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Zum Satz von Morley

Im Jahre 1899 entdeckte F. Morley, Professor der Johns-Hopkins-Universitat,
einen, jetzt nach ihm benannten Satz, ohne diesen zu verdffentlichen. Anfangs unse-
res Jahrhunderts wurden dafiir eine Reihe von geometrischen Beweisen erbracht
[1,2].

Hier soll ein trigonometrischer Beweis nach H. DORRIE [3] angegeben werden.

Cs
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Satz 1. Werden in einem Dreieck die Innenwinkel durch je zwei Strahlen ge-
drittelt, dann schneiden sich die beiden, je einer Seite anliegenden Dreiteilenden in
Punkten, die ein gleichseitiges Dreieck bilden (Morleysches Dreieck).

Beweis. Im Dreieck A BC (siehe Figur) sei X BAC=a=39, Xx ABC=f=3¢und
{ACB='})=3€ Weiter sei X BAC1= X CAB1=§( BIAC]=5, {ABClzé:A]BCl—‘:
{AlBCZS und {ACB1=§:A1CB1= <):A1CB=§

Um zu beweisen, dass das Dreieck 4,B,C; gleichseitig ist, werden zwei Hilfs-
sitze verwendet.
Es gilt die Beziehung:

sin g =4sin (¢ /3)sin (60°+ ¢ /3) sin (60°— ¢ /3).. (1)
Nimmt man in einem Dreieck an, dass der Umkreisdurchmesser 2r=1 ist,
dann kann man jede Dreiecksseite gleich dem Sinus des gegeniiberliegenden Win-

kels setzen. Wendet man auf dieses Dreieck den Kosinussatz an, folgt fiir drei Win-
kel x, y und z, deren Summe 180° ist:

sin2z=sin ’x + sin%y— 2 sin xsin ycosz. (2)
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Die Winkel konnen in dieser Formel vertauscht werden.

Um die Seite |A4,C,| zu berechnen, ermittelt man zunichst die Seiten | BC,|
und | BA,| aus den Dreiecken A BC|, und BCA; mittels des Sinussatzes, wobei man
|AB| =siny und | AC| =sinf setzen darf. Bei Verwendung von (1) ergibt sich:

| BA,| =4sind sin{sin (60°+0),
| BCy| =4sindsin{sin (60°+().

Der Kosinussatz, angewandt auf das Dreieck A ,C,B liefert fiir die Dreiecks-
seite | 4,C,| =s,:

s7=165sin20 sin?{ [sin? (60°+ @) +sin? (60°+ ) — 2 sin (60°+¢) sin (60°+ &) cos&].
Der Klammerausdruck wird nach (2) gleich sin’¢ und man findet:
s1=4sin (a /3)sin (8/3)sin (y /3). (3)

Da in dieser Formel kein Winkel ausgezeichnet ist, folgt, dass das Dreieck
A B,C, gleichseitig ist, w.z.b.w. Der trigonometrische Beweis sagt zum Unterschied
von den geometrischen Beweisen auch etwas tiber die Grosse der Dreieckseite aus.

Fiir ein allgemeines Dreieck miisste s; noch mit 2 r multipliziert werden.

Im Jahre 1914 gelang es Taylor und Marr, den Satz von Morley zu verallgemei-
nern. Unter anderem fanden sie zwei, zu jedem Dreieck gehorende, gleichseitige
Dreiecke [4].

Satz 2. Werden die Aussenwinkel eines Dreiecks durch Strahlen gedrittelt,
dann schneiden sich die beiden, den Seiten jeweils anliegenden Strahlen in Punkten,
welche ein gleichseitiges Dreieck bestimmen.

Beweis. Es sei ¥ BAC,=%x CAB,=(180°-a)/3, ¥ ABC,=% CBA,=
(180°—f)/3 und ¥ BCA,= ¥ ACB,=(180°—7)/3.

Um die Seite |A4,C,| zu berechnen, ermittelt man die Seite |BC,| mit dem
Sinussatz aus dem Dreieck ABC, und die Seite | BA,| ebenso aus dem Dreieck
BCA,.

Wendet man (1) an, folgt:

| BC,y| =4sin{sin (120°+{)sin (120°+ ),
| BA5| =4sind sin (120°+0)sin (120°+().

Aus dem Kosinussatz, angewandt auf das Dreieck 4,C,B, ergibt sich unter Be-
riicksichtigung von (2) nach dem Umformen die Dreiecksseite | 4,C,| =s,:

s;=4sin (a’/3)sin (8’ /3) sin (*/3) . 4)

Dabei sind a’, #’ und 7’ die drei Aussenwinkel des Dreieckes A BC. Da kein
Winkel ausgezeichnet ist, folgt die Behauptung.
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_ Satz3. Werden in einem Dreieck die drei erhabenen Aussenwinkel @ = 180°+a,
S =180°+y und 7 = 180°+ y durch Strahlen gedrittelt, dann bilden die Schnittpunkte
der jeweils einer Dreieckseite anliegenden Dreiteilenden ein gleichseitiges Dreieck.

Beweis. Es sei ¥ C3AB=%B3AC=d/3, ¥ C3BA=%A;BC=f/3 und
¥ A;CB= % B;CA=7/3.

Um zunichst die Seite | AC5| zu berechnen, bestimmt man mit dem Sinussatz
unter Verwendung von (1) aus dem Dreieck 4 BC; die Seite

| AC3] =45in (60°+ ) sin (60°—{) sin (60°+¢)
und aus dem Dreieck 4 CB; die Seite
| AB3| =4sin(60°+ ¢)sin (60°— &) sin (60°+ ().

Die Seite | B;C;| =s; erhilt man mit dem Kosinussatz aus dem Dreieck A B;C;.
Der dabei auftretende Klammerausdruck kann so umgeformt werden, dass (2) An-
wendung finden kann. Es ergibt sich:

sy=4sin (@ /3)sin (§/3)sin (7 /3). (5)

Auch fir die anderen zwei Seiten wiirde sich dieselbe Formel ergeben. Das
Dreieck A3B,C; ist also gleichseitig, w.z.b. w.

Satz 4. In jedem Dreieck sind je zwei der drei Dreiecke von Morley, Taylor und
Marr zentrisch dhnlich.

Beweis. Um dies zu zeigen, geniigt es, zu beweisen, dass B,C, || B,C, ist. Fiir das
Dreieck A B,C, folgt aus dem Sinussatz:

sin (¥ AB,C,)=(1AC,| /s,)sin (120°+4).

Ermittelt man |AC,| aus dem Dreieck A BC, und setzt man fiir s, aus (4) ein,
folgt ¥ AB,C,={, da X A BC, spitz sein muss.

Es sei D der Schnittpunkt der Strecken AC; und B,C,, dann ist der Winkel
DAB,=60°+d und x ADB,=60°+¢.

Auf dieselbe Weise bekommt man den Winkel 4C B, der ebenfalls 60°+ ¢ ist.
Daraus folgt: B,C,| B,C,. Die gleichen elementaren Uberlegungen zeigen, dass
auch A,B,| 4,8, ist.

Auf analoge Weise ergibt sich fiir das Dreieck A43BC5, dass A3B;| A,B, ist, usw.

(Wie Taylor und Marr weiter zeigten, ergeben alle Winkeldreiteilenden der
Innen- und Aussenwinkel und der erhabenen Aussenwinkel 27 Schnittpunkte, die
auf drei, jeweils aus parallelen Geraden bestehenden Geradenscharen liegen, wobei
auf einer Geraden sich sechs Punkte befinden.)
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Neununddreissig merkwiirdige Punkte

Im folgenden soll iiber einige merkwiirdige Punkte berichtet werden, die sich
aus den Sitzen von Morley, Taylor und Marr ergeben. Zu den Beweisen wird ein
Hilfssatz verwendet. Es gilt die Gleichung:

(I4B;| - | BC;| - |CA,;1)/(IAC,| - | BA;| - |CB;|)=1. (6)

(i=1, 2, 3; gilt auch fur die folgenden Beweise!)

Der Beweis ergibt sich aus der Anwendung des Sinussatzes auf die Dreiecke
ABC;, BCA;und ACB,.

Um (6) zu beweisen, konnte man auch von der allgemeineren Voraussetzung
ausgehen: X C;AB= % B,AC, x A;,CB= % B;CA und ¥ C;BA= <« A,BC.

Als weiterer Hilfssatz wird der Satz von Ceva beniitzt, fiir den auch die Umkeh-
rung gilt.

Satz 5. Die gemeinsamen Ecktransversalen entsprechender Eckpunkte des
Dreieckes ABC und je eines der Dreiecke A4,B;C; gehen durch einen Punkt (3
Punkte). Fiir i= 1 war dies schon Taylor und Marr bekannt.

Beweis. Es soll nun bewiesen werden, dass die Linien 44,, BB, und CC, einan-
der in einem Punkt schneiden.

Es sei T der Schnittpunkt der Geraden durch 44, und der Seite B,C, des Drei-
eckes A,B,C,.

Man fille die Normalen von A und A4, auf B,C,. Dadurch entstehen zwei #hn-
liche, rechtwinklige Dreiecke. Da ¥ AC,B,=¢ ist, erhidlt man die Proportion:

[|C,T| — |ACy|cose]:[sy/2— | CoT|]1=|AC,|sine: (s, V 3 /2).

Daraus ergibt sich nach elementarer Umformung mit dem Sinussatz und (1)
und (4), dass die gemeinsame Ecktransversale A4, die Seite des Dreieckes 4,B,C,
im Verhiltnis

—sin{sin (60° +¢&) /[sin & sin (60° +{)]

teilt. Die Teilverhdltnisse der beiden anderen Seiten erhidlt man durch zyklische
Vertauschung von J, ¢ und {. Da das Produkt dieser drei Teilverhéltnisse bei Be-
riicksichtigung der Vorzeichen gleich — 1 ist, folgt nach der Umkehrung des Satzes
von Ceva, dass sich die drei Ecktransversalen A4,, BB, und CC, in einem Punkt
schneiden. Wie man schon aus (3), (4) und (5) erkennen kann, haben die Dreiecke
A;B,C; analoge geometrische Eigenschaften.

Analog ist auch der Beweis dafiir, dass die Linien 445, BB; und CC; durch
einen Punkt gehen und braucht daher nicht angefiihrt zu werden.

Satz 6. Die Ahnlichkeitsstrahlen je zweier gleichseitiger Dreiecke von Morley,
Taylor und Marr schneiden die Seiten des Dreieckes A BC in Punkten, deren Ver-
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bindungslinien zu den gegeniiberliegenden Eckpunkten des Dreieckes A BC durch
einen Punkt gehen (3 Punkte).

Beweis. Es sei S der Schnittpunkt der Geraden C,C, mit der Dreieckseite 4 B.
Da « C1AC,= & CBC,=60° ist, folgt:

|AS|:|BS|=|AC,|-|ACy| /(I1BC\|-|BC,l).

Durch zyklische Vertauschung erhédlt man die Teilverhéltnisse der anderen
zwei Seiten |AC| und | BC|.

Da ihr Produkt bei gleichem Umlaufsinn gleich —1 ist, gehen nach der Um-
kehrung des Satzes von Ceva die entsprechenden Ecktransversalen des Dreieckes
A BC durch einen Punkt.

Analog wird der Satz fir die Dreiecke 4,B,C, und 4,3B;C; sowie fur die Drei-
ecke 4,B,C| und A;B;C; bewiesen.

Satz 7. Die Symmetrieachsen der gleichseitigen Dreiecke 4,;B;C; schneiden die
entsprechenden Seiten des Dreieckes A BC in Punkten, deren zugehorige Ecktrans-
versalen des Dreieckes A BC durch einen Punkt gehen (3 Punkte).

Beweis. Es sei R der Schnittpunki der Symmetrale von < A4,C,B, mit der Seite
AB des Dreieckes ABC.

Aus dem Sinussatz, angewandt auf die Dreiecke ARC,; und BRC, folgt das
Teilverhiltnis. Es betragt:

- IACllcose/(IBCllcoscS).

Zyklische Vertauschung fiihrt zu den Teilverhéltnissen der beiden anderen Sei-
ten. Da das Produkt gleich —1 ist, gehen die entsprechenden Ecktransversalen in
bezug auf das Dreieck ABC durch einen Punkt. Analog wird auch der Beweis fiir
die Dreiecke 4,B,C, und 4;B;C, gefiihrt.

Satz 8. Es seien D, die Schnittpunkte der Geraden durch BC; und CB,, E; die
Schnittpunkte von AC; und CA; und ebenso F; die Schnittpunkte der Geraden A B;
und BA.,.

Die Verbindungslinien 4;D,, B,E; und C,F,; schneiden sich in einem Punkt
(3 Punkte).

Beweis. Wie man mit dem Sinussatz aus den Dreiecken 4,BC, und B,AC,
unter Verwendung von (1) und (3) finden kann, sind die Winkel C14,B=60°+(
und ¥ C1B14=60°+(.

Daraus folgt, dass das Dreieck A B, F gleichschenklig ist. F; liegt daher auf der
Symmetrale von ¥ 4,C,B,, woraus die Behauptung fiir das Dreieck 4B ,C, folgt.

Analog wird der Beweis fiir i=2 und i= 3 gefiihrt.
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Satz 9. Die Geraden durch die Strecken AD,, BE, und CF, schneiden sich in
einem Punkt (3 Punkte).

Beweis. Es sei S der Schnittpunkt der Geraden CF, und AB. Aus den Flichen
der Dreiecke ASC und BSC hat man das Teilverhiltnis:

|AS|:|BS|=(AC| - |AF,|sind): (| BC|-|BF,|sin¢).

Durch zyklische Vertauschung erhédlt man die iibrigen Teilverhiltnisse, deren
Produkt bei Beriicksichtigung der Vorzeichen — 1 ergibt. Nach der Umkehrung des
Satzes von Ceva folgt die Behauptung.

Auf analoge Weise wird der Beweis fiir i=2 und /=3 gefiihrt.

Satz 10. Zeichnet man in den Dreiecken 4;B,C, B;C;A und A4;C;B die Hohen,
die Winkelsymmetralen, den Inkreis und die Ankreise, dann haben die Fusspunkte
der Hohen und Winkelsymmetralen auf den Seiten des gleichseitigen Dreieckes und
ebenso die Berithrungspunkte dieser Kreise auf den Seiten des gleichseitigen Drei-
eckes entsprechende Ecktransversalen in diesem gleichseitigen Dreieck, die einander
in einem Punkt schneiden (12 Punkte).

Der Beweis erfolgt mit (6) und der Umkehrung des Satzes von Ceva. Da er sehr
einfach ist, wird er nicht angefiihrt.

Satz 11. Zeichnet man in den Dreiecken ABC,, BCA; und ACB; die Hohen,
Winkelsymmetralen den Inkreis und die Ankreise, dann haben die Fusspunkte der
Hohen und Winkelsymmetralen auf den Seiten des Dreieckes 4 BC und ebenso die
Berithrungspunkte der Inkreise und Ankreise auf den Seiten des Dreieckes A BC

entsprechende Ecktransversalen im Dreieck ABC, die durch einen Punkt gehen
(12 Punkte).

Der elementare Beweis wird auch hier mit (6) und der Umkehrung des Satzes
von Ceva gefiihrt.

Zu bemerken ist, dass dieser Satz auch unter den allgemeineren Voraussetzun-
gen bewiesen werden konnte, wie beim Beweis von (6). Dabei wiren die Dreiecke
A;B;C; nicht mehr gleichseitig.

Eine Eigenschaft der Umkreise der Dreiecke von Morley, Taylor und Marr

Satz 12. Die Umkreise der Dreiecke A BC;, BCA; und ACB; berithren die Um-
kreise der Dreiecke 4 ;B;C,.

Beweis. Es sei M der Umkreismittelpunkt des Dreieckes 4 BC,. Nach dem Satz
vom Peripheriewinkel ist ¥ AMC;=2¢ und ¥ AC;M=90°—¢. Ferner ergibt sich:
¥ ACB;=60°+c¢.

Daraus folgt: ¥ AC,M+ ¥ AC,B,+ (¥ B,C,4,)/2=180°.
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Dies bedeutet, dass der Umkreismittelpunkt des Dreieckes 4BC; auf einer
Symmetrieachse des Morleyschen Dreieckes liegt. Der Umkreis des Dreieckes 4 BC,
berithrt also den Umkreis des Dreieckes 4B ,C,, was auch fiir die Umkreise der
Dreiecke BCA; und 4 CB, zutrifft.

Analog ist auch die Beweisfilhrung fir i=2 und i=3. Zu bemerken ist noch,
dass die Umkreise der Dreiecke ABC; einander unter 60° schneiden. Dasselbe ist
auch der Fall bei den Umkreisen der Dreiecke BCA; und ACB;, wie leicht zu

zeigen ist.

Fiir wesentliche Hinweise danke ich Herrn Prof. Dr. Walter Wunderlich, Tech-
nische Universitit Wien.
Karl Steiner, St. Polten
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Aufgaben

Aufgabe 773. Call a positive prime ideal, if primality is retained under iteration
as often as desired of the operations of permuting digits, adding digits and
multiplying digits. Determine all ideal primes (in base 10).

P.H. Doyle, East Lansing, Michigan, USA

Solution. Clearly 2, 3, 5 and 7 are ideal primes. So let us assume that p is an ideal
prime > 11, having n>2 digits, that are supposed to be arranged in nondescending
order. The multiplication property implies that all digits of p are 1 except the last
one, which must have the value 3 or 7. Hence p is of the form

1=(10"=1)/9+2 or p,=(10"—1)/9+6.

The addition property implies that n is odd in both cases. Now let us consider the
permutation property. Interchanging the last digit with one of the digits 1 increases
p; by 2(10—1) and p, by 6 (10k—1) (k=1, 2, ..., n—2 or n—1). Calculation mod 7
yields

K |1 2 3 4 5 6
2(10F=1) |4 2 3 6 1 0 (mod7)
6(10k—=1)15 6 2 4 3 0 (mod7)
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