Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 32 (1977)

Heft: 3

Artikel: Eine besondere Art gleichseitiger Sechsecke

Autor: Hohenberg, F.

DOI: https://doi.org/10.5169/seals-32153

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Remark. It should be noted that a completely different proof of these results may be given by using a result on Dedekind sums due to Rosen [3].

John B. Friedlander and Kenneth H. Rosen, Massachusetts Institute of Technology Cambridge, USA

REFERENCES

- P. Bachmann, Niedere Zahlentheorie, Teubner, Leipzig, 1902, reprinted: Chelsea, New York, 1968
- 2 I. NIVEN and H.S. ZUCKERMAN, An Introduction to the Theory of Numbers, 3rd ed., Wiley, New York, 1972.
- 3 K.H. Rosen, Congruences for Dedekind Sums, to appear.

Elementarmathematik und Didaktik

Eine besondere Art gleichseitiger Sechsecke

Bei gleichseitigen Streckenzügen, deren Ecken abwechselnd auf zwei konzentrischen Kreisen liegen, gilt eine einfache Winkelbeziehung. Die Umkehrfrage führt in 1. auf besondere Sechsecke. Sie werden in 2. rein algebraisch gefunden. In 3. wird auf ein besonderes Gelenkviereck hingewiesen.

1. Definition und Eigenschaften der Sechsecke Σ

Gegeben seien in der euklidischen Ebene die Kreise k_0, k_1 (Mitten K_0, K_1 , Radien r_0, r_1 , Abstand $\overline{K_0K_1} = e$). Von einem Punkt 0 auf k_0 und einem Punkt 1 auf k_1 ausgehend, sei in Abb. 1 der Streckenzug ... $-2, -1, 0, 1, 2, 3, \ldots$ konstruiert, bei dem Nachbarecken den konstanten Abstand $\overline{v}, \overline{v} + \overline{1} = \overline{0}, \overline{l} = l$ haben (v ganz). a_v sei der (orientierte) Winkel der (orientierten) Geraden K_0K_1 mit K_0v (wenn v gerade ist) bzw. K_1v (v ungerade). $\overline{l}, \overline{l}$ seien die Fusspunkte der Normalen aus l bzw. l auf l auge l auf l auf l auf l auge l auf l auge l auf l auf l auge l auf l auge l auf l auge l auge

a)
$$\lg \frac{a_0 + a_2}{2} = \frac{\bar{I}I}{K_0\bar{I}} = \frac{r_1 \sin a_1}{r_1 \cos a_1 + e}$$
, b) $\lg \frac{a_1 + a_3}{2} = \frac{\bar{Z}Z}{K_1\bar{Z}} = \frac{r_0 \sin a_2}{r_0 \cos a_2 - e}$. (1a, b)

Im Sonderfall e=0 ist $tg \frac{a_0 + a_2}{2} = tg \frac{a_1}{2}, \dots$ Es folgt $a_v - 2a_{v+1} + a_{v+2} \equiv 0$ (mod 360°).

Wir stellen nun die Umkehrfrage: Besteht eine lineare Beziehung $a_v + a_{v+2} = \lambda a_{v+1} + \mu$ mit Konstanten λ , μ nur bei konzentrischen Kreisen? Nach (1a) müsste $(a_0 + a_2 =)$ 2 arc tg $(r_1 \sin a_1/(r_1 \cos a_1 + e)) = \lambda a_1 + \mu$ für alle a_1 gelten. Hieraus folgt durch zweimalige Differentiation nach a_1 : Für alle a_1 muss $er_1(r_1^2 - e^2) \sin a_1/(e^2 + 2er_1 \cos a_1 + r_1^2)^2 = 0$ sein. Wegen $r_1 \neq 0$ folgt, dass e = 0 oder $e = r_1$ sein muss. Aus (1b) folgt ebenso, dass e = 0 oder $e = r_2$ sein muss. Der Fall

 $e=0, \lambda=2, \mu=0$ wurde oben erwähnt. Im zweiten Fall setzen wir $e=r_0=r_1=r$ und erhalten aus (1a, b) $tg\frac{a_0+a_2}{2}=tg\frac{a_1}{2}$ und $tg\frac{a_1+a_3}{2}=tg\left(90^\circ+\frac{a_2}{2}\right)$, daher $A_0=a_0-a_1+a_2\equiv 0 \pmod{360^\circ}$ und $A_1=a_1-a_2+a_3\equiv 180^\circ \pmod{360^\circ}$, allgemein

$$A_v = a_v - a_{v+1} + a_{v+2} \equiv v. 180^{\circ} \pmod{360^{\circ}}$$
.

Aus (2) und $A_{\nu+1} \equiv (\nu+1)$. 180° (mod 360°) folgt durch Addition

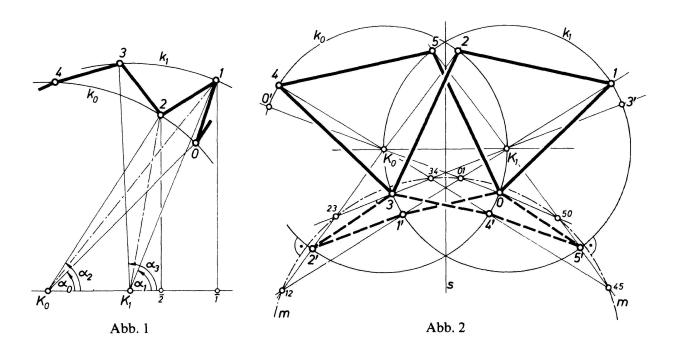
$$B_v = a_v + a_{v+3} \equiv 180^{\circ} \pmod{360^{\circ}}$$
.

Aus (3) und $B_{\nu+3} \equiv 180^{\circ} \pmod{360^{\circ}}$ folgt durch Subtraktion $a_{\nu+6} \equiv a_{\nu} \pmod{360^{\circ}}$.

Daher ist der Streckenzug hier ein geschlossenes gleichseitiges Sechseck $\Sigma = 012345$. Nach (3) ist Σ symmetrisch zur Chordalen s von k_0 und k_1 . In Abb. 2 wurden 0 und 1 gewählt; mit der Seitenlänge $l = \overline{01}$ wurden daraus die übrigen Ecken 2, 3, 4, 5 von Σ konstruiert. Man könnte auch 0 und 2 wählen; dann ist 1 der von K_0 verschiedene Schnittpunkt von k_1 mit der Streckensymmetrale von 02.

Bemerkungen. 1. Es ist a) $a_0 + a_2 + a_4 \equiv 180^{\circ} \pmod{360^{\circ}}$ und b) $a_1 + a_3 + a_5 \equiv 0 \pmod{360^{\circ}}$. Beweis: Nach (2) ist $a_0 - a_1 + a_2 \equiv 0 \pmod{360^{\circ}}$, nach (3) ist $a_1 + a_4 \equiv 180^{\circ} \pmod{360^{\circ}}$; durch Addition folgt a). Wegen (3) ist $(a_0 + a_3) + (a_1 + a_4) + (a_2 + a_5) \equiv 180^{\circ} \pmod{360^{\circ}}$, wegen a) gilt daher b).

2. Den Ecken v (v=0,1,2,3,4,5) von Σ mögen auf k_0 bzw. k_1 die Punkte v' diametral gegenüberliegen. Zu v' gehört der Winkel $a'_v = a_v + 180^\circ$. (2) und (3) bleiben erfüllt, wenn man z. B. 0 und 3 festhält, aber 1,2,4,5 durch 1',2',4',5' ersetzt. So gehören zu jedem Sechseck Σ drei assoziierte Sechsecke $\Sigma_0 = 01'2'34'5'$, $\Sigma_1 = 0'12'3'45'$, $\Sigma_2 = 0'1'23'4'5$. Auch $\Sigma_0, \Sigma_1, \Sigma_2$ sind gleichseitig, sie haben aber im allgemeinen andere Seitenlängen als Σ . In Abb. 2 ist Σ_0 gestrichelt gezeichnet.



- 3. Vergleich mit dem Fall e=0. Sind k_0 und k_1 konzentrisch und ist 0 auf k_0 gewählt, so gibt es $abz\ddot{a}hlbar$ viele Punkte l auf k_1 , so dass der gleichseitige Streckenzug $0123\ldots$ sich schliesst; a_1-a_0 muss nämlich ein rationales Vielfaches von 360° sein. Aber es gibt nichtabzählbar viele Sechsecke Σ , denn 0 auf k_0 und l auf k_1 kann man beliebig wählen. Auch wenn man (bei gegebenem r) die Seitenlänge $l=\overline{v},\overline{v+1}$ vorgibt, existieren nichtabzählbar viele Sechsecke Σ ; ihre Gestalt hängt von l und von der Wahl von 0 auf k_0 ab. Reell können sie nur für $l \le 3r$ sein.
- 4. Die Figur zweier kongruenter Kreise k_0, k_1 , deren Zentralabstand gleich dem Radius ist, ist wegen einer Ponceletschen Schliessungseigenschaft bekannt. Es gibt unendlich viele Vierecke, deren Ecken auf k_0 liegen und deren Seiten k_1 berühren («bizentrische Vierecke»); sie gehen durch Spiegelung an s in Vierecke mit dem Umkreis k_1 und dem Inkreis k_0 über. Es gibt auch andere Kreispaare mit dieser Eigenschaft¹). Durch die projektive Eigenschaft der «involutorischen Ponceletschen Viereckslage» sind also k_0, k_1 noch nicht charakterisiert, wohl aber durch die metrische Forderung, dass bei einem gleichseitigen Streckenzug zwischen zwei nichtkonzentrischen Kreisen eine lineare Beziehung zwischen $a_v + a_{v+2}$ und a_{v+1} besteht.
- 5. Bei anderer Gelegenheit soll gezeigt werden: Wenn man auf eine lineare Winkelbeziehung verzichtet, gibt es zu einem gegebenen Kreis k_0 und zu gegebener Seitenlänge l unendlich viele Kreise k_1 in der Ebene und im Raum, so dass unendlich viele Sechsecke mit der Seitenlänge l und mit Ecken 0, 2, 4 auf k_0 und 1, 3, 5 auf k_1 existieren. Der Fall kongruenter Kreise in einer Ebene, mit $\overline{K_0K_1} = r$, ist dadurch ausgezeichnet, dass hier Sechsecke Σ für jeden Wert von l existieren. (Reell sind sie für $l \le 3r$.)

2. Algebraischer Nachweis der Sechsecke Σ

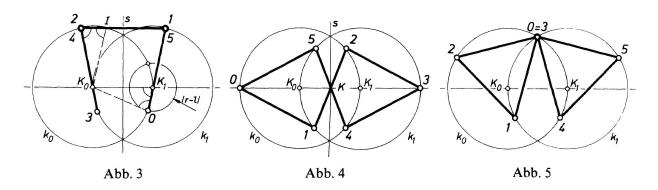
In 1. wurden die Sechsecke Σ auf Grund einer Winkelbeziehung und mittels zweimaliger Differentiation gefunden. Hier soll rein algebraisch gezeigt werden, dass bei zwei kongruenten Kreisen mit $\overline{K_0K_1}$ =Radius r zu jeder Seitenlänge l unendlich viele Sechsecke Σ existieren. In Abb. 1 besteht nach Wahl von l zwischen den Punkten 0 von k_0 und l von k_1 eine (2,2)-Korrespondenz. Für eine bestimmte Lage von 0 und l ergibt sich der Punkt 2 linear aus l,..., der Punkt 6 linear aus 5. Daher besteht auch zwischen 0 und 0 eine (2,2)-Korrespondenz. Man kann nach Punkten 0 fragen, die mit dem entsprechenden Punkt 0 zusammenfallen. In einer rationalen Parameterdarstellung von 00 mögen 00 und 00 die Parameterwerte 00 und 00 haben. Die Korrespondenz ist durch eine eine in 01 und in 02 undaratische Gleichung dargestellt; die Forderung 02 ergibt eine Gleichung 03. Grades für 04. Kann man mehr als vier Wurzeln dieser Gleichung nachweisen, so folgt, dass die Gleichung identisch erfüllt ist und jeder Punkt 04 mit 05 zusammenfällt (Chasles'sches Korrespondenzprinzip). Im Fall 03 rusen man mehr als vier Wurzeln angeben:

a) Die Kreise um K_1 mit den Radien $|r\pm l|$ schneiden k_0 in vier Punkten; in Abb. 3 sind zwei dieser Schnittpunkte reell, einer ist mit 0 bezeichnet. 1 sei ein Schnitt-

¹⁾ R. FELGITSCHER, Über die Erzeugung von Flächen zweiten Grades durch c-kongruente Ebenenbüschel, Diss. T.H. Wien 1944, und J. Krames, Über Kegelschnitte in Ponceletscher Viereckslage, Sitz.-Ber. Öst. Akad. d. Wiss., Math.-naturw. Kl., Abt. II, 181, 175-201 (1973).

punkt von $0K_1$ mit k_1 . Die Spiegelung an s führe 0 in 3, 1 in 2 über. 12 schneide k_0 noch in I. Dann ist K_0K_1II ein Rhombus; $0K_1K_0$ und $12K_0$ sind kongruente gleichschenklige Dreiecke. Daher ist $\overline{0I} = \overline{12}$, und 0, 1, 2, 3, 4 = 2, 5 = 1 sind Ecken eines Sechsecks Σ , bei dem 12 und 45, 01 und 50, 23 und 34 sich decken. Damit sind vier Sechsecke gefunden.

- b) Abb. 4 zeigt ein fünftes Sechseck. 0 und 3 seien auf K_0K_1 angenommen, $0 \neq K_1$, $3 \neq K_0$. Der Kreis um 0 mit dem Radius l schneide k_1 in l und l. Die Spiegelung ans führt l in l in
- c) Auch andere Sechsecke Σ lassen sich unmittelbar erkennen. In Abb. 5 ist 0=3 einer der Schnittpunkte von k_0 und k_1 . Der Kreis mit dem Radius l um 0=3 schneide k_0 noch in 2 und 4. Die Drehung um 0=3 durch $+60^\circ$ führt k_0 in k_1 über; sie führe 2 in l und l in l über. Dann sind l und l gleichseitige Dreiecke, und l ist ein Sechseck l.



3. Kinematische Deutung der Sechsecke Σ

Ein Gelenkviereck (Dreistabgetriebe), dessen Arme dieselbe Länge haben wie der Steg K_0K_1 , hat nach 1. die besondere Eigenschaft, dass man aus den Lagen der Koppel unendlich viele gleichseitige Sechsecke Σ bilden kann. Zu jeder Lage der Koppel, etwa 0, 1, gehört als Momentanpol 01 der Schnittpunkt der Arme K_00, K_11 .

Man findet (Abb. 2): a) Vier assoziierte Sechsecke Σ , Σ_0 , Σ_1 , Σ_2 besitzen dieselben Momentanpole 01, 12, 23, 34, 45, 50. b) Diese Momentanpole liegen auf einem Kreis m, der k_0 und k_1 orthogonal schneidet; der Mittelpunkt von m hat von K_0K_1 den Abstand r ($\sin^2 a_0 + \sin^2 a_2 + \sin^2 a_4$)/ $4\sin a_0 \sin a_2 \sin a_4$. c) Die Koppellagen (= Seiten aller Sechsecke Σ , die in k_0 , k_1 und l übereinstimmen) umhüllen eine Kurve 6. Klasse.

Zu einer räumlichen Verallgemeinerung gelangt man, wenn man einen der beiden Kreise k_0, k_1 normal zu seiner Ebene verschiebt. Σ ist dann ein räumliches gleichseitiges Sechseck. Die Seiten aller Sechsecke Σ , die k_0 und k_1 und die Seitenlänge l gemein haben, bilden die Erzeugenden einer Regelfläche 6. Grades vom Geschlecht 1. Ihre Doppelkurve zerfällt in k_0, k_1 , in einen Fernkreis und in eine ebene Kurve 3. Ordnung vom Geschlecht 1; diese liegt in der Ebene, die durch K_0K_1 geht und normal zu den Ebenen von k_0 und k_1 ist. F. Hohenberg, Graz