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Résolution vectorielle de 'équation fonctionnelle
des applications équiprojectives de :* dans K3
(champ des vitesses d’un solide)

Introduction

On considére I'espace vectoriel euclidien orienté R auquel on associe un espace
affine 93 et dans lequel on note - le produit scalaire et X le produit vectoriel. On
sait que le champ des vitesses d’un solide, & un instant donné, est une application V
de %3 (ou d’une partie de %*) dans %> qui satisfait la relation (formule d’Euler):

V(P)=V(M)+ o x MP,

ou w est un vecteur indépendant des points M et P du solide, appelé vecteur instan-
tané de rotation.

Ce résultat bien connu est démontré, dans de nombreux traités de mécanique, par la
méthode des déplacements élémentaires ou par celle du triedre mobile et en utili-
sant la notion de vitesse relative et d’entrainement [2, 6, 8, 9, 11], mais il est plus
simple et plus élégant de le déduire de la remarque et du théoréme suivants:

Remarque: Le champ des vitesses d’un solide, & un instant donné, est un champ
équiprojectif, c’est-a-dire:

(V(M)=V(P)) - MP=0

quels que soient les points M et P du solide. (Ceci découle du fait que la distance de
deux points du solide est constante.)

Théoréme. Si lapplication V de W3 dans R3 est équiprojective, il existe un vecteur
unique A tel que:

—
V(Py=V(M)+AX MP
quels que soient les points P et M.

Ce théoréeme est démontré dans la littérature par 'intermédiaire du calcul matriciel
[1, 4], par des arguments géométriques ou de la théorie des torseurs [3, 5, 7], ou par
le calcul vectoriel, mais en utilisant entrg autres, I'hypothése supplémentaire
(V(P)— V(M) ,% %(Q) V(M)) - MP=0, obtenue par dérivation par rap-
port au temps de M cte [10, 12].

On propose ici une démonstration de ce théoréme faisant appel uniquement au cal-
cul vectoriel (propriétés élémentaires et résolution des équations A X X=0 et
A X B - X=0) et n’utilisant pas 'hypothése supplémentaire faite par [10] et [12].
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Démonstration élémentaire

Pour alléger I’écriture, on considére une application de %> dans R> et non pas de
93 dans K3, de sorte que le théoréme s’énonce:

Théoréme. Si F est une application équiprojective de R? dans R, c’est-a-dire satis-
faisant

(FXO)-F(Y) - (X—1)=0, (1)
quels que soient les vecteurs X et Y, alors, il existe un vecteur A unique tel que:
FX)=FO0)+AxX ()

quel que soit X.

On remarque que la proposition inverse est trivialement vérifiée.

Démonstration: On considére trois vecteurs X, Y et Z, tels que X - Y X Z ne soit pas
nul. D’aprés (1), on a ( F(X)— F(0)) - X=0, donc il existe un vecteur B (X) tel que

F(X)-F@0)=B(X)xX. 3)
De méme, il existe un vecteur B(Y) tel que F(Y)— F(0)=B(Y)X Y et la condition
(1) devient: (B(X)XxX—B(Y)X Y) - (X—Y)=0, soit (B(X)— B(Y)) - Xx Y=0.

X X Y n’étant pas nul, d’aprés la condition X - YX Z#0, on déduit de cette relation
(de coplanarité)

B(X)=B(V)+a (X, X+L(X. V)Y,

oua (X, Y)etf(X,Y)sont deux scalaires.
En remplagant, dans (3), B (X) par cette valeur, il vient

F(X)=F0)+(B(N+(X.Y)Y) xX. “4)
On écrit F(Z) d’aprés (4) et on en soustrait F(X)
F(Z)—-F(X)=B(Y)X(Z-X)+B(Z.Y)YXZ—B(X,Y) YxX.
La condition (1) implique:

(B(Z.V)YXZ—B(X,Y)YXX) - (Z—X)=0, soit
(B(Z,Y)-B(X.Y)) XX Y- Z=0.

Xx Y- Z n’étant pas nul, il vient f(Z,Y)=(X,Y) et, en posant 4 (Y,Z)=B(Y)
+B(Z,Y)Y, (4) sécrit:

F(X)=F(0)+A(Y,Z)x X. 5)
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On a ainsi obtenu le résultat suivant: (Y, Z) étant un couple de vecteurs satisfaisant
Y X Z#0, il existe un vecteur 4 (Y, Z) tel que 'expression (5) donne F(X), quel que
soit X pour lequel X - Y X Z n’est pas nul. De plus, 4 (Y,Z) est unique, étant solu-
tion du systeme d’équations compatibles obtenues en prenant ’expression (5) pour
deux vecteurs fixés X et X’ non paralléles.

On va montrer que 4 (Y, Z) est constant.

En effet, soit (Yl’Zl) avec Yl X Z] ?é OetsoitA=A (Y], Z])

(Y, Z) étant un couple satisfaisant Y X Z#0, on peut trouver deux vecteurs X, et X,
vérifiant les conditions X; X X,#0, X, - Y, xZ;#0et X;- YXZ#0,i=1,2. (On peut
trouver deux vecteurs non paralléles et n’appartenant pas & deux plans donnés.)

On a alors, d’apres (5):

F(X)=F0)+AXxX;
F(X)=FO)+A(Y,Z)xX,, i=12.

Par soustraction, il vient:

(A—A(Y,Z2)) xX;=0, i=1,2.
D’ot, puisque X X X, n’est pas nul,

AY,Z)=A4. (6)
La démonstration est alors achevée, car la formule (2) est évidemment vérifiée
pour X=0, et si X n’est pas nul, on peut trouver un couple (Y, Z) de vecteurs tels

que X - Y X Z ne soit pas nul et la formule (2) découle alors de (5) et (6).
G. Archinard, Genéve
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