Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 32 (1977)

Heft: 4

Rubrik: Kleine Mitteilungen

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.09.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

94 Kleine Mitteilungen

Kleine Mitteilungen

On the Indirect Product of Subgroups

The following is a well-known property of external direct products¹). If G is the external direct product of groups $G_1, G_2, ..., G_n$, and H is a group such that $H = \underset{i=1}{\overset{k}{\sum}} G_i$ for some k < n, then G is, up to isomorphism, the external direct product of H, $G_{k+1}, ..., G_n$.

Recall that a group G is said to be the internal direct product of subgroups H_1 , H_2 , ..., H_n if and only if each H_i is normal and each element g of G can be uniquely expressed (excluding order) in the form $g = h_1 h_2 \dots h_n$, where $h_i \in H_i$ for each i.

It is natural to ask the following question: If G is the internal direct product of subgroups $H_1, H_2, ..., H_n$, what conditions can be placed on a subgroup H so that G is also the internal direct product of H, $H_{k+1}, ..., H_n$ for some k < n? I have been unable to find a text on group theory which considers this question.

For convenience let us first recall some basic results concerning direct products. A well-known characterization is that a group G is the internal direct product of subgroups H_1, H_2, \ldots, H_n if and only if

each
$$H_i$$
 is normal, (1)

$$G = \prod_{i=1}^{n} H_i, \text{ and}$$
 (2)

$$H_j \cap \prod_{i \neq j}^{i-1} H_i = \{e\} \text{ for each } j.$$
(3)

Another characterization is that G is the internal direct product if and only if $\Phi: \underset{i=1}{\overset{n}{\times}} H_i \to G$, defined by $\Phi(h_1, h_2, ..., h_n) = h_1 h_2 ... h_n$, is an isomorphism.

Returning to the question, one might first guess that if $H \simeq \prod_{i=1}^{k} H_i$ for some $k < n \left(\prod_{i=1}^{k} H_i$ is a subgroup since each H_i is normal and $H_i \cap \prod_{i \neq j} H_j = \{e\} \right)$, then G will

be the internal direct product of H, H_{k+1}, \ldots, H_n since $G \simeq \underset{i=1}{\overset{n}{\times}} H_i, H \simeq \underset{i=1}{\overset{k}{\times}} H_i$, and G will thus be isomorphic to the external direct product of H, H_{k+1}, \ldots, H_n . However, the special map Φ may not be an isomorphism. Consider $Z_2 \times Z_2$, and let $H_1 = Z_2 \times \{[0]\}$, $H_2 = \{[0]\} \times Z_2$, and $H = H_2$. Then $Z_2 \times Z_2$ is the internal direct product of H_1 and H_2 , and $H \simeq H_1$, but even though $Z_2 \times Z_2 \simeq H \times H_2$, $Z_2 \times Z_2$ is not the internal direct product of H and H_2 since $H + H_2 \neq Z_2 \times Z_2$.

This example also shows that requiring H to be normal in G, in addition to

¹) External direct product means the same as "ordinary" direct product as indicated by the symbol $X G_{I}$.

Kleine Mitteilungen

being isomorphic to $\prod_{i=1}^k H_i$, does not suffice. But in the example just cited, note that $H \cap H_2 \neq \{([0], [0])\}$. Thus, in addition to supposing H to be isomorphic to $\prod_{i=1}^k H_i$, let us assume that $H \cap \prod_{i=k+1}^n H_i = \{e\}$. But consider $Z_2 \times S_3$, and let $H_1 = Z_2 \times \{\epsilon\}$, $H_2 = \{[0]\} \times S_3$, and $H = \{([0], \epsilon), ([1], a)\}$, where $\epsilon = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ and $a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$. Then $Z_2 \times S_3$ is the internal direct product of H_1 and H_2 , $H \simeq H_1$, and $H \cap H_2 = \{([0], \epsilon)\}$, but $Z_2 \times S_3$ is not the internal direct product of H and H_2 since H is not normal. If we restrict ourselves to finite groups, we have the following.

Theorem: Let G be a finite group such that G is the internal direct product of subgroups H_1, H_2, \ldots, H_n . If H is a normal subgroup such that $H \simeq \prod_{i=1}^k H_i$ for some k < n and $H \cap \prod_{i=k+1}^n H_i = \{e\}$, then G is the internal direct product of H, H_{k+1}, \ldots, H_n . Proof: It suffices to show that $\Phi: H \times H_{k+1} \times \ldots \times H_n \to G$, defined by $\Phi(h, h_{k+1}, \ldots, h_n) = hh_{k+1} \ldots h_n$, is an isomorphism.

If K_1 and K_2 are normal subgroups and $K_1 \cap K_2 = \{e\}$, then the elements of K_1 commute with those of K_2 . Using this, the proof that Φ is a homomorphism is straightforward.

If ϕ $(a, a_{k+1}, \ldots, a_n) = \phi(b, b_{k+1}, \ldots, b_n)$, then $aa_{k+1} \ldots a_n = bb_{k+1} \ldots b_n$. Hence $b^{-1}a = (b_{k+1} \ldots b_n)(a_{k+1} \ldots a_n)^{-1}$. Thus $b^{-1}a \in H \cap \prod_{i=k+1}^n H_i$, and a = b. Continuing in the same manner, $a_i = b_i$ for $i = k+1, \ldots, n$. Thus ϕ is one-to-one. Since $H \simeq \prod_{i=1}^n H_i$, the orders of $H \times H_{k+1} \times \ldots \times H_n$ and of G are equal. Thus it follows that ϕ is also onto. Therefore, ϕ is an isomorphism.

I have answered the question for finite groups only. If G is infinite, the same conditions imposed on H are not sufficient to obtain the same result. Consider $Z \times Z$, and let $H_1 = Z \times \{0\}$, $H_2 = \{0\} \times Z$, and H be the subgroup generated by (2,0). Then $Z \times Z$ is the internal direct product of H_1 and H_2 , H is a normal subgroup such that $H \simeq H_1$ and $H \cap H_2 = \{(0,0)\}$, but $Z \times Z$ is not the internal direct product of H and H_2 since $H + H_2 \neq Z \times Z$.

Chris Vancil, Roane State Community College, Harriman, Tenn., USA

REFERENCES

- WILFRED E. BARNES, *Introduction to Abstract Algebra*, D.C. Heath and Company, Boston, 62-73 (1963).
- JOHN B. FRALEIGH, A First Course in Algebra, Addison-Wesley Publishing Company, Reading, Mass., 65-79 (1967).
- HIRAM POLEY and PAUL M. WEICHSEL, A First Course in Algebra, Holt, Rinehart and Winston, Inc., New York, 130-134 (1966).
- 4 JOSEPH J. ROTMAN, *The Theory of Groups*, An Introduction, Allyn and Bacon, Inc., Boston, 55-65 (1965).