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Die Fläche von R wäre demnach mindestens pq, andererseits gilt aber für ein Rechteck

mit Seitenp,q exakt F(R)=pq. Also muss die Fläche eines Elementardreiecks
genau l/2 sein.

G. Walther, PH Ruhr, Dortmund
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Minimale Gitterwege mit Nebenbedingungen

In einem ebenen Gitter betrachten wir Gitterwege minimaler Länge von (0,0) nach
(n, m), wo n und m natürliche Zahlen bedeuten. Alle solchen Wege bestehen aus n
horizontalen und m vertikalen Einheitsstrecken und haben die Länge n + m. Ihre
Anzahl beträgt daher

(n + m\ (n + m
z(n,m)= \ n J \ m

Fordern wir zusätzlich, dass die zulässigen Wege die Gerade g:ky—x 0 (keN)
nicht überschreiten dürfen, so vermindert sich deren Anzahl um die Zahl v(n,m) der
Wege, welche g überschreiten. Die Anzahl der zulässigen Wege wird dann
z* (n, m) z (n, m)—v (n, m).
Offensichtlich ist z*(n,m) 0 für n<km; im folgenden sei deshalb n>km vorausgesetzt.

In [1] stellt M. Jeger die Lösung des Problems für k 1 mit Hilfe einer Spiegelungsidee

von D. Andre [3] auf eine sehr instruktive Art dar; für k> 1 versagt das

Spiegelungsverfahren, doch beweist er die Gültigkeit einer vermuteten Formel aufgrund
der Randwerte 0 auf der Geraden ky-x—1 0 und der Randwerte 1 auf der
x-Achse mit Hilfe einer Rekursionsformel. In [2] findet sich dann die Lösung mit
Verwendung formaler Potenzreihen. Wir stellen uns die Aufgabe, z* (n, m) direkt
mit einer kombinatorischen Idee zu bestimmen. Dazu genügt es, die Anzahl v(n, m)
der verbotenen Wege zu berechnen.
Es bedeuten V die Menge der verbotenen Wege von (0,0) nach (n, m) und M die
Menge aller Minimalwege von (0,0) nach (n+l,m—l). Jeden Weg aus Videntifizieren

wir mit einer (n + m)-stelligen Folge mit n Gliedern «1» und m Gliedern
«-k», wo jede 1 für eine horizontale und jedes Glied -k für eine vertikale
Einheitsstrecke des Weges steht. Jeder solchen Folge/= (xx,x2,..., xn+m) ordnen wir die
«Partialsummen»

So(f) 0,sv(f)=±Xl
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zu, es ist dann sn+m(f) n — km>0 Dass/einem verbotenen Weg entspricht, äussert

sich jetzt dann, dass fur mindestens em v sv(f) negativ wird Sei v die kleinste
Nummer, für die sv(f)<0 ausfallt Dann sind xv= — k, sv(f)= —i (ie{ 1,2, k})
und sv_x(f)= —i + k, VjdV seien die Mengen der verbotenen Wege mit dieser
Eigenschaft, es gelten dann VtnVj=0 fur i i^j und

V=\JV,
l 1

Fur ein festes i konstruieren
(j){ \, x2 xv_ b K,XV+ ],

wir jetzt eine Abbildung cp Vt-+M durch
:n+m) (Xv-\, > *h hxv+h xn+m), abgekürzt

(p(f)=f, d h wir ersetzen die Vertikale xv durch eine Horizontale, kehren die
Reihenfolge der vorhergehenden Glieder um und lassen die Reihenfolge der
nachfolgenden Glieder bestehen
Es gelten sv(f') k-1+ 1, sv_x(f') k-i und sn+m(f') n-km + k+ l>k+ 1 Ware
sfl(f/)=zk — i+ 1, sjLl_x(f') k — i fur ein ju<v, so wurde xv_jU_x+ +xx= — 1<0,
im Widerspruch zur Minimahtatsbedingung fur v Somit lasst sich/ aus/' eindeutig
rekonstruieren, tp ist also injektiv Da zudem für jede beliebige Folge f"eM
sn+m(f")>k+ 1 gilt und weil Zunahmen von sv immer nur um 1 erfolgen, gibt es

eine kleinste Nummer ju mit sM (f") k — i + 1, sM _ x if") k — i Wie oben ergibt sich
daraus die Existenz einer Folge fe Vl mit cp (f)=f", (p ist somit surjektiv cp ist also

eine Bijektion und es gilt | FJ | M| Da sich die Überlegungen fur jedes / wiederholen

lassen, folgt | V\ =k\M\ und daraus

fn + m\ (n + \

z*(„,„)-( n )-k(n+

J C Binz, Universität Bern
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Aufgaben

Aufgabe 765. Es sei für reelle x= 2

fx(x)=f(x)=[V~x~] ,f(x)=f-x(f(x)),k 2,3,

Man bestimme

n (x) mm {k e N \f (x) 1} R Wyss, Flumenthal SO
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