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Zum Satz von Morley

Im Jahre 1899 entdeckte F. Morley, Professor der Johns-Hopkins-Universität,
einen, jetzt nach ihm benannten Satz, ohne diesen zu veröffentlichen. Anfangs unseres

Jahrhunderts wurden dafür eine Reihe von geometrischen Beweisen erbracht
[1,2].

Hier soll ein trigonometrischer Beweis nach H. Dorrie [3] angegeben werden.

A3 B*

Satz 1. Werden in einem Dreieck die Innenwinkel durch je zwei Strahlen
gedrittelt, dann schneiden sich die beiden, je einer Seite anliegenden Dreiteilenden in
Punkten, die ein gleichseitiges Dreieck bilden (Morleysches Dreieck).

Beweis. Im Dreieck ABC (siehe Figur) sei $: BAC=a 3ö, <£ABC=ß 3 s und
l: ACB y 3C-Weiter sei j: BACX= X CABX Z BXACX Ö, ^ABCX=^AXBCX
*AXBC=£ und %ACBx=l:AxCBx=j:AxCB £.

Um zu beweisen, dass das Dreieck AXBXCX gleichseitig ist, werden zwei Hilfssätze

verwendet.
Es gilt die Beziehung:

sin^ 4sin(^/3)sin(60° + ^/3)sin(60°-^/3). (1)

Nimmt man in einem Dreieck an, dass der Umkreisdurchmesser 2r=l ist,
dann kann man jede Dreiecksseite gleich dem Sinus des gegenüberliegenden Winkels

setzen. Wendet man auf dieses Dreieck den Kosinussatz an, folgt für drei Winkel

x, y und z, deren Summe 180° ist:

sin 2z sin 2x + sin2y — 2 sin x sin v cos z. (2)
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Die Winkel können in dieser Formel vertauscht werden.
Um die Seite |^iC,| zu berechnen, ermittelt man zunächst die Seiten \BCX\

und \BAX | aus den Dreiecken ABCX und BCAX mittels des Sinussatzes, wobei man
\AB\ siny und \AC\ =sin/? setzen darf. Bei Verwendung von (1) ergibt sich:

\BAX\ 4 sin ö sin £ sin (60° + <5),

\BCX\ =4sin<5sinCsin(60° + O.

Der Kosinussatz, angewandt auf das Dreieck AXCXB liefert für die Dreiecksseite

I^QI =sx:

^=16sin2^sin2C[sin2(60o + ^) + sin2(60o + ^)-2sin(60o + C)sm(60° + (5)cos£].

Der Klammerausdruck wird nach (2) gleich sin2£ und man findet:

^1==4sin(a/3)sin(^/3)sin(y/3). (3)

Da in dieser Formel kein Winkel ausgezeichnet ist, folgt, dass das Dreieck
A XBXCX gleichseitig ist, w.z.b.w. Der trigonometrische Beweis sagt zum Unterschied
von den geometrischen Beweisen auch etwas über die Grösse der Dreieckseite aus.

Für ein allgemeines Dreieck musste sx noch mit 2 r multipliziert werden.
Im Jahre 1914 gelang es Taylor und Marr, den Satz von Morley zu verallgemeinern.

Unter anderem fanden sie zwei, zu jedem Dreieck gehörende, gleichseitige
Dreiecke [4].

Satz 2. Werden die Aussenwinkel eines Dreiecks durch Strahlen gedrittelt,
dann schneiden sich die beiden, den Seiten jeweils anliegenden Strahlen in Punkten,
welche ein gleichseitiges Dreieck bestimmen.

Beweis. Es sei * BAC2=X CAB2=(lS0°-a)/3, ^ABC2=^CBA2
(l%0°-ß)/3und^BCA2=^ACB2=(l%0°-y)/3.

Um die Seite \A2C2\ zu berechnen, ermittelt man die Seite \BC2\ mit dem
Sinussatz aus dem Dreieck ABC2 und die Seite \BA2\ ebenso aus dem Dreieck
BCA2.

Wendet man (1) an, folgt:

\BC2\ =4sinCsm(120o + C)sin(120° + <5),

|£_42|=4sin<$sin(120o + <S)sin(120° + C).

Aus dem Kosinussatz, angewandt auf das Dreieck A2C2B, ergibt sich unter
Berücksichtigung von (2) nach dem Umformen die Dreiecksseite \A2C2\ =s2:

s2 4 sin (a'/3) sin (ß'/3) sin (y'/3). (4)

Dabei sind a', ß' und y' die drei Aussenwinkel des Dreieckes ABC. Da kein
Winkel ausgezeichnet ist, folgt die Behauptung.
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Satz 3. Werden in einem Dreieck die drei erhabenen Aussenwinkel ä 180° + a,
ß= 180°+ y und y 180° + y durch Strahlen gedrittelt, dann bilden die Schnittpunkte
der jeweils einer Dreieckseite anliegenden Dreiteilenden ein gleichseitiges Dreieck.

Beweis. Es sei £ C3AB= £ B3AC=ä/3, £ C3BA £ A3BC=ß/3 und
*_43CB=* B3CA=y/3.

Um zunächst die Seite \A C3 | zu berechnen, bestimmt man mit dem Sinussatz
unter Verwendung von (1) aus dem Dreieck ABC3 die Seite

|_4C3|=4sin(600 + Osin(600-Osin(60° + £)

und aus dem Dreieck A CB3 die Seite

|_453|=4sin(60° + £)sin(60o-£)sin(60o + O.

Die Seite | i?3C3| s3 erhält man mit dem Kosinussatz aus dem Dreieck AB3C3.
Der dabei auftretende Klammerausdruck kann so umgeformt werden, dass (2)
Anwendung finden kann. Es ergibt sich:

s3 4 sin (ä /3) sin (ß/3) sin (y /3). (5)

Auch für die anderen zwei Seiten würde sich dieselbe Formel ergeben. Das
Dreieck _432?3C3 ist also gleichseitig, w. z. b. w.

Satz 4. In jedem Dreieck sind je zwei der drei Dreiecke von Morley, Taylor und
Marr zentrisch ähnlich.

Beweis. Um dies zu zeigen, genügt es, zu beweisen, dass BXCX\\B2C2 ist. Für das
Dreieck AB2C2 folgt aus dem Sinussatz:

sm(ZAB2C2) (\AC2\/s2)sin(l20° + ö).

Ermittelt man |-4C2| aus dem Dreieck ABC2 und setzt man für s2 aus (4) ein,
folgt £ _4_92C2 C, da £ ABC2 spitz sein muss.

Es sei D der Schnittpunkt der Strecken ACX und B2C2, dann ist der Winkel
DAB2 60° + dund XADB2=60° + e.

Auf dieselbe Weise bekommt man den Winkel ACXBX, der ebenfalls 60° + e ist.

Daraus folgt: BXCX\\B2C2. Die gleichen elementaren Überlegungen zeigen, dass

auch_41_51||_42Jß2ist.

Auf analoge Weise ergibt sich für das Dreieck A3B3C3, dass_43_93||_42i?2 ist, usw.
(Wie Taylor und Marr weiter zeigten, ergeben alle Winkeldreiteilenden der

Innen- und Aussenwinkel und der erhabenen Aussenwinkel 27 Schnittpunkte, die
auf drei, jeweils aus parallelen Geraden bestehenden Geradenscharen liegen, wobei
auf einer Geraden sich sechs Punkte befinden.)
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Neununddreissig merkwürdige Punkte

Im folgenden soll über einige merkwürdige Punkte berichtet werden, die sich
aus den Sätzen von Morley, Taylor und Marr ergeben. Zu den Beweisen wird ein
Hilfssatz verwendet. Es gilt die Gleichung:

(\AB,\ • \BCt\ '\CAt\)/(\ACt\ • \BAt\ \CBl\)=l. (6)

(/= 1, 2, 3; gilt auch für die folgenden Beweise!)
Der Beweis ergibt sich aus der Anwendung des Sinussatzes auf die Dreiecke

ABC,, BCA,undACBv
Um (6) zu beweisen, könnte man auch von der allgemeineren Voraussetzung

ausgehen: * C^B= * BtAC,^AlCB=^ BXCA und * CßA * AßC.
Als weiterer Hilfssatz wird der Satz von Ceva benützt, für den auch die Umkehrung

gilt.

Satz 5. Die gemeinsamen Ecktransversalen entsprechender Eckpunkte des

Dreieckes ABC und je eines der Dreiecke AlBlCl gehen durch einen Punkt (3

Punkte). Für /= 1 war dies schon Taylor und Marr bekannt.

Beweis. Es soll nun bewiesen werden, dass die Linien AA2, BB2 und CC2 einander

in einem Punkt schneiden.
Es sei T der Schnittpunkt der Geraden durch AA2 und der Seite B2C2 des

Dreieckes A2B2C2.
Man fälle die Normalen von A und A 2 auf B2C2. Dadurch entstehen zwei

ähnliche, rechtwinklige Dreiecke. Da £ AC2B2 e ist, erhält man die Proportion:

[\C2T\ - \AC2\ cose]: [s2/2- \C2T\]= \AC2\ sine: (s2VT /2).

Daraus ergibt sich nach elementarer Umformung mit dem Sinussatz und (1)
und (4), dass die gemeinsame Ecktransversale AA2 die Seite des Dreieckes A2B2C2
im Verhältnis

~sinCsin(60o + fi)/[sinesin(60o + C)]

teilt. Die Teilverhältnisse der beiden anderen Seiten erhält man durch zyklische
Vertauschung von ö, e und f. Da das Produkt dieser drei Teilverhältnisse bei
Berücksichtigung der Vorzeichen gleich — 1 ist, folgt nach der Umkehrung des Satzes

von Ceva, dass sich die drei Ecktransversalen AA2, BB2 und CC2 in einem Punkt
schneiden. Wie man schon aus (3), (4) und (5) erkennen kann, haben die Dreiecke
AlBlCl analoge geometrische Eigenschaften.

Analog ist auch der Beweis dafür, dass die Linien AA3, BB3 und CC3 durch
einen Punkt gehen und braucht daher nicht angeführt zu werden.

Satz 6. Die Ähnlichkeitsstrahlen je zweier gleichseitiger Dreiecke von Morley,
Taylor und Marr schneiden die Seiten des Dreieckes ABC in Punkten, deren Ver-
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bindungslinien zu den gegenüberliegenden Eckpunkten des Dreieckes ABC durch
einen Punkt gehen (3 Punkte).

Beweis. Es sei S der Schnittpunkt der Geraden CXC2 mit der Dreieckseite AB.
Da * CXAC2= £ CXBC2= 60° ist, folgt:

\AS\:\BS\ \ACX\-\AC2\/(\BCX\-\BC2\).

Durch zyklische Vertauschung erhält man die Teilverhältnisse der anderen
zwei Seiten \AC\ und \BC\.

Da ihr Produkt bei gleichem Umlaufsinn gleich - 1 ist, gehen nach der
Umkehrung des Satzes von Ceva die entsprechenden Ecktransversalen des Dreieckes
ABC durch einen Punkt.

Analog wird der Satz für die Dreiecke A2B2C2 und A3B3C3 sowie für die Dreiecke

AXBXCX und A3B3C3 bewiesen.

Satz 7. Die Symmetrieachsen der gleichseitigen Dreiecke AlBlCl schneiden die
entsprechenden Seiten des Dreieckes ABC in Punkten, deren zugehörige Ecktransversalen

des Dreieckes ABC durch einen Punkt gehen (3 Punkte).

Beweis. Es sei R der Schnittpunkt der Symmetrale von ^AXCXBX mit der Seite
AB des Dreieckes ABC.

Aus dem Sinussatz, angewandt auf die Dreiecke ARCX und BRCX folgt das

Teilverhältnis. Es beträgt:

-\ACx\cosz/(\BCx\cosb).

Zyklische Vertauschung führt zu den Teilverhältnissen der beiden anderen Seiten.

Da das Produkt gleich — 1 ist, gehen die entsprechenden Ecktransversalen in
bezug auf das Dreieck ABC durch einen Punkt. Analog wird auch der Beweis für
die Dreiecke A2B2C2 und A3B3C3 geführt.

Satz 8. Es seien Dt die Schnittpunkte der Geraden durch BCt und CBt, Et die
Schnittpunkte von ACt und CAt und ebenso Ft die Schnittpunkte der Geraden AB{
und BÄr

Die Verbindungslinien Ä~lDl, B/El und C/Fl schneiden sich in einem Punkt
(3 Punkte).

Beweis. Wie man mit dem Sinussatz aus den Dreiecken AXBCX und BXACX

unter Verwendung von (1) und (3) finden kann, sind die Winkel CXAXB 60° + C

und * CXBXA 60°+ £.

Daraus folgt, dass das Dreieck ^ji^F gleichschenklig ist. Fx liegt daher auf der
Symmetrale von £ A XCXBX, woraus die Behauptung für das Dreieck AXBXCX folgt.

Analog wird der Beweis für /= 2 und /= 3 geführt.
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Satz 9. Die Geraden durch die Strecken ADV BE, und CF, schneiden sich in
einem Punkt (3 Punkte).

Beweis. Es sei S der Schnittpunkt der Geraden CFX und AB. Aus den Flächen
der Dreiecke A SC und BSC hat man das Teilverhältnis:

\AS\:\BS\ =(\AC\ • |/_F,|sin(5):(|£C| • \BFx\sine).

Durch zyklische Vertauschung erhält man die übrigen Teilverhältnisse, deren
Produkt bei Berücksichtigung der Vorzeichen - 1 ergibt. Nach der Umkehrung des
Satzes von Ceva folgt die Behauptung.

Auf analoge Weise wird der Beweis für i 2 und /= 3 geführt.

Satz 10. Zeichnet man in den Dreiecken A,B,C, B,C/l und A,C,B die Höhen,
die Winkelsymmetralen, den Inkreis und die Ankreise, dann haben die Fusspunkte
der Höhen und Winkelsymmetralen auf den Seiten des gleichseitigen Dreieckes und
ebenso die Berührungspunkte dieser Kreise auf den Seiten des gleichseitigen
Dreieckes entsprechende Ecktransversalen in diesem gleichseitigen Dreieck, die einander
in einem Punkt schneiden (12 Punkte).

Der Beweis erfolgt mit (6) und der Umkehrung des Satzes von Ceva. Da er sehr
einfach ist, wird er nicht angeführt.

Satz 11. Zeichnet man in den Dreiecken ABC,, BCA, und ACB, die Höhen,
Winkelsymmetralen den Inkreis und die Ankreise, dann haben die Fusspunkte der
Höhen und Winkelsymmetralen auf den Seiten des Dreieckes ABC und ebenso die

Berührungspunkte der Inkreise und Ankreise auf den Seiten des Dreieckes ABC
entsprechende Ecktransversalen im Dreieck ABC, die durch einen Punkt gehen
(12 Punkte).

Der elementare Beweis wird auch hier mit (6) und der Umkehrung des Satzes

von Ceva geführt.
Zu bemerken ist, dass dieser Satz auch unter den allgemeineren Voraussetzungen

bewiesen werden könnte, wie beim Beweis von (6). Dabei wären die Dreiecke
A,B,C, nicht mehr gleichseitig.

Eine Eigenschaft der Umkreise der Dreiecke von Morley, Taylor und Marr

Satz 12. Die Umkreise der Dreiecke ABC,, BCA, und ACB, berühren die
Umkreise der Dreiecke Aßfi,.

Beweis. Es sei M der Umkreismittelpunkt des Dreieckes ABCX. Nach dem Satz

vom Peripheriewinkel ist j:AMCx 2s und ^ACxM=90°-s. Ferner ergibt sich:

<ACxBx 60° + e.

Darausfolgt: *ACXM+*ACXBX + « BxCxAx)/2= 180°.
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Dies bedeutet, dass der Umkreismittelpunkt des Dreieckes ABCX auf einer
Symmetrieachse des Morleyschen Dreieckes liegt. Der Umkreis des Dreieckes ABCx
berührt also den Umkreis des Dreieckes AXBXCX, was auch für die Umkreise der
Dreiecke BCA x und A CBX zutrifft.

Analog ist auch die Beweisführung für i 2 und i 3. Zu bemerken ist noch,
dass die Umkreise der Dreiecke ABC, einander unter 60° schneiden. Dasselbe ist
auch der Fall bei den Umkreisen der Dreiecke BCA, und ACB„ wie leicht zu
zeigen ist.

Für wesentliche Hinweise danke ich Herrn Prof. Dr. Walter Wunderlich,
Technische Universität Wien.

Karl Steiner, St. Polten

LITERATURVERZEICHNIS

1 R A Johnson, Advanced Euchdean Geometry, S 253, New York 1960

2 H S M Coxeter, Unvergängliche Geometrie, S 40, Birkhauser Verlag, Basel 1963

3 H Dorrie, Mathematische Miniaturen, S 110, Wiesbaden 1969
4 F G Taylor und W.L Marr, Proceedings of Edinburgh, Math Soc XXXII, 119-150(1914)
5 Mathematische Reflexionen (Autoren-Kollektiv), Schroedel-Verlag, Hannover 1973

6 R Honsberg, Mathematicai Gems, The Mathematicai Society of America, 1973

Aufgaben

Aufgabe 773. Call a positive prime ideal, if primality is retained under iteration
as often as desired of the Operations of permuting digits, addmg digits and
multiplying digits. Determine all ideal primes (in base 10).

P. H. Doyle, East Lansing, Michigan, USA

Solution. Clearly 2, 3, 5 and 7 are ideal primes. So let us assume that p is an ideal
prime > 11, having «>2 digits, that are supposed to be arranged in nondescending
order. The multiplication property implies that all digits of p are 1 except the last

one, which must have the value 3 or 7. Hence p is of the form

Px (lOn-l)/9 + 2 or p2 (l0n-l)/9 + 6.

The addition property implies that « is odd in both cases. Now let us consider the

permutation property. Interchanging the last digit with one of the digits 1 increases

px by 2(10*- 1) andp2 by 6(10*- 1) (k= 1, 2, «-2 or «- 1). Calculation mod7
yields

12 3 4 5 6

2(10A-1)
6(10*-1)

4 2 3 6 10 (mod 7)
5 6 2 4 3 0 (mod 7)
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