
Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 33 (1978)

Heft: 2

Artikel: Algorithmische Kombinatorik mit Kleinrechnern

Autor: Specker, E.

DOI: https://doi.org/10.5169/seals-32936

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-32936
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


ELEMENTE DER MATHEMATIK
Revue de mathematiques Elementaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Förderung des mathematisch-physikalischen Unterrichts

El. Math. Band 33 Heft 2 Seiten 25-56 10. März 1978

Algorithmische Kombinatorik mit Kleinrechnern1)

Einleitung

Am Beispiel der Klasseneinteilungen endlicher Mengen werden die drei
Grundprobleme der Kombinatorik erläutert und für den betrachteten Fall durch Angabe
von Algorithmen «gelöst». Diese Algorithmen sind auf Kleinrechnern programmierbar,

und es werden entsprechende Programme für den HP-25 angegeben.
Eine Klasseneinteilung der Menge E ist eine Menge K von nichtleeren Teilmengen
von E mit der Eigenschaft, dass es zu jedem a mit a eE genau ein A gibt mit a eA
undAeK. Es ist also etwa {{1, 3}, {2}} eine Klasseneinteilung von {1,2, 3}. Bezeichnen

wir sie kürzer mit «(13/2)», so sieht eine Liste aller Klasseneinteilungen der
Menge {1,2, 3} folgendermassen aus:

(1/2/3) (12/3) (13/2) (1/23) (123).

Für die vorgesehene algorithmische Behandlung eignet sich diese Darstellung nicht.
In Anlehnung an die in der Poetik übliche Bezeichnung der Reimschemen wollen
wir vielmehr die Klasseneinteilungen der Menge {1,2,...,«} (-die im folgenden

mit «En» bezeichnet sei) durch Abbildungen von En in En repräsentieren. Und
zwar wird der Klasseneinteilung K von E„ die folgende (rekursiv definierte)
Funktion/^ zugeordnet:

fxQ) ^t für 2^/< n auf Grund einer Fallunterscheidung definiert:

1. Gibt es ein i mit i<j, so dass ij zur selben Menge von K gehören, so sei /0 das
kleinste solche / und

1) Ausarbeitung eines Vortrages, gehalten im Rahmen des mathematikdidaktischen Seminars an der
ETH Zürich, WS 1976/77.



26 E. Specker: Algorithmische Kombinatorik mit Kleinrechnern

2. Gibt es kein i mit i<j, so dass i,j zur selben Menge von K gehören, so sei

fK(j)=MaxfK(i)+l.
KJ

Werden die Abbildungen von En in En in der üblichen Weise durch Folgen
dargestellt, so sind den 5 Klasseneinteilungen von E3 die folgenden Folgen
zugeordnet:

<1,2,3>; <1,1,2>; <1,2,1>; <1,2,2>; <1,1,1>.

(Die Anordnung ist beibehalten.)

Aus der Folge fK kann die Klasseneinteilung als Menge der «Niveauflächen»
zurückgewonnen werden. Unter allen Folgen / (mit positiven Werten), deren
Menge von Niveauflächen gleich K ist, steht die Folge fK in der alphabetischen
Ordnung an erster Stelle.

Folgen/^ werden «Reimschemen» genannt. Reimschemen sind also etwa

<1,2,1,3,1,4), <1>, <1,1,2,1,2).

Die Folge (2,1,4,1) ist kein Reimschema; das Reimschema der Klasseneinteilung
von E4, welche von dieser Folge induziert wird, ist < 1,2,3,2).
Klasseneinteilungen werden im folgenden durch Reimschemen dargestellt, und die
drei Grundprobleme der Kombinatorik sind auf diese Darstellung bezogen.
Das erste Problem ist das Problem ERKENNEN.
Die Lösung dieses Problems besteht in der Angabe eines Algorithmus, der die
Eingabe einer Folge/mit JA oder NEIN beantwortet, je nachdem ob/ein
Reimschema ist oder nicht.
Das zweite Problem ist das Problem ERZEUGEN.
Die Lösung besteht in der Angabe eines Algorithmus, der die Eingabe einer
natürlichen Zahl n mit der Aufzählung sämtlicher Reimschemen der Länge n
beantwortet.
Das dritte Problem ist das Problem ZÄHLEN.
Die Lösung besteht in der Angabe eines Algorithmus, der die Eingabe einer
natürlichen Zahl n mit der Ausgabe der Anzahl der Reimschemen der Länge n
beantwortet. (Diese Anzahl von Reimschemen oder verschiedenen Klasseneinteilungen

einer n-zahligen Menge wird «n-te Bellsche Zahl» genannt. Es gibt darüber
eine schon recht umfangreiche Literatur, welche in [2,3] zusammengestellt ist.)
Für die genauere Behandlung der beiden ersten Probleme ist noch anzugeben,
in welcher Form Folgen dargestellt werden. Da der den Programmen zugrunde
gelegte Rechner HP-25 nur 8 Speicher besitzt, erscheint es am günstigsten, sich auf
Folgen der Zahlen 1,2,...,9 zu beschränken und solche Folgen durch Zahlen mit
der entsprechenden DezimaMffernfolge darzustellen - die Folge (1,2,1,3) also
durch die Zahl 1213. Es ergibt sich daraus allerdings eine Beschränkung für die
Länge n der Reimschemen, und zwar n^ 10 für das erste und n^9 für das zweite
Problem.



E. Specker: Algorithmische Kombinatorik mit Kleinrechnern 27

Ein Vorteil der Darstellung von Folgen durch Dezimalziffern Hegt darin, dass das
letzte Glied und das Anfangsstück einer Folge durch eine Befehlsfolge berechnet
werden können, welche unabhängig ist von der Länge der Folge - dass also in
einem gewissen Sinn indirekt adressiert werden kann. Ist etwa </_,...,/„> in R$
gespeichert, so speichert die folgende Befehlsfolge </i,...,/„_i> in Rq und/„ ins
X-Register:

(1) 1 (2) 0 (3) STO ¦_- (4) RCLO (5) gFRAC
(6) STO-0 (7)*

Abgesehen von dieser speziellen Behandlung der Folgen unterscheiden sich die
Algorithmen für die beiden ersten Probleme kaum von den Algorithmen, die man
für grössere Rechner aufstellen würde.
Wesentlich anders verhält es sich für den Algorithmus, der die Anzahl Bn (n-te
Bellsche Zahl) der Reimschemen der Länge n bestimmt. Der natürliche
Algorithmus für die Berechnung von Bn benützt nämlich eine Speicherzahl, die linear
mit n wächst, und eignet sich somit nicht für den HP-25. Er wird deshalb ersetzt
durch einen Algorithmus, der mit beschränkter Speicherzahl auskommt und so -
wenigstens theoretisch - die Berechnung von Bn für 1 ^ n ^ 33 auf dem HP-25
erlaubt. Da aber die Einsparung an Speicherplatz durch eine Rechenzeit erkauft
wird, welche exponentiell mit n wächst, so ist schon einige Geduld nötig: Die
Berechnung von BX6 dauert etwa 30 Tage, jene von B33 schon etwa 30000 Jahre.
Der hier beschriebene Algorithmus für die Bellsche Funktion lässt sich ohne
weiteres übertragen auf beliebige Funktionen F, für welche eine Rekursionsformel
gilt von der Gestalt

F(n)^nfF(k)qkn,
k~0

mit Koeffizienten qkn, welche in Abhängigkeit von k,n leicht zu berechnen sind.
P. Henrici hat die Methode in [1] auf Algorithmen übertragen, welche Koeffizienten

von Potenzreihen berechnen.
Es ist vielleicht nicht ganz überflüssig, darauf hinzuweisen, dass es sich bei den
besprochenen Grundproblemen der Kombinatorik um «echte Probleme» handelt.
Dies in dem Sinne, dass es viele Lösungen gibt und dass die Kriterien, nach
welchen diese Lösungen zu vergleichen sind, nicht in der Problemstellung selbst
enthalten sind. Von Extremfällen abgesehen können Algorithmen erst dann verglichen
werden, wenn bekannt ist, für welche Art Rechner sie bestimmt sind. Ferner ist zu
fragen, ob es gentigt, dass der Programmierer allein sein Programm versteht -
und wenn ja, ob nur heute oder auch im nächsten Jahr.
Dem aufmerksamen Leser dürfte bei den ersten beiden Programmen nicht
entgehen, dass versucht worden ist, diesen Gesichtspunkt zu berücksichtigen. Beim
dritten Programm war dies kaum möglich, die Anzahl der zur Verfügung stehenden
Programmschritte ist dafür wohl allzu knapp.



28 E. Specker: Algorithmische Kombinatorik mit Kleinrechnern

1. Erkennen

Der Algorithmus ERKENNEN akzeptiert eine Eingabe x genau dann, wenn x
(gelesen als Folge der Ziffern) ein Reimschema ist. Es werden also akzeptiert
1, 11, 12, 121314; nicht akzeptiert werden 2, 132, 141312 sowie alle x, die keine
naturhchen Zahlen sind oder die Ziffer 0 enthalten.
Nach der Definition der einer Klasseneinteilung K zugeordneten Funktion fK
(gemäss welcher der Funktionswert an der Stelle j entweder gleich dem Wert an
einer früheren Stelle ist oder aber gleich der kleinsten natürlichen Zahl verschieden

von/(l),...,/(/— 1)) ist klar, dass/genau dann ein Reimschema ist, wenn gilt

/(1)= 1; /(/+ l)<Max(/(l),...,/(/)) + 1 (/= 1,2,...).

Es ist leicht möglich, diese Bedingungen algorithmisch nachzuprüfen.

Soll der Algorithmus ERKENNEN aber für den HP-25 programmiert werden und
gleichzeitig leicht erklärbar sein, so empfiehlt sich ein etwas anderer Ansatz. Wir
fragen dazu zunächst nach der Bedingung dafür, dass Folgen wie

^=<l»g2, •.•,gm-l,3,/> (/==1>2,...)

Reimschemen seien.

Ftir/:=1,2,3,4 gilt offenbar: g^ist ein Reimschema, genau wenn (l,g2, ...,gm-i, 3)
ein Reimschema ist.

Fürj:=5,6,7,... dagegen gilt: gf ist ein Reimschema, genau wenn < 1, g2,..., gm_ x,j}
ein Reimschema ist.

Entsprechend gilt allgemein: (l,f2, ...,/w_i,/m>/m+i> *st ein Reimschema, genau
wenn

<l»/2» -^fm-hfm)

ein Reimschema ist, wobeifn\=fm oder f^=fm+x, je nachdem obfm+\^fm+ 1 oder
fm+ l</m+i.
Ferner ist (fx) genau dann ein Reimschema, wenn/ 1.

Diese Bedingungen ergeben einen durchsichtigen Algorithmus. Es wird dazu für
natürliche Zahlen x mit 10 <x eine Funktion t definiert, so dass gilt: Besitzt x die

Dezimataffernfolge </b ...,fm-hfm,fm+\), so besitzt t(x) die Dezimalziffernfolge
(fh ~->fm-hfm) (w°bei_^ aus/m,/m+1 gemäss der obigen Definition zu berechnen
sind). Der Algorithmus verläuft nun so, dass zu x die Werte /(x), t2(x),... berechnet
werden, bis ein k mit tk(x)< 10 erreicht ist; dafür wird dann tk(x)— 1 nachgeprüft.

Das Programm ERKENNEN realisiert diesen Algorithmus für den HP-25.
Es ist im Programmschritt 00 ein Wert x einzugeben und mit R/S zu beginnen. Für
die Eingabe 121314 werden dann kurz die sukzessiven /-Werte angezeigt:

12134, 1213, 123, 12, 1;



E. Specker: Algorithmische Kombinatorik mit Kleinrechnern 29

der Rechner hält im Schritt 00 mit Ausgabe 121314, was AKZEPTIEREN bedeuten
soll.
Die Eingabe 141312 ergibt:

14131, 1413, 143, 14, 4; ERROR,

was ABLEHNUNG bedeutet. (Das Programm ist so konzipiert, dass es auch vom
Schritt 45, in dem es bei ERROR anhält, mit einer neuen Eingabe durch R/S
aufgerufen werden kann.)
Enthält die Eingabe x die Ziffer 0, so wird x ebenfalls verworfen. Da bei der
Berechnung von t(x) nur die zwei letzten Stellen von x isoliert werden, so geschieht
dies, sobald eme der beiden letzten Ziffern von tk(x) gleich 0 ist. Auf die Eingabe
1210314 folgen somit die Ausgaben 121034, 12103, ERROR.
Ist x negativ oder nicht ganz, so wird es ebenfalls verworfen; dies wird gleich zu
Anfang geprüft und ERROR erscheint ohne andere Ausgaben.

2. Erzeugen

Der zweite Algorithmus erzeugt bei Eingabe einer natürlichen Zahl n, 1 ^ n ^ 9, die
sämtlichen Reimschemen der Länge n, und zwar in der naturhchen Reihenfolge.
Für«:=3 also:

111, 112, 121, 122, 123.

Am Schluss wird noch die Anzahl der Schemen angegeben, für n:=3 also 5.0.

Die n-stellige Zahl 11- ••1 ist leicht als [10n/9] zu berechnen, und die wesentliche
Aufgabe besteht somit darin, zu einem Schema das nächste zu bilden. Wir betrachten

den Anfang für n:=4:

1111, 1112, 1121, 1122, 1123, 1211, 1212.

Man bemerkt, dass in den meisten Fällen auf/ einfach /+1 folgt. In dem obigen
Beispiel gibt es zwei Ausnahmen: (1112; 1121) und (1121; 1211); auch in diesen
Fällen wird eine Ziffer um 1 erhöht. Was vor dieser Ziffer steht, wird nicht
verändert; in der neuen Folge steht nach der erhöhten Ziffer l-l. Wann ist nun
/+1 der Nachfolger von /? Offenbar genau wenn /+ 1 selbst ein Reimschema ist,
oder - gleichbedeutend - wenn die letzte Ziffer von / kleiner oder gleich einer
früheren Ziffer ist. In 121312 erkennt man, dass die letzte Ziffer erhöht werden
kann auf Grund der Ziffer 3. Falls für eine Folge / - wie etwa 1123 - feststeht,
dass die letzte Ziffer nicht erhöht werden darf, so gehe man zu/" über, der Folge,
die aus /durch Streichen der letzten Ziffer entsteht. Ist - wie im Falle 1123 -
auch bei dieser Folge die letzte Ziffer nicht zu erhöhen, so werde das Verfahren
iteriert. Im betrachteten Fall gelangt man so zu 11; hier kann die letzte Ziffer zu
12 erhöht werden und der Nachfolger von 1123 wird als 1211 erhalten, indem
noch «11» angefügt wird.



30 E. Specker: Algorithmische Kombinatorik mit Kleinrechnern

Um diesen Prozess einfach beschreiben und programmieren zu können, führen wir
eine Funktion w ein, welche Paare (/*,/?> (wobei / ein Reimschema und p eine
Potenz von 10 ist) in ebensolche Paare oder aber in eine Zahl abbildet. Die Funktion

w wird durch eine Fall-Unterscheidung definiert:

1. w((l,p)) 0 (fürallep).
2. Ist (f+1) ein Reimschema, so ist w«f, p)) (f+l)p + \p/9].
3. w«/,/?>) ([//10], 10p) in den übrigen Fällen.

([/710] stellt das Schema dar, welches durch Streichen der letzten Stelle entsteht.)
Man überlegt sich nun leicht, dass es zu jedem Reimschema/eine natürliche Zahl
gibt, so dass

eine Zahl ist.
Ist diese Zahl verschieden von 0, so ist sie der gesuchte Nachfolger von/; andernfalls

ist/das letzte Reimschema derselben Länge wie/- im Fall 4 also 1234.
Statt eines formalen Beweises betrachten wir zwei Spezialfälle: (1,1,2,3) und
(1,2,3,4).

w((1123,l»-(112,10>;
w((112,10» (ll,100>; 1Q0
w((ll,100» (ll+l)- 100+1—-1 1211.

w((1234,l» (123,10>
,w((123,10» (12,100>
w((12,100>) (1,1000)
w((l,1000>)==0.

Der Ablauf des Programmes ist damit klar vorgezeichnet. Das Paar (f,p) wird mit
Hilfe von zwei Speichern dargestellt und die Funktion w in einer Schleife
berechnet, welche durchlaufen wird, bis der Wert eine Zahl ist.

3. Zählen

Der Algorithmus ZÄHLEN berechnet zu der natürlichen Zahl n die Anzahl Bn der
Reimschemen der Länge n - oder auch die Anzahl der Klasseneinteilungen einer
«-zahligen Menge. Es ist Bx 1, B2 Ä 2, B3 5; B0 ist gleich 1 zu setzen.
Die Funktion B erfüllt eine einfache Rekursionsgleichung. Um sie zu erhalten,
zerlegen wir die Menge Rn aller Reimschemen der Länge n in n disjunkte
Teilmengen Rfn (O^j^n— 1). Das Schema / gehört zu Uj,, wenn / an genau 0+1)
Stellen den Wert 1 hat. Die Anzahl von R/n bestimmt sich nun leicht folgendermassen:

An erster Stelle von/steht 1; für die übrigen j Stellen mit 1 stehen somit



E. Specker: Algorithmische Kombinatorik mit Kiemrechnern 31

noch (n-l) Möglichkeiten zur Wahl, und es gibt somit ("J1) Verteilungen der
Werte 1 auf die n Stellen. An den restlichen (n—j— 1) Stellen stehen die Werte
2,3,... Dafür gibt es Bn_j_x Möglichkeiten, denn offenbar werden die Teilfolgen
mit diesen Werten durch Subtraktion von 1 bijektiv auf die Reimschemen der
Länge (n —j—l) abgebildet. Die Anzahl von RJn ist somit

und es gilt

Wir setzen k:=n—j— 1 und erhalten

(*)_?„= t Bk("-kl); b0-i.
k n— 1

Aus diesen Beziehungen lassen sich die Werte BX,B2,... schrittweise berechnen.
Dabei müssen aber für die Berechnung von Bn die Werte Bn_x Bn_2,...,Bx
gespeichert sein, und die Rekursion liefert somit in einer direkten Anwendung keinen
Algorithmus, der sich für einen Rechner wie den HP-25 eignet.
Es soll nun gezeigt werden, wie (#) umgeformt werden kann, so dass der
Speicherbedarf zur Berechnung von Bn nicht von n abhängt, und man also mit den
8 Speichern des HP-25 auskommt.
Zur bequemeren Darstellung schreiben wir

o

£« — Y Bkakn* B$=l.
k^n-l

Es gibt dann offenbar ein Polynom Fn (in (2) Variablen), so dass gilt

Bn En(q0hq02, ...,qX2,..., tf(„-i>).

Zur genaueren Analyse von Fn betrachten wir die Fälle kleiner n

£1 901

£2 #01#12 + #02

B3 #01#12#23 + #02#23 + #01? 13 + #03

£4 #01#12#23#34 + #02.723?34 + #01#13#34 + #03#34 + #01?12#24 + #02#24 + #01#14 + #04 •

Aus diesen Beispielen ergeben sich die folgenden (leicht induktiv zu beweisenden)
Aussagen: Fn ist eine Summe von 2n~l Monomen; diese Monome sind Produkte

a0kxqkxk2 ••• <lkmn (0<kx< • • • <km<n),

und zwar tritt jedes solche Produkt genau einmal auf.



32 E. Specker: Algorithmische Kombinatorik mit Kleinrechnern

Für die folgende Berechnung empfiehlt es sich, die Summanden mit den Zahlen
j, 2n~l ^j < 2n, zu indizieren. Man erhält dann

2"-l

2tr\

und die Produkte Py lassen sich vergleichsweise einfach als Funktion von j
berechnen.

Wird nämlichy in der Basis 2 dargestellt:

7 (lan_1...fl1)2,

und sind kx,k2, ...,km,n die (der Grösse nach geordneten) Stellen, an denen die
Ziffer 1 steht, so erhalten wir jedes Produkt

a0kx^kxk2 ~'akmn

genau einmal, wenny die Werte von 2"-l bis 2n~x durchläuft. Als Beispiel
berechnen wir P356.

Es ist

(356)10= (101100100)2,

die Menge der Stellen mit 1 somit {3,6,1,9} und P356 somit

o o e>#03#36#67#79=(^J (J (J U] o0.

(Die Darstellung Bn EPj legt es nahe, nach der kombinatorischen Bedeutung der
Zahlen P} zu fragen. Für P356 findet man: P356 ist die Anzahl der Reimschemen
der Länge 9, welche aus den Zahlen 1,2,3,4 gebildet sind und für welche die
Zahl 1 zweimal (2 9-7), die Zahl 2 einmal (1 7-6), die Zahl 3 dreimal
(3 6-3) und die Zahl 4 dreimal (3 3-0) auftritt.)

Auf Grund der Darstellung

2„-i
Bn- Y Pj

2«-l

ergibt sich der Aufbau des Algorithmus fast zwangsläufig:
In einer äusseren Schleife durchläuft j die Werte von 2n— Ibis 2n_1unddie-
in der inneren Schleife - berechneten Werte P} werden aufaddiert.
In der inneren Schleife wird zuy das Produkt

%kxQkxk2 ~'akmn

berechnet.



E. Specker: Algorithmische Kombinatorik mit Kleinrechnern 33

In einer höheren Programmiersprache stellt sich der beschriebene Algorithmus
etwa folgendermassen dar:

begin read (n); B:=0;
fory:=2w-1to2w-ldo
begin h:=j; kl:=0; k2:=0; P:=l;

while h > 0 do
begin k2:=k2+l;

if odd(Ä) then
begin P\=P* (k\-xx) \ kl:=k2 end;
h:=[h/2]

end,
B:=B + P

end;
write (B)

end.

Im vorgelegten HP-25 Programm ist der Algorithmus schwieriger zu erkennen.
Es müssen namhch die Bmomialkoeffizienten qtJ selbst rekursiv als Produkte
berechnet werden, und aus Ersparnisgründen sind diese Produkte zu einem einzigen
zusammengefasst, so dass die einzelnen qtJ gar nicht «greifbar» sind.
Für ein genaueres Verständnis ist es deswegen von Vorteil, einen Fall zu betrachten,
bei dem die Koeffizienten der Rekursion direkt zu berechnen sind. Ein solcher Fall
ist

n-\
Cn—\,Ckrkni Q= 1

0

mit

n

Dieses Beispiel hat folgenden zusätzlichen Vorteil: Wird im Programm rtJ in einer
Pause angezeigt (am besten im Format FIX 1), so sind sowohl Argumente als auch
Funktionswert ersichtlich: 3.5 bedeutet r35 hat den Wert 3.5. (Es ist dafür «^9
zu wählen.)
Um ein Programm für diesen Fall zu erhalten, sind im Programm ZÄHLEN in
den Schritten (30) bis (41) folgende Ersetzungen vorzunehmen:

(30) RCL6 (31) RCL3 (32) 1 (33) 0 (34) -^ (35) +
(36)fFIXl (37) fPAUSE (38) fFIX2 (39) STO*4 (40) GTO 17

(41) gNOP

Im Ablauf dieses Programmes werden kurz angezeigt: Die Zahleny aus der äusseren
Schleife für

Cn YQj>



34 E Specker Algorithmische Kombinatorik mit Kleinrechnern

die Werte rlp ihre Produkte ßy und am Schluss die Summe Cn. (Die Werte rtJ
erscheinen im Format FIX 1, die andern Werte in FIX 2.)
Im eigentlichen Programm ZÄHLEN werden als Zwischenwerte nur j und P}
angezeigt.

Der Beginn des Programmes bedarf noch einer kurzen Erklärung. Die Zahlen j in
27 Pj werden kombinatorisch gedeutet, indem der Rest bei Division durch 2 getestet
wird; dafür ist wesentlich, dassy eine echte ganze Zahl ist. Daher darf 2n zu Beginn
des Programmes nicht einfach mit y* berechnet werden (es ist schon 22^=4). Es ist
für die genaue Berechnung von 2" die folgende Befehlsfolge gewählt:/y*, g^H,
f INT. Wegen des Befehles g-*H bedingt dies «^ 16; es ist dies zu verschmerzen,
wenn man bedenkt, dass schon bei «:=16 der Ablauf etwa einen Monat dauert.
Wird auf die Anzeige der Werte j,Pj verzichtet, so kann mit zwei zusätzlichen
Programmschritten 2n exakt berechnet werden für «<33 (d.h. für alle n mit
2"<1010). Aus Gründen der Platzersparnis ist auch das Ende etwas seltsam:
Zu Beginn ist der Inhalt von_R0 gleich 2n, jener von Rx gleich 0.

Bei jedem Durchgang durch die «grosse Schleife» wird R0 um 1 erniedrigt, Rx um 1

erhöht; abgebrochen wird, sobald die Inhalte von _R0, Rx gleich sind.

4. Programme für HP-25

-00
01 fFIXO

-02 STO0
03 STOl
04 »STO 2

05 g_t<0
06 GT0 44
07 gFRAC
08 gx^O
09 GT0 44

-10 1

11 0
12 STO-1
13 RCL1
14 gFRAC
15 g*-0
16 GT0 44

17 STO-1
18 RCL 1

19 gx 0
20 GTO40
21 1

22 0

23 -
24 gFRAC
25 g*«0
26 GT0 44
27 -
28 1

29 0
30 *
31 2
22 x&y
33 fx<y

34* GT0 36
35 STO+ 1

-36 RCL1
37 STO 2

38 f PAUSE
39 GTO 10

-40 RCL 2

41 1

42 fx=y
43 GTO 48

-44 0
45 gl/*
46 fLASTx
47 GTO 02

-48 RCL0
49 GTO 00

Emgabe x, R/S, Ausgabe x oder ERROR, je nachdem ob x em Reimschema darstellt oder nicht
Erscheint x zunächst als «mögliches Reimschema», so werden vor endgültiger Ausgabe die zur Prüfung
verwendeten Zahlen kurz angezeigt

ERZEUGEN

»00
01 fREG
02 fFIXO
03 1

17 0
18 -
19 STOl
20 gFRAC

34 1

35 STO + 0
36 RCL 5

37 STO*0



E Specker Algorithmische Kombinatorik mit Kiemrechnern 35

04 0
05 x+±y
06 fy*
07 9
08 -
09 fINT
10 STO + 0
11 1

12 STO 5

13 STO+ 6
14 RCL0
15 f PAUSE
16 1

21 STO-1
22 STO 2

23 1

24 0
25 STO-1
26 RCL 2

27 RCL1
28 g* 0
29 GTO 39
30 gFRAC
31 STO-1
32 fx<y
33 GTO 23

38 GTO 07
»39 1

40 0
41 STO-0
42 STO* 5

43 RCL 0

44 fINT
45 STO 0
46 g*^0
47 GTO 16

48 RCL 6

49 fFIXl

Eingabe n (n ganz, l^n^9), R/S, Ausgabe Reimschemen der Lange n (mit Pausen), Halt mit
Anzahl der Schemen Für die Emgabe n =3somitlll, 112, 121, 122, 123, 50
(Schemen werden in Format 0, die Anzahl im Format 1 angegeben

ZAHLEN

-00
01 fREG
02 2

03 x?±y
04 fy*
05 g-H
06 fINT
07 STO0

-08 0
09 STO 3

10 1

11 STO-0
12 STO+1
13 STO 4
14 RCL0
15 STO 5

16 f PAUSE

17 RCL 3

18 STO 6

19 1

20 STO+3
21 2

22 STO-5
23 RCL 5

24 gx 0
25 GTO 42
26 gFRAC
27 gx 0

28 GTO 19

29 STO-5
30 RCL 3

31 STO 7
32 RCL 6

33 gx 0

34 GTO 17

35 STO-4
36 1

37 STO-6
38 STO-7
39 RCL 7

40 STO* 4
41 GTO 32

»42 RCL 4
43 STO+ 2

44 f PAUSE
45 RCL0
46 RCL 1

47 fx^y
48 GTO 08

49 RCL 2

Emgabe n (n ganz, 1<w^16), Ausgaben 2"-l, /fy-i» 2"-2, P2"-2, » 2""1, P2n-h Bn Dabei ist
Bn die Anzahl der Reimschemen der Länge n, Pj (2n~~ l^j^2n- 1) sind die Summanden, mit deren Hilfe
Bn dargestellt wird

E. Specker, Zürich

LITERATURVERZEICHNIS

1 P Hennci Computational Analysis with the HP-25 Pocket Calculator John Wiley, New York 1977

2 G-C Rota The number of partitions of äset Amer Math Monthly 77,498-504(1964)
3 N J A Sloane A Handbook of Integer Sequences Academie Press, New York 1973


	Algorithmische Kombinatorik mit Kleinrechnern

