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Polygonal Roulettes

If a curve rolls without slipping along another fixed curve, any point which
moves with the rolling curve will describe a roulette [4, p. 139]. Many of the well-
known plane curves are thus roulettes. For example, the cycloid is the roulette
generated by a circle rolling along a straight line. The cardioid, nephroid, and
other epicycloids are generated by rolling a circle along the exterior of a fixed circle;
the deltoid, astroid, and other hypocloids are generated by rolling a circle along the
interior of a fixed circle.

Yates [5] investigated the curves generated by a vertex of a regulär polygon
as it is rolled along either a straight line or eise a similar polygon. Thus his curves
consist of a sequence of contiguous circular arcs. Beginning with polygonal curves,
however, it seems desirable to generate yet another polygonal curve. A natural way
to accomplish this is to replace the circular arcs by their chords. This has recently
been investigated in the cycloidal case by DeTemple [1], [2], and DeTemple and
Engquist [3], where many interesting properties of "polygonal cycloids" are
described.

It still remains to examine the properties of other polygonal roulettes, and that
is our purpose here. The polygonal epicycloid and polygonal hypocycloid will serve
as examples.

Our calculations make frequent use of the following trigonometric identities:

w-1
Yj sin (kn/m) cot (n/2 m), (1)
k=\

m— 1

X sm2 (knjm) m/2. (2)
k=\
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In addition we need the expression which gives the length rk of a chord drawn
from one vertex of a regulär ra-gon of circumradius R to a second vertex k sides

away, namely

rk 2R sin (kn/m). (3)

1. Polygonal Epicycloids
Let q and n be positive integers with qn>3, and suppose a regulär qn-gon

of circumradius R is rolled, without slipping, along the extenor of a regulär qn-gon
circumradius qR. A vertex of the rolling polygon, initially coincident with a vertex
of the fixed polygon, traces a sequence of circular arcs. Replacing these arcs by their
chords yields a curve we shall call the (q,n)-polygonal epicycloid (Fig. 1). We observe
that every qth pivot is about a vertex of the fixed polygon, and heie the rolling
polygon turns through 4n/qn radians. At pivot points along the sides of the fixed
polygon the rolling polygon turns through 2n/qn. There are q points where the
distinguished vertex coincides with a vertex of the fixed polygon, and so q represents
the number of "cusps" of the (q, «)-polygonal epicycloid. There are n sides of the
fixed polygon between successive cusps.

Figure 1 A polygonal epicycloid

a. Length
Let Le(q,n) denote the length of the (q, «)-polygonal epicycloid. From Fig. 1

we have that

qn — 1 qn — 1

Le(q,n)/q= X 2rksin(n/qn)+ £ 2rksin(2n/qn),
k=\ k=\
qJfk q\k

(4)
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where rk is given by (3) with m qn For n> 2 we can rewnte (4) as

qn— 1

Le(q,n)/q 2sm(n/qn) ]T 2Rsm(kn/qn)
k 1

n-1
+ [2sm(2n/qn)- 2sm(n/qn)] ^ 2_R sm (kn/ri)

k=\

Evaluating the sums by means of the identity (1) leads to

Le(q,n)/q 4Rsm(n /qn )cot(n /2 qn)
+ 4R [sin (2n/qn) - sin (n/qn)] cot (n/2 n)

which, except for rearrangement, gives the expression sought for Le (q, n) when n > 2

For n 1 (4) becomes

Le(q, l)/q 2 sin (n/q) 2^ 2 R sin (kn/q)_'
fc=i

4 R sin (7r/^ cot (7-/2 q) 4 R (1 + cos (n/q))

where (1) and a half-angle formula for the cotangent have been employed Of
course in the (q, 1) case we really have a ^-polygonal cycloid erected on each side of
the fixed polygon The right side of the equation just above thus gives the length
of a ^-polygonal cycloid, in agreement with [1] and [3]

Theorem 1. Let Le(q,n) be the length of the (q,«)-polygonal epicycloid
generated by a regulär qn-gon of circumradius R rolling upon a regulär qn-gon of
circumradius qR Then

Le(q, n) 4qR [1 + cos (n/qn)- sin (n/qn) cot (n/2 n) + sm(2n/qn) cot (n/2 n],
n>2, (5)

Le(q,l) 4qR[l + cos(n/q)] (6)

From (5) it is readily checked that hm Le(q,n)=SR(q+ 1) Thus the length

of the epicycloid of q cusps is &(q+ 1) times the radius of the rolling circle
Formula (5) greatly simphfies in the cases of the polygonal cardioid (#=1)

and polygonal nephroid (q=2) If one uses the half-angle formula for the cotangent
and double-angle formula for the sme we obtain

Le(l,n)=SR(cos(n/n) + cos2(n/n))

That is, the length of the polygonal cardioid generated by rolling a regulär
n-gon of circumradius R about an equal polygon is 16 times the average of the
mradius and circumradius of the n-gon whose vertices are the midpoints of the fixed
(or rolling) polygon (see Fig 2)

Similarly one can show

Le(2, n)= SR (2 +cos (n/n)) (7)

is the length of the polygonal nephroid
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Figure 2 The polygonal cardioid generated by a pentagon

b. Area
Let Ae(q,n) denote the area enclosed by the (q, «)-polygonal epicycloid. From

Fig. 1 we first note that the qn — 2 shaded triangles between successive cusps have
the area of the rolling polygon, namely (l/2)qnR2sin(2n/qn). The unshaded qn— 1

triangles between successive cusps have total area

qn- 1 1 qn- 1 1

X —rk2sin(2n/qn)+ £, — rk2sin(4n/qn),
A:=l 2 k=\ 2
qJ(k q\k

(8)

where rk=2Rsin(kn/qn). The quantity in (8) is simplified much as was done with
equation (4), although now it is identity (2) which is used. For n>2 the area given
by (8) reduces to

-—nR2sin(2n/qn) (2q + 2—%sin2(n/qn))

and for n= 1 it is qR2sin(2n/q). Thus each of the q regions between cusps which
are within the (q, «)-polygonal epicycloid but exterior to the fixed polygon has area

y nR2 sin(2n/qn) (3q + 2- 8 sin2(n/qn)) ,n>2,
3 -
-~qR2sm(2n/q),n=l.

(9)

The second formula just above shows us that the area of a polygonal cycloid
is 3 times the area of the rolling polygon used to generate it.

To now obtain Ae(q,n) we multiply (9) by q and then add it to
(l/2)qn(qR)2sin(2n/qn), which is the area of the fixed qn-gon of circumradius qR.

Theorem 2. Let Ae(q, n) be the area of a (q, w)-polygonal epicycloid generated
by a regulär qn-gon of circumradius R rolling upon a fixed regulär qn-gon of
circumradius qR. Then

Ae(q,n)=—qnR2sin(2n/qn)[(q+l)(q + 2)-Ssin2(n/qn)],n>2 (10)

Ae(q> l)=~qR2sin(2n/q)q(q+3), n= 1. (11)
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The factor (l/2)qnR2sm(2n/qn) is, we recall, the area of the rolling qn-gon.
Thus taking the limit «-> oo in (10) we see that the area of the epicycloid of q cusps is

(q+l)(q + 2) times the area of the rolling circle which generates it.
For the polygonal cardioid (#=1), the area expression can be put into the form

Ae(l,n)=%\—n(Rcos(n/n))2sin(2n/n^-2\^— nR2sin(2n/n"\.

Thus the area of the polygonal cardioid is eight times the area of the n-gon with
vertices at the midpoints of the rolling polygon, less twice the area of the rolling
polygon (see again Fig. 2).

The Situation is even simpler for the polygonal cardioids generated by rolling
a polygon ofn 2m sides. Indeed

Ae(l,2m) 2\Y(2m)R2sin(2n/2m)\+4\—mR2sin(2n/m)\

and so the area of the polygonal cardioid is twice the area of the rollmg (or fixed)
2m-gon plus four times the area of the regulär m-gon of the same radius. (See Fig. 3.)

Figure 3 The polygonal cardioid generated by an octagon

For polygonal nephroids we have

Ae(2,n) 4\-~(2n)R2sin(2n/2n)\(2 + cos(n/2n)).

In view of (7) we see that the length and area of the polygonal nephroid are
each 4(2 + cos(n/2n)) times the respective diameter and area of the rolling polygon.
On the other hand

Ae(2,n)=s\— (2«)Ä2sin(27r/2/2)l+4ry«iR2sin(27r/«)l;

thus the area of a polygonal nephroid generated by rolling a regulär 2«-gon is eight
times the area of the rolling polygon plus four times the area of the regulär n-gon
of the same radius.
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2. Polygonal Hypocycloids
Now let q> 2 and n > 1 with qn>3, and roll a regulär qn-gon of circumradius

R along the interior of a regulär qn-gon of circumradius qR. In the same manner
as before we generate a polygonal curve we call the (q,n)-polygonal hypocycloid
(Fig. 4). The number q still represents the number of cusps, although these now have
the form of radial spikes at every qih vertex of the fixed polygon. The number n
remains the number of sides of the fixed polygon between successive cusps. The
rolling polygon turns through 2n/qn radians when pivoting about a point which is

between vertices of the fixed polygon. Every qih pivot point coincides with a vertex
of the fixed polygon, and here the pivot angle is 0.

Figure 4. A polygonal hypocycloid.

a. Length
Let Lh (q, n) denote the length of the (q, w)-polygonal hypocycloid. Referring to

Fig. 4, we see that

/ q^x iLh(q,n)/q= 2L 2rksm(n/qn)
k=\
q\k

where rk 2Rsin(kn/qn). The sum can be put into closed form by following
steps analogous to those in the preceding section. Because cot(7i/2) 0 it turns
out that the formula derived for the case n>2 is valid even when n= 1. Of course,
we also have Lh (q, l) Le(q, 1), with Le(q, 1) given by (6).
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Theorem 3. Let Lh (q, n) denote the length of the (q, w)-polygonal hypocycloid
generated by rolling a regulär qn-gon of circumradius R along the interior of a
fixed regulär qn-gon of circumradius qR. Then

Lh(a>n) 4 qR (l + cos (n/qn)-sin (n/qn) cot (n/2n)) (12)

Since lim Lh(q,ri)=%R(q— l)we see that the length of the hypocycloid of q
n~* oo

cuspsis8(g— 1) times the radius of the rolling circle. We also see that the polygonal
hypocycloid of q 2 cusps is just a twice-covered diameter of the fixed polygon. In
fact, Lh(2, n)=$R. It is interesting to note that there is no dependence here on n.

b. Area
To determine Ah(q,n), the area of a (q,n)-polygonal hypocycloid, we see

from Fig. 4 that the area of the unshaded triangles between two successive cusps is

qn-\ 1

Y ~rk2sin(2n/qn),rk=2Rsin(kn/qn). (13)
k=\ 2

In the case n=l, we can apply identity (2) directly to (13) to get 2a, where
a (l/2)qnR2sin(2n/qn) is the area of the rolling polygon. In the case n>2 we first
put (13) into the form

4a rqn-l n-\ -|
— S sin2(kn/qn)- Y sin2(kn/n)\. (14)
qn Lfc=i k=\ J

Identity (2) now applies, showing that the quantity (14) is 2a (1 - q~x).

The area total of all the triangles, shaded and unshaded, between cusps is thus

3a, n=l, (3-2q'x)a, n>2. (15)

Since Ah(q, n) is the area q2a of the fixed polygon less q times the area given by
(15), we easily arrive at the following result.

Theorem 4. The area of the (q, n)-polygonal hypocycloid is

Ah(q,n) (q-l)(q-2)a, n>2, (16)

Ah(q,l)=q(q-3)a, (17)

where a is the area of the rolling qn-gon.
Formula (16) is quite remarkable, since it is in direct analogy to the result

that hypocycloids of q cusps have area (q— l)(q—2) times that of the generating
circle [4, p. 146]. From our remarks just following Theorem 3 we could have

anticipated that A h (2, n) 0 for all n > 2.
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The case n 1 corresponds to that where a polygonal cycloid is erected,
toward the mtenor, on each side of the fixed q-gon The (3,l)-polygonal hypocycloid
consists of just three (doubly-traced) radial segments from the center of an
equilateral triangle to its vertices, of course from (17) Ah(3,l) 0 The (4,1)-
polygonal hypocycloid is a "spiked" square, the square's side length is twice that
of the rolling square The (5,l)-polygonal hypocycloid is a star-shaped figure with
radial spikes, a diagram and other discussion can be found in DeTemple [2]

Douglas J Baxter and Duane W DeTemple, Washington State University,
Pullman, USA
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Konvexe Körper approximierende Polytopklassen

Es bezeichne $(ra, n) die Klasse konvexer Polytope des dreidimensionalen
euklidischen Raumes E3, deren Ecken höchstens m-valent smd und deren Seiten
höchstens n Ecken besitzen, m > 3, n > 3

%(m,n) heisse approximierende Klasse der Klasse ft aller konvexen Korper
des E3, wenn es zu jedem Ke® eine Folge {PJ^n konvexer Polytope Pte%(m,n)
gibt, die im Smne der Hausdorffmetrik gegen K konvergiert

G Ewald hat die Frage gestellt [3], welche der Klassen $(ra, n) ft approximieren
Wir beantworten diese Frage vollständig mit Hilfe des folgenden Satzes

Satz. Die Klassen $(4,4), $(3,6), $(6,3) sind approximierende Klassen von ft

Bemerkung 1 Damit ist die Frage nach den approximierenden Klassen von ft
geklart, denn die Klassen $(3,3), $(3,4), $(4,3), $(3,5), $(5,3) enthalten nur endlich
viele kombinatorische Klassen konvexer Polytope und können daher nicht approximierend

sein Alle übrigen Klassen enthalten eine der im Satz aufgeführten Klassen
als Teilklasse und sind daher approximierend

Bemerkung 2 Eine weitergehende Frage fur geschlossene Flachen beliebigen
Geschlechts im E3 wird mit graphentheoretischen Methoden, die bei obigem Satz

zu versagen scheinen, in einer Arbeit von G Ewald [2] behandelt
Bemerkung 3 Die Frage von G Ewald [3], ob es endliche approximierende

Klassen der Klasse ®n aller «-dimensionalen konvexen Korper, n > 4, gibt, bleibt offen
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