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Kleine Mitteilungen
On the Indirect Product of Subgroups

The following is a well-known property of external direct products'). If G is the

k
external direct product of groups Gy, G, ..., G,, and H is a group such that H= X G,

i=1

for some k<n, then G is, up to isomorphism, the external direct product of H,

Gk+1, sess Gn-
Recall that a group G is said to be the internal direct product of subgroups H,,
H,, ..., H, if and only if each H,; is normal and each element g of G can be

uniquely expressed (excluding order) in the form g=hh, ... h,, where h;e H, for
each i.

It is natural to ask the following question: If G is the internal direct product of
subgroups H,, H,, ..., H,, what conditions can be placed on a subgroup H so that G
is also the internal direct product of H, Hy,,,..., H, for some k< n? I have been
unable to find a text on group theory which considers this question.

For convenience let us first recall some basic results concerning direct products.
A well-known characterization is that a group G is the internal direct product of
subgroups H,, H,, ..., H, if and only if

each H,is normal , (D

G=HHi,and )
i=1

er\H H,;={e} for eachj . (3)
1#)

Another characterization is that G is the internal direct product if and only if

&: X'H;— G, defined by @ (hy, h,, ..., h,)=hh, ... h,, is an isomorphism.
i=1

l

k
Returning to the question, one might first guess that if H~ [ H, for some

=1
k
k<n|]]H,is a subgroup since each H, is normal and H;n[[H;= {e}), then G will
=1 i#j
n k
be the internal direct product of H, Hy .y, ..., H, since G~ lei,H:: X H;, and G
i= i=1

will thus be isomorphic to the external direct product of H, Hy, , ..., H,. However,
the special map @ may not be an isomorphism. Consider Z, X Z,, and let H,=Z, X
{[0]}, H,={[0]} x Z,, and H= H,. Then Z,X Z, is the internal direct product of H,
and H,, and H>~ H,, but even though Z,x Z,~HX H,, Z,X Z, is not the internal
direct product of H and H, since H+ Hy,# Z,X Z,.

This example also shows that requiring H to be normal in G, in addition to

1y External direct product means the same as “ordinary” direct product as indicated by the symbol

n
)(IG,.
—
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k
being isomorphic to | [ H,, does not suffice. But in the example just cited, note that

i=1

k
Hn H,#{([0], [0])}. Thus, in addition to supposing H to be isomorphic to [ [ H;, let

i=1

us assume that Hn ] H,={e}. But consider Z,x S5, and let H,=Z,x{¢},

i=k+1
123 123
Hy={[01} XS5, and H={([0], £), ([1], @)}, where &= (1 53 ) and a= (2 13 )
Then Z, % S; is the internal direct product of H| and H,, H~ H,, and H n H,= {([0],
¢)}, but Z,x S is not the internal direct product of H and H, since H is not normal.
If we restrict ourselves to finite groups, we have the following.

Theorem: Let G be a finite group such that G is the internal direct product of

k
subgroups H, H,, ..., H,. If H is a normal subgroup such that H~ [] H; for some
=1

k<nand Hn [] H,={e}, then G is the internal direct product of H, H, . |, ..., H,.
1=k+1

Proof: It suffices to show that &: HXH,,;X..x H,—» G, defined by
D (hhyy,...,h,)=hh; ... h, is an isomorphism.

If K, and K, are normal subgroups and K;n K, = {e}, then the elements of K,
commute with those of K,. Using this, the proof that @ is a homomorphism is

straightforward.
Ifo (a,a5,.q, ..., a))=®(b,byyy, ..., b,), then aa;,, ... a,=bb,,, ... b,
Hence b~ 'a=(b;,, ... b)(a.y ... a,)"". Thus b~ lacHn []| H, and a=b.
1=k+1
Continuing in the same manner, a;=b; for i=k+1, ..., n. Thus ¢ is one-to-one.

Since H~ ][] H,, the orders of HX H;, X ... x H, and of G are equal. Thus it
=1

follows that ¢ is also onto. Therefore, @ is an isomorphism.

I have answered the question for finite groups only. If G is infinite, the same
conditions imposed on H are not sufficient to obtain the same result. Consider
ZXxZ,and let H=Zx {0}, H,={0} X Z, and H be the subgroup generated by (2,0).
Then Z X Z is the internal direct product of H, and H,, H is a normal subgroup such
that H~H; and Hn H,={(0,0)}, but Zx Z is not the internal direct product of H
and H,since H+ H,#ZX Z.

ChrisVancil, Roane State Community College, Harriman, Tenn., USA
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