rechner wie den HP-25 eignet.
Es soll nun gezeigt werden, wie () umgeformt werden kann, so dass der Spei-
cherbedarf zur Berechnung von B, nicht von n abhingt, und man also mit den
8 Speichern des HP-25 auskommt.
Zur bequemeren Darstellung schreiben wir

0
B,= Z B qin- By=1.

= -

Es gibt dann offenbar ein Polynom F, (in () Variablen), so dass gilt

Bn=Fn(q0b q02; ---» 412> -+s (n— l)n) 4

Zur genaueren Analyse von F, betrachten wir die Fille kleiner n
By=qo
By=401912+ 902

B3= 01912923+ 902923+ 901913 + 403
B4=q01912923934 + 902923934 + 401913934 + 03934+ 901912924 + 902924+ 901914+ o4 -

Aus diesen Beispielen ergeben sich die folgenden (leicht induktiv zu beweisenden)
Aussagen: F, ist eine Summe von 2"~ ! Monomen; diese Monome sind Produkte

QokGkyy -+ Qheyn O<ky<--- <ky<n),

und zwar tritt jedes solche Produkt genau einmal auf.
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Fiir die folgende Berechnung empfiehlt es sich, die Summanden mit den Zahlen
Jj, 2"~1<j<2" zu indizieren. Man erhilt dann

-1
B,= ) P,
2=t
und die Produkte P; lassen sich vergleichsweise einfach als Funktion von j be-
rechnen.
Wird ndmlich j in der Basis 2 dargestellt:

Jj=Ua,_;...ay),,

und sind ky, ks, ..., k,,, n die (der Grosse nach geordneten) Stellen, an denen die
Ziffer 1 steht, so erhalten wir jedes Produkt

qulqk1k2 “ee qkmn

genau einmal, wenn j die Werte von 2"—1 bis 2"~ ! durchliuft. Als Beispiel be-
rechnen wir Pss.
Es ist

(356),0=(101100100),,

die Menge der Stellen mit 1 somit {3,6,7,9} und P;54 somit

waaoin=() () () ().

(Die Darstellung B, =X P; legt es nahe, nach der kombinatorischen Bedeutung der
Zahlen P; zu fragen. Fiir P3s5¢ findet man: P;s¢ ist die Anzahl der Reimschemen
der Linge 9, welche aus den Zahlen 1,2,3,4 gebildet sind und fiir welche die
Zahl 1 zweimal (2=9-7), die Zahl 2 einmal (1=7-6), die Zahl 3 dreimal
(3=6—13) und die Zahl 4 dreimal (3 =3 —0) auftritt.)

Auf Grund der Darstellung
-1
Bn= Z Pj
21

ergibt sich der Aufbau des Algorithmus fast zwangslaufig:

In einer dusseren Schleife durchliuft j die Werte von 2"—1bis 2"~ !und die -
in der inneren Schleife - berechneten Werte P; werden aufaddiert.

In der inneren Schleife wird zu j das Produkt

Qok Dk ky -+ Dk,pn

berechnet.
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In einer hoheren Programmiersprache stellt sich der beschriebene Algorithmus
etwa folgendermassen dar:

begin read (n); B:=0;
forj:=2""1t02"—1do
begin h:=j; kl1:=0; k2:=0; P:=1;
while A>0 do
begin k2:=k2+1;
if odd(h) then
begin P:=P« (¥37!); kl:=k2 end;
h:=[h/2]
end;
B:=B+P
end;
write (B)
end.

Im vorgelegten HP-25 Programm ist der Algorithmus schwieriger zu erkennen.
Es miissen ndmlich die Binomialkoeffizienten g; selbst rekursiv als Produkte be-
rechnet werden, und aus Ersparnisgriinden sind diese Produkte zu einem einzigen
zusammengefasst, so dass die einzelnen g;; gar nicht «greifbar» sind.

Fiir ein genaueres Verstdndnis ist es deswegen von Vorteil, einen Fall zu betrachten,
bei dem die Koeffizienten der Rekursion direkt zu berechnen sind. Ein solcher Fall
ist

n—1
Cn=ZCkrkn’ CO=1
0

mit

n

n=k+—.
k& 10

Dieses Beispiel hat folgenden zusétzlichen Vorteil: Wird im Programm ry; in einer
Pause angezeigt (am besten im Format FIX 1), so sind sowohl Argumente als auch
Funktionswert ersichtlich: 3.5 bedeutet r;5 hat den Wert 3.5. (Es ist dafiir n<9
zu wihlen.)
Um ein Programm fiir diesen Fall zu erhalten, sind im Programm ZAHLEN in
den Schritten (30) bis (41) folgende Ersetzungen vorzunehmen:

(30) RCL6 (31) RCL3 (32) 1 (33)0 (34) = (35) +
(36) fFIX 1 (37) fPAUSE (38) fFIX2 (39) STO#4 (40) GTO 17
(41) g NOP

Im Ablauf dieses Programmes werden kurz angezeigt: Die Zahlen j aus der dusseren
Schleife fir

Cn=§: st
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die Werte r;, ihre Produkte Q; und am Schluss die Summe C,. (Die Werte r
erscheinen im Format FIX 1, die andern Werte in FIX 2.)

Im eigentlichen Programm ZAHLEN werden als Zwischenwerte nur j und P; an-
gezeigt.

Der Beginn des Programmes bedarf noch einer kurzen Erkldrung. Die Zahlen j in
2’ P; werden kombinatorisch gedeutet, indem der Rest bei Division durch 2 getestet
wird; dafiir ist wesentlich, dass j eine echte ganze Zahl ist. Daher darf 2" zu Beginn
des Programmes nicht einfach mit y* berechnet werden (es ist schon 2%2#4). Es ist
fur die genaue Berechnung von 2" die folgende Befehlsfolge gewihlt: f)y*, g— H,
f INT. Wegen des Befehles g— H bedingt dies n< 16; es ist dies zu verschmerzen,
wenn man bedenkt, dass schon bei n:=16 der Ablauf etwa einen Monat dauert.
Wird auf die Anzeige der Werte j, P; verzichtet, so kann mit zwei zusitzlichen
Programmschritten 2" exakt berechnet werden fir n<33 (d.h. fir alle » mit
2"<10'9). Aus Griinden der Platzersparnis ist auch das Ende etwas seltsam:
Zu Beginn ist der Inhalt von R, gleich 2", jener von R, gleich 0.

Bei jedem Durchgang durch die «grosse Schleife» wird Ry um 1 erniedrigt, R; um 1
erhoht; abgebrochen wird, sobald die Inhalte von Ry, R, gleich sind.

ij

4. Programme fiir HP-25
ERKENNEN
-00 17 STO-1 34 GTO 36
01 fFIXO0 18 RCL1 35 STO+1
-02 STOO 19 gx=0 ~36 RCL1
03 STO1 20 GTO 40 . 37 STO2
04 .STO 2 21 1 38 fPAUSE
05 gx<0 22 0 39 GTO 10
06 GTO 44 23 =+ -40 RCL2
07 gFRAC 24 gFRAC 41 1
08 gx#0 25 gx=0 42 fx=y
09 GTO 44 26 GTO 44 43 GTO 48
-10 1 27 - -44 0
11 0 28 1 45 gl/x
12 STO=+1 29 0 46 fLAST x
13 RCL1 30 47 GTO 02
14 gFRAC 31 2 —-48 RCLO
15 gx=0 2 xey 49 GTO 00
16 GTO 44 33 fx<y

Eingabe: x; R/S; Ausgabe: x oder ERROR, je nachdem ob x ein Reimschema darstellt oder nicht.
Erscheint x zunichst als «mégliches Reimschemay, so werden vor endgiiltiger Ausgabe die zur Priifung
verwendeten Zahlen kurz angezeigt.

ERZEUGEN

-00 17 0 34 1
01 fREG 18 =+ 35 STO+0
02 fFIXO 19 STO1 36 RCLS

03 1 20 gFRAC 37 STO=0
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04 0 21 STO-1 38 GTOO07
05 xey 22 STO2 -39 1
06 fy* -23 1 40 0
-07 9 24 0 41 STO-+0
08 =+ 25 STO=+1 42 STO=*5
09 fINT 26 RCL2 43 RCLO
10 STO+0 27 RCL1 44 fINT
11 1 28 gx=0 45 STOO
12 STOS 29 GTO39 46 gx#0
13 STO+6 30 gFRAC 47 GTO 16
14 RCLO 31 STO-1 48 RCL6
15 fPAUSE 32 fx<y 49 fFIX1
-16 1 33 GTO23

Eingabe: n (n ganz, 1<n<9); R/S; Ausgabe: Reimschemen der Linge n (mit Pausen), Halt mit
Anzahl der Schemen. Fiir die Eingabe n:=3 somit 111; 112; 121; 122; 123; 5.0.
(Schemen werden in Format 0, die Anzahl im Format 1 angegeben.)

ZAHLEN

-00 —~17 RCL3 34 GTO 17
01 fREG 18 STO6 35 STO=+4
02 2 -19 1 36 1

03 x=ay 20 STO+3 37 STO-6
04 fy* 21 2 38 STO-7
05 g—H 22 STO=5 39 RCL7
06 fINT 23 RCLS5 40 STO=*4
07 STOO "24 gx=0 41 GTO32
—~08 0 25 GTO 42 —42 RCL4
09 STO3 26 gFRAC 43 STO+2
10 1 27 gx=0 44 fPAUSE
11 STO-0 28 GTO 19 45 RCLO
12 STO+1 29 STO-5 46 RCL1
13 STO4 30 RCL3 47 fx#y
14 RCLO 31 STO7 48 GTO 08
15 STOS »32 RCL6 49 RCL2
16 fPAUSE 33 gx=0

Eingabe: n (n ganz, 1<n<16); Ausgaben: 2"— 1, Pyn_y, 2"—2, Pyn_5, ..., 27~ 1 Pyn_,, B,. Dabei ist
B, die Anzahl der Reimschemen der Lénge n; P; (2"~ !<j<2"— 1) sind die Summanden, mit deren Hilfe
B, dargestellt wird.

E. Specker, Ziirich
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