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Bemerkungen über gewisse nichtlineare Kongruenzen

Für meN,aeZ,(a,m)= 1 sei g(a;m) die kleinste Zahl aus N mit ög(öm)= 1 modra;
mit der ^-Funktion von Euler gilt

g(a;m)\tp(m), (1)

und für « e N mit «| m gilt

g(a;n)\g(a',m). (2)

Das letzte Kapitel des interessanten Buches «Sieve methods, Cambridge 1976» von
C. Hooley gab den Anlass zu diesen Überlegungen.
Wir beginnen mit Beispielen. Wie verteilen sich die Zahlen der Folge (2X + x: x > 0)
auf die Restklassen modra? Es sei etwa m 5; wegen g(2;5) 4 hat die Folge
(2* mod 5: * > 0) die Periode 4; daher hat die Folge (2X + x mod 5 :x > 0) die Periode
[5,4] 20; für 0< x < 20 gibt aber 2x + x bei Division mit 5 die Reste 1,3, 1, 1,0,2,0,
0, 4, 1, 4, 4, 3, 0, 3, 3, 2, 4, 2, 2; man stellt fest, dass jeder Rest gleich oft (und zwar
20/5-mal) vorkommt. Jetzt sei etwa m l; wegen g(2;7)=3 hat die Folge (2x + x
mod7:x>0) die Periode 21; für 0<x<21 gibt 2x + x bei Division mit 7 die Reste
1, 3, 6, 4, 6, 2, 0, 2, 5, 3, 5, 1, 6, 1, 4, 2, 4, 0, 5, 0, 3; wieder kommt jeder Rest gleich oft
vor. Wie verteilen sich die Zahlen der Folge (2* + 3* + x:;v>0) auf die Restklassen
modra? Es sei etwa m 7; wegeng(2;7) 3 undg(3;7) =6 hat die Folge (2* + 3* + .x

mod 7: x > 0) die Periode [7,3,6] 42; für 0 < x < 42 gibt 2X + 3X + x bei Division mit
7 die Reste 2, 6, 1, 3, 3, 0, 1, 5, 0, 2, 2, 6, 0, 4, 6, 1, 1, 5, 6, 3. 5, 0, 0, 4, 5, 2, 4, 6, 6, 3, 4,

1, 3, 5, 5, 2, 3, 0, 2, 4, 4, 1; wieder kommt jeder Rest gleich oft vor. Das soll jetzt
allgemein bewiesen werden.

Satz 1. Es seiseN, ajeZ(l<j<s),bjeZ(l<j<s), 0^aeZ,meN, (m,b{ ••• b,a)= 1,

h(m):=[g(bx;m),...,g(bs;m)\ für xeZ mit0<x< [m,h(m)] liefert axb\+ ••• +asbx
+ a x jeden Rest modm gleich oft und damit genau [m, h (m)]/m-mal.

Beweis (Induktion nach m): Wegen g (by, m) | cp (m) (1 <j<s) nach (1) ist« (m)\tp (m).
Es sei P(x): axb\+ • • +asbx. Für gegebenes beZ betrachten wir

P (x) + ax b modm (3)

Für m=l ist nichts zu beweisen. Es sei m>l. Für n:=(m,h(m)) gilt n\m,(n,
bx--bsa)=l und wegen h(m)<(p(m)<m noch 0<n<m. Nach Induktionsvoraussetzung

gibt es paarweise verschiedene Zahlen x}eZ (l<j< ([«,«(«)]/«)) mit

P^) +axj=b mod « und

0<jc7 <[«,«(«)]. (4)

Es ist hinreichend, die Behauptung für m mit «mindestens» statt «genau» zu beweisen.

Es sei jc//.-Jc/ + .[«,«(«)][0<r<(«(«z)/[«,«(«)])]; wegen g(bj\n)\g(bj\m)
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(l<j<s) nach (2) ist h(n)\h(m), und wegen n\h(m) folgt h(m)/[n,h(n)]eN. Man
prüft sofort, dass die xJt paarweise verschieden sind und dass gilt

0<xJt<h(m). (5)

Für x ymodh(n) ist P(x) P(y)mod« termweise; für .x=vmod« ist ax ay
mod«; fürx= vmod [«,«(«)] ist folglich P (x) + ax P (y) + aymodn. Das ergibt

P(Xj t) + aXj t= P(x^ + aXj bmodn.

Wegen (a,m)= 1 ist n=(m,ah(m)). Also gibt esZahlen jy ,eN, zy ,eZ mit

P(Xj t) + aXj t — b mZj t — ah(m)yJt. (6)

Es seirj t :=Xjj + h(m)yj t. Für x=vmod«(m) ist P(x) P(y)modm termweise. Aus
(6) folgt daher

P(rj t) + arJt b mod m,

und (3) ist gelöst. Die rJt erweisen sich aber als paarweise inkongruent mod [m, h (m)];
denn aus ry rl vmod[m,h(m)] folgt xJt xlvmodh (m) und wegen (5) daraus

und daraus xJ xlmod [«,«(«)] und wegen (4) daraus j=i und wegen (7) daraus
t v. Die Anzahl der rJt ist aber

,[«,«(«)] h(m) [m,h(m)]
n [«,«(«)] m

Dieser Beweis erlaubt es noch, in Satz 1 den Exponenten x von b} durch ein
Polynom F} (x)e Z [x] mit Fj (x)> 0(x> 0) zu ersetzen (1 <j<s).

Satz 2. Es sei seN, ajeZ(l<j<s), bjeZ(l<j<s), beZ, 0+aeZ, meN, (m,
bx - • - bsa) 1; h (m) und P(x) seien wie oben erklärt; für creR bezeichne A(o) die
Anzahl der xeN mit x<a undP(x) + ax bmodm; für 0< oeR gilt dann

o
A(a)-~

m

[m,h(m)]
< \<(p(m))

m

Beweis: Es sei M:=[m,h(m)], B:=M/m. Wie im Anschluss an (5) folgt, dass die
Funktion xr+P(x) + axmodm(0<xeZ) die Periode M hat. Wir unterteilen das
Intervall von 0 bis o mit Hilfe der Vielfachen von M. Ist a ein Vielfaches von M,
entstehen dabei genau o/M Intervalle der Länge M, und Satz 1 liefert A (o)

(g/M)B g/m. Ist o kein Vielfaches von M, entstehen dabei [ct/M] Intervalle der
Länge M und noch ein Intervall von einer Länge < M, und Satz 1 liefert A (o)
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[o/M]B + 6B für ein gewisses 6eR mit 0<#<1, wobei wir noch o/M-l
< [cr/M] < o/M beachten.
Durch Satz 2 wird die Siebmethode anwendbar auf die Folge (P(x) + ax:x>0).
In ähnlicher Weise behandelt man andere Folgen wie (xax\x>0) mit aeZ; statt
(6) hat man

xJtaxJt-b mzJt-axJtg(a;m)yJJ

initmeN, (m,a)= 1.

Für Folgen wie etwa (2x + x2 :x>0) oder (x22x:x>0) fehlen uns befriedigende
Ergebnisse. Stets ist 2x + x2^0mod7.

G. J. Rieger, Technische Universität Hannover

Kleine Mitteilungen

Zur Abwicklung des schiefen Kreiskegels

Ein schiefer Kreiskegel, festgelegt durch seinen Basisradius r, die Höhe Z und die
Exzentrizität X>0 des Hohenfusspunktes, erfordert bekanntlich zur exakten
Verebnung seines Mantels elliptische Integrale [1]. In der Praxis behilft man sich daher
mit der Ausbreitung des Mantels einer eingeschriebenen Ersatzpyramide mit
hinreichend vielen Kanten. Für die Aneinanderreihung der auftretenden Teildreiecke
benötigt man dabei die Längen der Mantelkanten. Obwohl diese «wahren Längen»
mit Hilfe der ersten Massaufgabe der darstellenden Geometrie leicht zu ermitteln
sind [2], soll hier ein anderes Verfahren auseinandergesetzt werden, das nicht unmittelbar

auf der Hand liegt, aber ebenfalls sehr einfach und vielleicht etwas übersichtlicher

zu handhaben ist.
Setzt man unter Verwendung kartesischer Koordinaten den Basiskreis k durch

x rcosu, y rsinu, z 0 (1)

an, so ergibt sich die Entfernung R eines Basispunktes P(x,y,0) von der Kegelspitze
Q (X, 0, Z) in Abhängigkeit vom Parameter u aus

R2 (X-rcosu)2+(rsinu)2 + Z2 X2 + Z2 + r2-2rXcosu. (2)

Hieraus ist zu ersehen, dass dieselben Erzeugendenlängen nicht nur auf dem
Ausgangskegel vorhanden sind, sondern in gleicher Verteilung auch noch auf unendlich
vielen weiteren Kegeln, wenn bloss die Angabestücke den Bedingungen

rX=a2, X2 + Z2 + r2 b2 (3)

mit Konstanten a und b genügen.
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