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Ein kombinatorisches Anologon zum Satz von Gauss-Bonnet

Kiirzlich hat H. Walser [7] fiir ebene n-Eck-Netze eine kombinatorische Formel an-
gegeben, die eine formale Analogie zum Satz von Gauss-Bonnet aufweist. Wir wol-
len dieses elementare Gegenstiick zur Gauss-Bonnetschen Formel im folgenden in
allgemeinerer Form herleiten.

Hierzu betrachten wir einen endlichen (geometrischen) Zellkomplex 3, also eine
endliche Menge von konvexen Polytopen des d-dimensionalen reellen affinen Rau-
mes, den «Zellen» von 3, mit der Eigenschaft, dass alle Seiten einer Zelle ebenfalls
zu 3 gehoren und dass der Durchschnitt je zweier Zellen entweder leer oder eine ge-
meinsame Seite beider Zellen ist. Die Menge aller k-dimensionalen Zellen von J sei
mit 4%, deren Anzahl mit f; bezeichnet (k=0, ..., d). Unter X sei die Eulersche Cha-
rakteristik des Zellkomplexes ; verstanden. Fiir das Folgende geniigt die Kenntnis,
dass sie sich durch die einfache Formel

d
X =3 (—1¥f (1)
k=0

berechnen lasst. Auf die Bedeutung der Charakteristik in allgemeineren Zusammen-
héngen und ihre Eigenschaften (z. B., dass sie nur vom topologischen Typ der Punkt-
menge U{Z|Ze 4", k=0, ..., d} abhingt) brauchen wir daher hier nicht einzugehen
(der Leser sei jedoch einerseits auf Lehrbiicher der Topologie, andererseits auf die
Artikel von Hadwiger [3], Klee [4], insbesondere Theorem 2.3, und Rota [5] ver-
wiesen).

Fiir jede Ecke E (nulldimensionale Zelle) des Zellkomplexes erkliren wir die
«Krilmmung» in E durch

d
KE)=Y (-1 3 @)

EcZed* fo (Z) ’

wo f,(Z) die Eckenzahl der Zelle Z bezeichnet. Dann gilt in Analogie zum Gauss-
Bonnetschen Satz, dass die totale Kriimmung gleich der Eulerschen Charakteristik ist:

> K(E)=y. (3)

EcA°
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Zum Beweis setzen wir fiir beliebige Ecken E und Zellen Z von 3

l/fo (Z),wenn Ec Z,
¢ (E,Z)=
0 sonst.

Dann ergibt sich

——=2 > ¢(EZ)= Z Z 9 (E.Z)

Eep ECZes Jo (Z) Eed® Four

N z;k Jo (Z) EZZ ZZ' J =l

firk=0, ..., d, also unter Verwendung von (2) und (1)

d

d
2 KE)=2 (-1} 3 =3 (= Dfi= 1.
Eed k=0

Ecd ECTe fo(Z) k=0

womit (3) schon bewiesen ist.

Die (zwecks grosserer Anschaulichkeit getroffene) Voraussetzung, dass ein geometri-
scher Zellkomplex zugrundeliege, ist offenbar nur teilweise ausgenutzt worden. Da
es sich um rein kombinatorische Begriffe und Schliisse handelt, iibertrdgt sich alles
sofort auf allgemeinere Situationen, wie topologische Zellkomplexe oder abstrakte
Zellkomplexe im Sinne von Griinbaum ([2], S. 206). Man konnte auch, noch allge-
meijner, an einen verbandstheoretischen Rahmen denken, in dem die Eulersche
Charakteristik ihren natiirlichen Platz hat (vgl. Klee [4], Rota [5]). Anstatt jedoch
hierauf weiter einzugehen, wollen wir lieber zeigen, in welcher Weise in (3) die von
Walser [7] angegebene Formel als Spezialfall enthalten ist. Dies ist vielleicht nicht
unmittelbar ersichtlich, da in (7) eine «Randkurve» und ein als «geoditische Kriim-
mung» interpretierter Term auftreten.

Wir betrachten also jetzt wie in (7) ein ebenes Netz N und in der Ebene eine ge-
schlossene Jordankurve b, die keinen Knoten von N enthélt und jede Kante oder
zweidimensionale Zelle von N hochstens einmal schneidet. G sei der von b beran-
dete kompakte Bereich. Wir betrachten dann folgenden (topologischen) Zellkom-
plex 3: Seine zweidimensionalen Zellen seien alle Durchschnitte von Zellen des
Netzes N mit G, seine Kanten seien alle Durchschnitte von Kanten von N mit G so-
wie die Durchschnitte der Kurve b mit Zellen von N, seine Ecken seien alle Ecken
von N in G sowie alle Durchschnitte von b mit Kanten von N. Die Menge der auf
die letztgenannte Weise entstehenden Ecken bezeichnen wir mit 49. Die Menge der
2-Zellen von N, die von b getroffen werden, sei mit B bezeichnet; fiir Ze B sei r(Z)
die Anzahl der in G liegenden Ecken von Z, und 49 sei die Menge aller Ecken in G,
die zu Zellen aus B gehoren. Schliesslich sei 45 die Menge aller nicht zu 49U 49 ge-
horenden Ecken in G.
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Ist EeASu 45, so ist E in gleich vielen Kanten wie 2-Zellen von 3 enthalten, da-
her ist

KE)=1- Y (1 : )

ECZed ?—fo(Z)

Unsere kombinatorische Kriitmmungsdefinition stimmt also (bis auf den Faktor 2)
iberein mit der von Stone [6], S. 12, benutzten.

Wir wollen nun mit Walser [7] die Voraussetzung treffen, dass simtliche Zellen des
Netzes N n-seitig sind. Fiir alle E € 43 ist dann

K(E)= 1——i(E)<~;——»}z—)= .K,,(E),

was mit der von Walser benutzten Kriimmungsdefinition zusammenfillt; hier ist
i (E) die Ordnung der Ecke E. Fiir E € 49 gilt

_, i) I o r
KEB=1=54 2 7@ Kw(E)+Eg§eB(r(2)+z L)

und fiir Ee 47 ist i (E)=3, also

el s
(B)= 2 (T r(Z2)+2

Somit erhalten wir aus (3) unter Beachtung der im vorliegenden Fall giiltigen Euler-
schen Formel y=1

1 1
=S k®= ¥ K®+3 5 (o)

Eed Eefju 48 Ecd) ESZeB n

1 1
+ ——+ — .
Egd?( 2 Egzz:eB r(Z)+2>
Nun ist

1
S Ea Al
EelJuMEcZeB P (Z)+2 7T

denn in der Doppelsumme tritt jede Zelle Z e B so oft auf, wie ihr Durchschnitt mit
G Ecken besitzt, also r(Z)+ 2mal. Analog ist

s ()5 (-5
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und offenbar

E§?<”—;’> =z§3<_é_> '

Insgesamt ergibt sich

Ee%udg Ko (E)+ Z (vfll__ r(f)>= L

ZeB

was mit Formel (13) von Walser [7] tibereinstimmt.
Abschliessend sei noch darauf hingewiesen, dass der Zusammenhang zwischen der
Formel (3) und der Gauss-Bonnetschen Formel nicht nur in einer rein formalen
Analogie zu sehen ist. Betrachten wir etwa einen endlichen Zellkomplex, der als
Zellzerlegung einer zweidimensionalen Mannigfaltigkeit M mit Rand erscheint. Wir
koénnen dann, wie man unschwer einsieht, auf M eine Metrik einfithren derart, dass
jede 2-Zelle des Zellkomplexes isometrisch wird zu einem reguldren Polygon. Der
fiir Mannigfaltigkeiten mit polyedrischer Metrik giiltige Satz vom Gauss-Bonnet-
schen Typ (siehe z. B. Gluck, Krigelman und Singer [1], S. 605) reduziert sich in un-
serem Fall gerade auf die Formel (3) fir d=2.

Rolf Schneider, Freiburg i. Br.
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