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+7*3 +P4+P5 +7?6- It is not entirely obvious that this formula is the same as the
formula obtained in section 2 above for this problem.

Jeanne W. Kerr, University of California, San Diego, La Jolla, Cal.,
and John E. Wetzel, University of Illinois, Urbana, Dl., USA
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Extremaleigenschaften rotationssymmetrischer Kegelstümpfe
im gewöhnlichen Raum (1. Teil)

In dieser Note behandeln wir ein Extremalproblem, Teilproblem eines viel
allgemeineren, unter III zu erläuternden Extremalproblems über konvexe Rotationskörper,

und letzteres ordnet sich einem Hauptproblem über allgemeine konvexe
Körper unter, das unter II kurz dargelegt wird. Die gesonderte Behandlung des

Kegelstumpfproblems rechtfertigt sich durch die mit gesicherten Teilresultaten
untermauerte Vermutung, dass die Extremalkorper unseres Spezialproblems mit
Minimumeigenschaften dieselben im Problem III wenigstens teilweise beibehalten.
Weitergehende Untersuchungen bezüglich der notwendigen Bedingungen für
Extrema im Problem III lassen sogar den Schluss zu, dass die Aussonderung der
Kegelstümpfe nicht zu umgehen ist.
Unsere Ausführungen beziehen sich ausschliesslich auf den gewöhnlichen Raum
und die gewöhnliche Ebene.



8 H. Bieri: Extremaleigenschaften rotationssymmetrischer Kegelstümpfe (I.Teil)

I. Einleitung (vgl. [1])

Wir nennen Eikörper jede beschränkte, abgeschlossene und konvexe Punktmenge
mit innern Punkten. Ein Eikörper heisst Halbkörper $, wenn $u$* wieder ein
Eikörper ist, wo $* das Spiegelbild von $ an einer ausgezeichneten Stützebene
bedeutet.
Jedem Eikörper 31 kommen drei Hauptmasszahlen zu, nämlich

V= F(3t)=Volumen, F=F(%)=Oberfläche, M=M(%).

M(3l) wird in der Literatur als Integral der mittlem Krümmung bezeichnet.
Indessen ist es klar, dass dies nur unter der Voraussetzung zutreffend ist, dass die
Oberfläche des Körpers mindestens zweimal stetig differenzierbar sei. Allgemeingültig

ist M—j(l/2) b(n) dn, wo b(n) die Breite des Körpers in der Richtung n
bedeutet, und noch einfacher schreibt man M=2n-b, wo jetzt b die mittlere
Breite bedeutet.
Diese Funktionale sind definit, monoton und homogen vom Grade 3, 2, 1.

Insbesonders gilt das für die Ausführungen in II wichtige Gesetz

V(vA)~v3V(A), F(vA) v2F(A), M(vA) vM(A).

Wir haben uns mit dem Begriff konvexer Rotationskörper SR eingehend vertraut zu
machen. Es existieren oo-viele, die Rotationsachse enthaltende Symmetrieebenen.
Ihr Durchschnitt mit SR ist für jede dieser Ebenen ein konvexer Bereich, dessen
Rand Meridiankurve mit der Länge 2L heisse. Ebenen senkrecht zur Rotationsachse
schneiden aus SR Kreise mit den Radien r aus. Den grossten dieser Radien nennen
wir Äquatorradius a. Der Abstand der beiden auf der Rotationsachse senkrecht
stehenden Stützebenen wird mit / bezeichnet. Ist die Meridiankurve ein Polygon,
so handelt es sich um einen polygonalen Rotationskörper. In Abbildungen heisse der
Originalbereich G, der Bildbereich G.

IL Das Hauptproblem ([1], S. 72-78)

Ein völlig befriedigender Abschluss der Theorie der fundamentalen Masszahlen
konvexer Körper würde erreicht, wenn es gelänge, die notwendigen und hinreichenden

Bedingungen aufzufinden dafür, dass zu dfrei gegebenen nichtnegativen Zahlen
V,F,M mindestens ein Eikörper existiert. Die Lösung dieses Problems erfordert
offenbar die Auffindung aller zwischen den fundamentalen Masszahlen bestehenden

Relationen. Mithin handelt es sich um das Problem des vollständigen
Ungleichungssystems. Bis heute sind folgende Hauptungleichungen bekannt:

7. Minkowskische Ungleichung

M2-4nF&0 (Gleichheit nur für Kugeln)
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2. Minkowskische Ungleichung

F2-3MV^0 (Gleichheit nur für Kappenkörper der Ku¬
geln, insbesonders auch für Kugeln und
Strecken)

3. Isoperimetrische Ungleichung

F3-36nV2 0 (Gleichheit nur für Kugeln und Strecken)

M3 - 48 n2 V= 0 (Gleichheit nur für Kugeln)

V^O (0_s 4tt3 F^ 8 M2) (Gleichheit nur für ebene konvexe Bereiche)

Leider fehlt eine weitere Ungleichung von der Form

V^f(M,F) (Gleichheit für noch unbekannte Körper,
(S M2=*4n3F^n2M2) welche zwischen Kreisscheiben und Kugeln

interpolieren)

Über die zugehörigen Extremalkorper, welche bei vorgegebenem M und F ein
absolutes Minimum des Volumens besitzen, existiert wohl eine plausible Vermutung
([1], S. 73-78), die bis heute aber nicht bewiesen werden konnte. H. Hadwiger
erzielte eine Teillösung des Hauptproblems unter einschränkenden Bedingungen
über die Differenzierbarkeitsverhältnisse innerhalb der einem Eikörper zugeordneten

vollständigen Parallelenschar ([ 1 ], S. 78-81).
Man gewinnt eine klare Übersicht über die bestehenden Verhältnisse, wenn das
Problem in ein geometrisches Gewand gesteckt wird. Die Quotienten passend
gewählter Potenzen von je zwei Masszahlen sind invariant gegenüber Ähnlichkeit.
Normiert man dieselben so, dass sie für Kugeln den Wert 1 annehmen, so gewinnt
man die Ausdrücke

4nF 487i2F 36/rF2
x=="m^' y—W> 2=-^"- (1)

Es wird nun jedem Eikörper ein Punkt in einer Diagrammebene mit zweien der
obigen Ausdrücke als Koordinaten zugeordnet. Die Menge aller Eikörper wird so in
eine ebene Punktmenge G abgebildet, und man erhält das Blaschke-Diagramm ([IJ,
S. 72-74).
Meines Wissens ist bis heute immer nur das (x, >>)-Diagramm verwendet worden.
Das (x,2)-Diagramm bietet aber gewisse Vorteile. So werden in der Umgebung
des Streckenpunktes alle Kurven gehoben, in der Umgebung des Kreisscheibenpunktes

aber gesenkt und besser getrennt. Auch das (y,2)-Diagramm hat seine

Berechtigung. Man wird es benützen, wenn die Schwarzsehe Abrundung als
Beweismittel verwendet werden kann.
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III. Das Rotationskörperproblem

Vom Standpunkt der elementaren Geometrie aus ist die Beschränkung auf
Rotationssymmetrie bedeutsam. Wie in vielen andern Problemen lassen sich auch
hier Fortschritte erzielen.
Zunächst bleiben alle in II aufgeführten Ungleichungen bestehen. Jedoch gilt in
der 2. Minkowskischen Ungleichung das Gleichheitszeichen nur noch für Strecken
und Kappenkörper mit 1 oder 2 Kappen, in Fi__ 0 sogar nur noch für Strecken und
Kreisscheiben, da dies die einzigen ebenen konvexen Bereiche mit Rotationssymmetrie

sind. Der grosse Fortschritt bestand in der Auffindung einer Ungleichung
V^f(M,F) in SM2 4n3F=n2M2. Sie ist transzendent, und die zugehörigen
Minimalkörper sind die symmetrischen Kugelschichten [2J.

Allerdings müssen nun neue Ungleichungen gefunden werden, welche dem
Tatbestand Rechnung tragen, dass noch unbekannte Extremalkorper existieren, welche
zwischen Strecken und Kreisscheiben interpolieren (Fig. 1).

pm

stow
Abb.l

G ist jetzt beschränkt, abgeschlossen und zusammenhängend, jedoch ist der von
O bis S führende Teil des Randes noch unbekannt. Nach aussen erfolgt der
Abschluss durch den Parabelbogen v=jc2 sowie durch einen Bogen einer gewissen,
nun bekannten transzendenten Kurve ([2J, S. 75). Einparametrige Rotationskörperscharen

bilden sich als Kurven ab. Wir werden also in IV von Kurven sprechen
dürfen, ohne dass Missverständnisse zu befürchten sind, und Kurvendiskussion
wird ein wichtiges und durchaus elementares Beweismittel sein.
Man verdankt H. Hadwiger viele schöne Resultate über konvexe Rotationskörper
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[3-7]. Gestützt auf eine äusserst zweckmässige Integraldarstellung der fundamentalen
Masszahlen (alle Integranden sind frei von Ableitungen!) ist es ihm gelungen,

ein System von linearen Ungleichungen aufzustellen, in welche der feste Äquatorradius

a eingeht. Mit Hilfe dieser auf Koordinaten umgerechneten Ungleichungen
konnte gezeigt werden, dass der innere Bildrand von G in der Umgebung von S
nach rechts überhängt d.h. dass x vom Anfangswert 8/712 bis zu einem vorderhand

unbekannten Maximalwert zunimmt [8, 9J. Diese Tatsache ist von grosser
Bedeutung, weiss man doch jetzt, dass C rechts von S von Parallelen zur v-Achse
in 4 Punkten geschnitten wird und somit relative Extrema auftreten, was zum
vornherein nicht vorauszusehen war.
Meine in der Zeitschrift Experientia veröffentlichten Noten förderten
Extremaleigenschaften der Kegelstümpfe, insbesondere der Zylinder und Kegel bei fester
Länge / in den Problemen mit zwei Masszahlen zutage [10]. Kombination aller
erwähnten Ergebnisse erlaubt nun eine weitergehende Aussage über den innern
Bildrand ([11], Fig.2).
Die Bogen OQx sowie Q2S sind unscharfe Ränder von G, der Bogen QXQQ2 dagegen
begrenzt scharf. Da Q zwischen Qx und Q2 liegt, bedeutet dies, dass eine endliche
Teilschar von Kegeln bei festem x ein absolutes, eine andere endliche Teilschar
von Kegeln noch ein relatives Minimum von z aufweist (die Aussage ist ebenfalls
für y gültig).
Kegelstümpfe, Zylinder und Kegel sind Halbkörper. Es erscheint lohnend, unser
Problem zunächst für die abgeschlossene Klasse aller $ in Angriff zu nehmen. Es
sind hier bereits überraschende Teilresultate gefunden worden [12]. Das
Hauptinteresse konzentriert sich indessen auf den innern Bildrand.
Die obigen Ausführungen lassen es angezeigt erscheinen, die Klasse der
Kegelstümpfe auszusondern, da wir mit grosser Wahrscheinlichkeit Auskunft über den
innern Bildrand in der Klasse aller $ erhalten werden.
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IV. Das Kegelstumpfproblem

In einer ausführlichen Note vom Jahre 1955 [13] habe ich über Extremaleigenschaften

in der abgeschlossenen Klasse der konvexen Kegelstümpfe im gewöhnlichen

Raum berichtet. Die damaligen Resultate sind unvollständig. Insbesonders
konnte die Diskriminante einer einparametrigen Schar von kubischen Gleichungen
mit den mir damals zur Verfügung stehenden Hilfsmitteln nicht abschliessend
diskutiert werden, so dass die Frage nach der Anzahl der reellen Wurzeln der
erwähnten Gleichungen im Teilintervall n/4<y/sn/2 unbeantwortet bleiben
musste. Auch war die Minimaleigenschaft der einparametrigen Zylinderschar in
der Umgebung der Kreisscheibe nicht sichergestellt, so dass in derselben
Umgebung ein unscharfer Bildrand eingeführt werden musste ([13], S. 182-184). Diese

E2

S XwXjX* X*
X. Xo

Ei:x~0,68935
*-0,48942

D: x-0,8257
_M),0472

(Kegelstumpf)

Es: x-0,71242
zs0,5

U: x-0,857102
2*0,294055

Abb. 3
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Mängel werden in der vorliegenden Note ausgemerzt1). Die Schar der konvexen
Kegelstümpfe ist zweiparametrig. Es gibt wichtige einparametrige Scharen, deren
Bilder im Blaschke-Diagramm Kurven sind. Wir sprechen also künftig von der
Zylinderkurve, der Kegelkurve usw.
Wir geben zunächst die gefundenen Resultate bekannt, die aus der Figur 3

mühelos abgelesen werden können. Anschliessend folgen die Beweise.
Der Bildbereich G ist beschränkt, zusammenhängend und abgeschlossen. Nach
aussen wird er vom Kegelkurvenbogen OE sowie anschüessend vom Zylinder-
kurvenbogen ES berandet. Nach innen folgen sich als Randstücke der Zylinder-
kurvenbogen OEx, der Bogen EXE2, Bild einer speziellen einparametrigen
Kegelstumpfschar, deren Parameter einer kubischen Gleichung <£ 0 genügen (vgl. [13]);
sodann der Kegelkurvenbogen E2 W und schliesslich der Bogen WS, Bild einer
weitern einparametrigen Kegelstumpfschar, die ebenfalls durch 0 0 festgelegt ist.
Bei festem x besitzen im Intervall

0 _§» x _g x x Zylinder ein absolutes Minimum von z

xx<x<x2 Kegelstümpfe ein absolutes Minimum von z
x2^x<$/n2 Kegel ein absolutes Minimum vonz
%/n2_.x_.x3 Kegel ein relatives Minimum von z

xw^x=:x3 Kegel ein relatives Maximum von z
S/n2<x^xw spezielle Kegelstümpfe ein relatives Maximum von z
0 _s x _s x5 Kegel ein absolutes Maximum von z

x5 _g je _i x4 Zylinder ein absolutes Maximum von z

i/ne _§i x _s x4 Zylinder ein absolutes Minimum von z

Nun kann durch eine Ähnlichkeit immer erreicht werden, dass Körper, die gleiches

x aufweisen, auch in F und M übereinstimmen. Die extremale Grösse ist dann V.

Demnach dürfen wir unsere Behauptungen so beginnen lassen:
Bei festem F und M -, und es wird das Extremum von V festgestellt. In analoger
Weise liest man aus der Figur 3 Extrema der zwei andern Masszahlen ab.
Die Beweisführung erfolgt im 2. Teil der Arbeit und wird in nächster Zeit in dieser
Zeitschrift erscheinen.

H. Bieri, Wabern (Köniz)
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Kleine Mitteilungen

Bemerkungen über Eindeutigkeitsmengen additiver Funktionen

Eine zahlentheoretische Funktion /:N-»C heisst vollständig additiv, wenn für alle
n,meN f(nm)=f(n)+f(m) gilt. Nach Kätai [3] nennt man eine Menge A natürlicher

Zahlen Eindeutigkeitsmenge vollständig additiver Funktionen (kurz: ^-Menge),

wenn für jede vollständig additive, zahlentheoretische Funktion /: N -* C aus

f(A)—{0} die Gleichung/(N)={0} folgt. Die Menge P der Primzahlen ist offenbar
eine JE-Menge, jede echte Teilmenge von P dagegen nicht.
Kätai [4] zeigte, dass für ein gewisses C> 0 die Menge

{n eN, n<> C} u {p+ l,p prim}

I?-Menge ist. Elliott [1] wies diese Eigenschaft für die Menge {p+ 1} nach. Indlekofer
[2] gab eine Reihe weiterer Beispiele für is-Mengen an.
Es scheint bislang nicht bemerkt worden zu sein, dass JE;-Mengen auch wie folgt
charakterisiert werden können:

Satz. Eine Menge _4cN ist E-Menge genau dann, wenn jedes natürliche n in der
Gestalt

n**a{\'-akrk (keN0; ah ...,akeA\ rh rkrational) (1)

geschrieben werden kann.
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