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Polygonal Roulettes

If a curve rolls without slipping along another fixed curve, any point which
moves with the rolling curve will describe a roulerte [4, p.139]. Many of the well-
known plane curves are thus roulettes. For example, the cycloid is the roulette
generated by a circle rolling along a straight line. The cardioid, nephroid, and
other epicycloids are generated by rolling a circle along the exterior of a fixed circle;
the deltoid, astroid, and other hypocloids are generated by rolling a circle along the
interior of a fixed circle.

YATES [5] investigated the curves generated by a vertex of a regular polygon
as it is rolled along either a straight line or else a similar polygon. Thus his curves
consist of a sequence of contiguous circular arcs. Beginning with polygonal curves,
however, it seems desirable to generate yet another polygonal curve. A natural way
to accomplish this is to replace the circular arcs by their chords. This has recently
been investigated in the cycloidal case by DETEMPLE [1], (2], and DETEMPLE and
ENGQuisT [3], where many interesting properties of “polygonal cycloids” are
described.

It still remains to examine the properties of other polygonal roulettes, and that
is our purpose here. The polygonal epicycloid and polygonal hypocycloid will serve
as examples.

Our calculations make frequent use of the following trigonometric identities:

mz_:lsin (kn/m)=cot(n/2m), (1)
k=1

m—1
kz,lsinz (kn/m)y=m/2. )



82 Douglas J. Baxter and Duane W. DeTemple: Polygonal Roulettes

In addition we need the expression which gives the length r, of a chord drawn
from one vertex of a regular m-gon of circumradius R to a second vertex k sides
away, namely

re=2Rsin (kn /m). (3)

1. Polygonal Epicycloids

Let ¢ and n be positive integers with gn>3, and suppose a regular gn-gon
of circumradius R is rolled, without slipping, along the exterior of a regular gn-gon
circumradius gR. A vertex of the rolling polygon, initially coincident with a vertex
of the fixed polygon, traces a sequence of circular arcs. Replacing these arcs by their
chords yields a curve we shall call the (g, n)-polygonal epicycloid (Fig. 1). We observe
that every gth pivot is about a vertex of the fixed polygon, and here the rolling
polygon turns through 47z /gn radians. At pivot points along the sides of the fixed
polygon the rolling polygon turns through 27 /gn. There are g points where the
distinguished vertex coincides with a vertex of the fixed polygon, and so g represents
the number of “cusps” of the (g, n)-polygonal epicycloid. There are n sides of the
fixed polygon between successive cusps.

Figure 1. A polygonal epicycloid.

a. Length
Let L,(g,n) denote the length of the (g, n)-polygonal epicycloid. From Fig. 1
we have that

qn—1 qn—1

L.(g,m)/q="}. 2risin(n/qn)+ 3, 2risin(2n /qn), (4)
k=1 k=1
qrk qlk
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where 7, is given by (3) with m=gn. For n>2 we can rewrite (4) as

n—1
L,(g,n)/q=2sin(n /qrn)qkzl 2 Rsin (k7 /qn)

+[2sin (27 fqn)—2sin (/gn)] S 2 Rsin (kx /).
k=1

Evaluating the sums by means of the identity (1) leads to

L.(g,n)/q=4Rsin (z /gn)cot (n /2 gn)
+4 R [sin (27 /gn) — sin (n /qn)] cot (1 /2 n)

which, except for rearrangement, gives the expression sought for L, (g, n) when n>2.
For n=1 (4) becomes

_1
L.(g,1)/q=2sin (n/q)zlz Rsin (km /q)

=4 Rsin(n/q)cot(n/2q)=4R(1+cos(n/q))

where (1) and a half-angle formula for the cotangent have been employed. Of
course in the (g, 1) case we really have a g-polygonal cycloid erected on each side of
the fixed polygon. The right side of the equation just above thus gives the length
of a g-polygonal cycloid, in agreement with [1] and [3].

Theorem 1. Let L, (g,n) be the length of the (g,n)-polygonal epicycloid
generated by a regular gn-gon of circumradius R rolling upon a regular gn-gon of
circumradius gR. Then

L.(g,n)=4qR[1+cos(n/qn)—sin (n /qn) cot (r /2 n) +sin (2n /gn) cot (n /2 n] ,

n=2, (3)

L,(g,1)=4qR[1+cos(r/q)]. (6)

From (5) it is readily checked that lim L,(g,n)=8R(g+ 1). Thus the length

n— oo
of the epicycloid of g cusps is 8 (¢+ 1) times the radius of the rolling circle.
Formula (5) greatly simplifies in the cases of the polygonal cardioid (g=1)
and polygonal nephroid (¢=2). If one uses the half-angle formula for the cotangent
and double-angle formula for the sine we obtain

L.(1,n)=8 R (cos (n/n)+cos?(n /n)) .

That is, the length of the polygonal cardioid generated by rolling a regular
n-gon of circumradius R about an equal polygon is 16 times the average of the
inradius and circumradius of the n-gon whose vertices are the midpoints of the fixed
(or rolling) polygon (see Fig.2).

Similarly one can show

L.(2,n)=8R (2+cos(n/n)) )
is the length of the polygonal nephroid.
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Figure 2. The polygonal cardioid generated by a pentagon.

b. Area

Let A,(g, n) denote the area enclosed by the (g, n)-polygonal epicycloid. From
Fig. 1 we first note that the gn—2 shaded triangles between successive cusps have
the area of the rolling polygon, namely (1/2) gnR?sin (27 /gn). The unshaded gn— 1
triangles between successive cusps have total area

gn=11 gn—11

> ?rkzsin Qn/qn)+ > —2—rk2sin (4n /qn), (8)
= K=1

qrk qlk

where r, =2 Rsin (kn /qn). The quantity in (8) is simplified much as was done with
equation (4), although now it is identity (2) which is used. For n>2 the area given
by (8) reduces to

‘;”nstmun/qn)(2q+2—88in2(n/qn)>

and for n=1 it is gR?sin (27 /q). Thus each of the ¢ regions between cusps which
are within the (g, n)-polygonal epicycloid but exterior to the fixed polygon has area

1
5 nR?sin (27 /qn) (3q+2—8sin*(z /qn)), n=2, 9)

3
—z——qu sin (27z/q), n=1.

The second formula just above shows us that the area of a polygonal cycloid
is 3 times the area of the rolling polygon used to generate it.

To now obtain A,(g,n) we multiply (9) by ¢ and then add it to
(1/2)gn (gR)*sin (2% /qn), which is the area of the fixed gn-gon of circumradius ¢R.

Theorem 2. Let 4,(g, n) be the area of a (g, n)-polygonal epicycloid generated
by a regular gn-gon of circumradius R rolling upon a fixed regular gn-gon of
circumradius gR. Then

A,(g,n)= %anz sin (27 /qn) [(g+ 1) (g +2)— 8sin?(n /qn)], n=>2 (10)

A.(q, 1)=%qusin(27z/q)q(q+3), n=1. (11)
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The factor (1/2)gnR?sin (27 /qn) is, we recall, the area of the rolling gn-gon.
Thus taking the limit n— oo in (10) we see that the area of the epicycloid of g cusps is
(g+ 1)(g+2) times the area of the rolling circle which generates it.

For the polygonal cardioid (¢ = 1), the area expression can be put into the form

A.(1,n)=8 [%n(Rcos (n/n)) %sin (27z/n)] -2 [é— nR?*sin (27t/n)] :
Thus the area of the polygonal cardioid is eight times the area of the n-gon with
vertices at the midpoints of the rolling polygon, less twice the area of the rolling
polygon (see again Fig.2). )
The situation is even simpler for the polygonal cardioids generated by rolling
a polygon of n=2m sides. Indeed

Ae(l,zm)=2[% (2m) R?sin (2 /2 m)] +4|:%mstin 2x /m)]

and so the area of the polygonal cardioid is twice the area of the rolling (or fixed)
2m-gon plus four times the area of the regular m-gon of the same radius. (See Fig. 3.)

Figure 3. The polygonal cardioid generated by an octagon.

For polygonal nephroids we have
1
Ae(2,n)=4[~2— (2n)R2sin(2n/2n)] 2+ cos (x /2 n)).

In view of (7) we see that the length and area of the polygonal nephroid are
each 4 (2+ cos (/2 n)) times the respective diameter and area of the rolling polygon.
On the other hand

A,(2,n)=8 EZ— (2n)R%sin 2n /2 n)] +4 [—;—n R?*sin (27z/n)] ;

thus the area of a polygonal nephroid generated by rolling a regular 2n-gon is eight
times the area of the rolling polygon plus four times the area of the regular n-gon
of the same radius.
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2. Polygonal Hypocycloids

Now let g=2 and n>1 with gn> 3, and roll a regular gn-gon of circumradius
R along the interior of a regular gn-gon of circumradius gR. In the same manner
as before we generate a polygonal curve we call the (g, n)-polygonal hypocycloid
(Fig.4). The number g still represents the number of cusps, although these now have
the form of radial spikes at every gth vertex of the fixed polygon. The number n
remains the number of sides of the fixed polygon between successive cusps. The
rolling polygon turns through 27 /gn radians when pivoting about a point which is
between vertices of the fixed polygon. Every gth pivot point coincides with a vertex
of the fixed polygon, and here the pivot angle is 0.

Figure 4. A polygonal hypocycloid.

a. Length
Let L, (g, n) denote the length of the (g, n)-polygonal hypocycloid. Referring to
Fig.4, we see that

gn=1 .
Ly(g.n)/q= kgl 2rysin (n /qn)
qlk

where r,=2Rsin (kn/gn). The sum can be put into closed form by following
steps analogous to those in the preceding section. Because cot(n/2)=0 it turns
out that the formula derived for the case n>2 is valid even when n=1. Of course,
we also have L,(q,1)=L,(gq,1), with L,(g,1) given by (6).
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Theorem 3. Let L, (q,n) denote the length of the (g, n)-polygonal hypocycloid
generated by rolling a regular gn-gon of circumradius R along the interior of a
fixed regular gn-gon of circumradius gR. Then

L,(q. n)=4 qR (1+ cos (n/qn)—sin (n /qn) cot (n /2 n)) . (12)

Since lim L,(q,n)=8 R(q— 1)we see that the length of the hypocycloid of ¢
cuspsis8 (g— 1)times the radius of the rolling circle. We also see that the polygonal
hypocycloid of g=2 cusps is just a twice-covered diameter of the fixed polygon. In
fact, L, (2,n)=8 R. It is interesting to note that there is no dependence here on n.

b. Area
To determine A4,(gq,n), the area of a (g,n)-polygonal hypocycloid, we see
from Fig.4 that the area of the unshaded triangles between two successive cusps is

gn—11

> ?rkZ sin (27 /qn), r,=2 Rsin (kn /qn) . (13)
k=1

In the case n=1, we can apply identity (2) directly to (13) to get 2a, where
a=(1/2)gnR*sin 2n /qn) is the area of the rolling polygon. In the case n>2 we first
put (13) into the form

4a gn—1 n—1
—[ Zl sin? (kn /qn)— kz sin® (kn /n)] : (14)
=1

gn Lk=

Identity (2) now applies, showing that the quantity (14) is 2a (1—g ).
The area total of all the triangles, shaded and unshaded, between cusps is thus

3a, n=1, (3-2gY) a, n>2. (15)

Since A, (g, n) is the area g% of the fixed polygon less ¢ times the area given by
(15), we easily arrive at the following result.

Theorem 4. The area of the (g, n)-polygonal hypocycloid is
Apgm)=@—-1)(g—2)a, nz=2, (16)

Ah(q’ 1)= q(q—3)a’ (17)

where a is the area of the rolling gn-gon.

Formula (16) is quite remarkable, since it is in direct analogy to the result
that hypocycloids of ¢ cusps have area (g— 1)(g—2) times that of the generating
circle [4, p.146]. From our remarks just following Theorem 3 we could have
anticipated that A4, (2,n)=0 for all n >2.
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The case n=1 corresponds to that where a polygonal cycloid is erected,
toward the interior, on each side of the fixed ¢g-gon. The (3,1)-polygonal hypocycloid
consists of just three (doubly-traced) radial segments from the center of an
equilateral triangle to its vertices; of course from (17) 4,(3,1)=0. The (4,1)-
polygonal hypocycloid is a “spiked” square; the square’s side length is twice that
of the rolling square. The (5,1)-polygonal hypocycloid is a star-shaped figure with
radial spikes; a diagram and other discussion can be found in DETEMPLE [2].

Douglas J. Baxter and Duane W. DeTemple, Washington State University,
Pullman, USA
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Konvexe Korper approximierende Polytopklassen

Es bezeichne B(m,n) die Klasse konvexer Polytope des dreidimensionalen
euklidischen Raumes E3, deren Ecken hochstens m-valent sind und deren Seiten
hochstens n Ecken besitzen, m>3,n> 3.

B(m, n) heisse approximierende Klasse der Klasse § aller konvexen Korper
des E3, wenn es zu jedem Ke§ eine Folge {P,;};.n konvexer Polytope P;e*R(m, n)
gibt, die im Sinne der Hausdorffmetrik gegen K konvergiert.

G. Ewald hat die Frage gestellt [3], welche der Klassen R (m, n) & approximie-
ren. Wir beantworten diese Frage vollstindig mit Hilfe des folgenden Satzes:

Satz. Die Klassen B(4,4), 3(3,6), 8(6,3) sind approximierende Klassen von {.

Bemerkung 1. Damit ist die Frage nach den approximierenden Klassen von &
geklart, denn die Klassen 8(3,3), B (3.,4), B(4,3), V(3,5), B (5,3) enthalten nur endlich
viele kombinatorische Klassen konvexer Polytope und kénnen daher nicht approxi-
mierend sein. Alle iibrigen Klassen enthalten eine der im Satz aufgefiihrten Klassen
als Teilklasse und sind daher approximierend.

Bemerkung 2. Eine weitergehende Frage fiir geschlossene Flachen beliebigen
Geschlechts im E3 wird mit graphentheoretischen Methoden, die bei obigem Satz
zu versagen scheinen, in einer Arbeit von G. EWALD [2] behandelt.

Bemerkung 3. Die Frage von G. Ewald [3], ob es endliche approximierende
Klassen der Klasse R aller n-dimensionalen konvexen Kérper, n > 4, gibt, bleibt offen.
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