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Kleine Mitteilungen

Bemerkungen über Eindeutigkeitsmengen additiver Funktionen

Eine zahlentheoretische Funktion /:N-»C heisst vollständig additiv, wenn für alle
n,meN f(nm)=f(n)+f(m) gilt. Nach Kätai [3] nennt man eine Menge A natürlicher

Zahlen Eindeutigkeitsmenge vollständig additiver Funktionen (kurz: ^-Menge),

wenn für jede vollständig additive, zahlentheoretische Funktion /: N -* C aus

f(A)—{0} die Gleichung/(N)={0} folgt. Die Menge P der Primzahlen ist offenbar
eine JE-Menge, jede echte Teilmenge von P dagegen nicht.
Kätai [4] zeigte, dass für ein gewisses C> 0 die Menge

{n eN, n<> C} u {p+ l,p prim}

I?-Menge ist. Elliott [1] wies diese Eigenschaft für die Menge {p+ 1} nach. Indlekofer
[2] gab eine Reihe weiterer Beispiele für is-Mengen an.
Es scheint bislang nicht bemerkt worden zu sein, dass JE;-Mengen auch wie folgt
charakterisiert werden können:

Satz. Eine Menge _4cN ist E-Menge genau dann, wenn jedes natürliche n in der
Gestalt

n**a{\'-akrk (keN0; ah ...,akeA\ rh rkrational) (1)

geschrieben werden kann.
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Eine unmittelbare Konsequenz hieraus und dem Satz von Elliott ist: Jedes neN
kann in der Form

n (px+iyi.--(pk+iyk (keN0,Px,...,pkeP;rx,...,rkeQ) (2)

dargestellt werden.

Bemerkungen:
1. In (1) und (2) brauchen die einzelnen Faktoren a/v bzw. (pv+ l)rv keine rationalen
Zahlen zu sein, wie das Beispiel

2 (3IH-1)3/7(7 + l)-8/21

zeigt.
2. Die Darstellungen (1) und (2) sind nicht notwendig eindeutig, z. B. ist 2 (3 + l)1/2
=(7+iy/3.
3. Im Hinblick auf den nachstehenden Beweis sei gesagt, dass eine vollständig additive

Funktion von N in eindeutiger Weise auf die Zahlenmenge

W={x:x=pxn-..Pk>-k; keN0;px, ...,pkeP; rx,..., rkeQ}

fortgesetzt werden kann. Da jedes xeW genau eine solche Darstellung besitzt, setze

man einfach

m rxf(px)+-.+rkf(pk).

Etwas allgemeiner kann man daher Teilmengen von W als E-Mengen definieren.
Die Forderung

/(^)={0}^/(N)={0}

wird dadurch nicht berührt, denn schon aus/(P)= {0} folgt/(W)= {0}.

Zum Beweis des Satzes (vereinfacht durch R. Warlimont):
Dass aus (1) die E-Mengen-Eigenschaft folgt, ist klar. Zum Nachweis der umgekehrten

Richtung nehmen wir an, es gebe eine 2s-Menge A0, für die nicht jedes n gemäss
(1) dargestellt werden kann. Wir betrachten den Vektorraum V, der von den Zahlen

log/?, peP

über dem Körper Q der rationalen Zahlen aufgespannt wird, d.h. die Menge der
Zahlen logx(xeW) mit der gewöhnlichen Addition als Vektoraddition. Sei U der
Unterraum von V, welcher von den Zahlen

loga, aeA0
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erzeugt wird. Nach unserer Annahme ist U ein echter Unterraum von V, denn nicht
für alle neN existiert eine Darstellung

log/i r1logö1+ ••• + rklogak (ax, ...,akeA0; rx,..., rkeQ).

Jede Basis B0 von U lässt sich zu einer Basis R von V ergänzen. Durch

f (*)- { J für beB0,
für beB\B0

wird eine üneare Abbildung von Fin Q definiert, die nicht identisch verschwindet,
für die aber tp (U)~ {0} gilt. Da sich für jedes «eN genau eine Darstellung

logn*=rxbx + ••• +rkbk (bx,..., bkeB; rk,..., rkeQ)

finden lässt, wird durch

f(n)~rx<p(bx) + ••• +rk(f>(bk)

eine vollständig additive Funktion definiert. Es gilt aber

f(4d~{0}9 /<N)+{0},

was im Widerspruch zur Annahme steht.
Dieter Wolke, TU Clausthal-Zellerfeld
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Aufgaben

Aufgabe 781. A~(a+md)m^Qtit2t... sei eine arithmetische Folge mit a,deN. Man
beweise:
a) Jedes Glied von A ist Anfangsglied unendlich vieler geometrischer Teilfolgen
von A mit ganzzahligen, paarweise teilerfremden Quotienten.
b) Jedes Glied von A ist Anfangsglied unendlich vieler Teilfolgen von A, von
denen jede die Partiakummenfolge einer geometrischen Folge mit ganzzahligem
Quotienten ist. J. Binz, Bolligen
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