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Kleine Mitteilungen

Bemerkungen iiber Eindeutigkeitsmengen additiver Funktionen

Eine zahlentheoretische Funktion f: N — C heisst vollstindig additiv, wenn fiir alle
n,meN f(nm)=f(n)+f(m) gilt. Nach Ké4tai [3] nennt man eine Menge A4 natiirh-
cher Zahlen Eindeutigkeitsmenge vollstindig additiver Funktionen (kurz: E-Men-
ge), wenn fir jede vollstindig additive, zahlentheoretische Funktion f:N—C aus
f(4)={0} die Gleichung f(N)={0} folgt. Die Menge P der Primzahlen ist offenbar
eine E-Menge, jede echte Teilmenge von P dagegen nicht.

Katai [4] zeigte, dass fiir ein gewisses C> 0 die Menge

{neN,n< C} u'{p+ 1, p prim}

E-Menge ist. Elliott [1] wies diese Eigenschaft fiir die Menge {p+ 1} nach. Indlekofer
[2] gab eine Reihe weiterer Beispiele fiir E-Mengen an.

Es scheint bislang nicht bemerkt worden zu sein, dass E-Mengen auch wie folgt cha-
rakterisiert werden kénnen:

Satz. Eine Menge AcN ist E-Menge genau dann, wenn jedes natiirliche n in der
Gestalt

4

n=at---a;'k (keNg; ay, ...,areA; ry, ..., ry rational) 1)

geschrieben werden kann.
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Eine unmittelbare Konsequenz hieraus und dem Satz von Elliott ist: Jedes neN
kann in der Form

n=(p1+l)'1---(pk+ l)rk (kENo,pl,...,pkEP; rl,...,rkeQ) (2)
dargestellt werden.

Bemerkungen:
1. In (1) und (2) brauchen die einzelnen Faktoren a,’v bzw. (p,+ 1)’v keine rationalen
Zahlen zu sein, wie das Beispiel

2=1+ 1P/ (7T+1)-¥/2
zeigt. :
2. Die Da/rstellungen (1) und (2) sind nicht notwendig eindeutig, z. B. ist 2= (3 + 1)!/2
=7+ 13

3. Im Hinblick auf den nachstehenden Beweis sei gesagt, dass eine vollstindig addi-
tive Funktion von N in eindeutiger Weise auf die Zahlenmenge

W={x:x=p/1---p;"k; keNg; p1, ..., preP; ry, ..., r, €Q}

fortgesetzt werden kann. Da jedes xe W genau eine solche Darstellung besitzt, setze
man einfach

fE)=rif@)+ - +rfps).

Etwas allgemeiner kann man daher Teilmengen von W als E-Mengen definieren.
Die Forderung

f(4)={0}=f(N)={0}

wird dadurch nicht beriihrt, denn schon aus f(P)= {0} folgt f (W)= {0}.

Zum Beweis des Satzes (vereinfacht durch R. Warlimont):

Dass aus (1) die E-Mengen-Eigenschaft folgt, ist klar. Zum Nachweis der umgekehr-
ten Richtung nehmen wir an, es gebe eine E-Menge A, fur die nicht jedes n gemiss
(1) dargestellt werden kann. Wir betrachten den Vektorraum ¥, der von den Zahlen

logp, peP

iiber dem Korper Q der rationalen Zahlen aufgespannt wird, d.h. die Menge der
Zahlen log x (xe W) mit der gewohnlichen Addition als Vektoraddition. Sei U der
Unterraum von V, welcher von den Zahlen

loga, ael,
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erzeugt wird. Nach unserer Annahme ist U ein echter Unterraum von ¥V, denn nicht
fur alle ne N existiert eine Darstellung

logn=r|loga;+--- +rlogay (ai,...,areAg; ry, ..., Q).
Jede Basis B, von U lisst sich zu einer Basis B von V erginzen. Durch

_ ] 0 furbeB,,
v (b)= { 1 furbeB\B,

wird eine lineare Abbildung von V in Q definiert, die nicht identisch verschwindet,
fur die aber ¢ (U)= {0} gilt. Da sich fiir jedes ne N genau eine Darstellung

10gn=r1b1+ +rkbk (bl’ a3y kaB; iy ouoy rkeQ)
finden ldsst, wird durch

S)=rip b))+ +ro(by)

eine vollstindig additive Funktion definiert. Es gilt aber

fU)={0}, f(N)+{0},

was im Widerspruch zur Annahme steht.
Dieter Wolke, TU Clausthal-Zellerfeld
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Aufgaben

Aufgabe 781. A= (a+md),-q ), . sei eine arithmetische Folge mit a,de N. Man
beweise: -

a) Jedes Glied von A4 ist Anfangsglied unendlich vieler geometrischer Teilfolgen
von A mit ganzzahligen, paarweise teilerfremden Quotienten.

b) Jedes Glied von A ist Anfangsglied unendlich vieler Teilfolgen von 4, von
denen jede die Partialsummenfolge einer geometrischen Folge mit ganzzahligem
Quotienten ist. J. Binz, Bolligen
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