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Resolution vectorielle de l'equation fonctionnelle
des applications equiprojectives de 9t3 dans 5R3

(champ des vitesses d'un solide)

Introduction

On considere l'espace vectoriel euchdien oriente 9t3 auquel on associe un espace
affine 9l3 et dans lequel on note • le produit scalaire et x le produit vectoriel. On
sait que le champ des vitesses d'un solide, ä un instant donne, est une application V
de 3t3 (ou d'une partie de %3) dans 9t3 qui satisfait la relation (formule d'Euler):

V(P)=V(M) + coxMP,

oü co est un vecteur independant des points M et P du solide, appele vecteur instan-
tane de rotation.
Ce resultat bien connu est demontre, dans de nombreux traites de mecanique, par la
methode des deplacements elementaires ou par celle du triedre mobile et en utihsant

la notion de vitesse relative et d'entrainement [2, 6, 8, 9, 11], mais il est plus
simple et plus elegant de le deduire de la remarque et du theoreme suivants:

Remarque: Le champ des vitesses d'un solide, ä un instant donne, est un champ
equiprojectif, c'est-ä-dire:

(V(M)-V(P)) MP 0

quels que soient les points M et P du solide. (Ceci decoule du fait que la distance de
deux points du solide est constante.)

Theoreme. Si Vapplication V de %3 dans #i3 est equiprojective, il existe un vecteur
unique A tel que:

V(P)=V(M) + AxÄIP

quels que soient les points P et M.

Ce theoreme est demontre dans la litterature par l'intermediaire du calcul matriciel
[1, 4], par des arguments geometriques ou de la theorie des torseurs [3, 5, 7], ou par
le calcul vectoriel, mais en utihsant entrp autres, l'hypothese supplementaire
(V(P)- V(M)) • MQ+(V(Q)- V(M)) ¦ MP=0, obtenue par derivation par rapport

au temps deM?- MrJ cte [10, 12].
On propose ici une demonstration de ce theoreme faisant appel uniquement au calcul

vectoriel (proprietes elementaires et resolution des equations _4x_Y=0 et

A x B • X= 0) et n'utilisant pas l'hypothese supplementaire faite par [10] et [12].
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Demonstration elementaire

Pour alleger Fecriture, on considere une application de 9t3 dans 9r3 et non pas de
2(3 dans 9t3, de sorte que le theoreme s'enonce:

Theoreme. Si F est une application equiprojective de R3 dans R3, c'est-ä-dire
satisfaisant

(F(_0-F(Y)) •(*-_>0, (1)

quels que soient les vecteurs X et Y, alors, il existe un vecteur A unique tel que:

F(X) F(0) + AxX (2)

quel que soit X.

On remarque que la proposition inverse est trivialement verifiee.

Demonstration: On considere trois vecteurs X, Y et Z, tels que X • YxZ ne soit pas
nul. D'apres (1), on a (F(X)-F(0)) • _Y= 0, donc il existe un vecteur B (X) tel que

F(X)-F(0) B(X)xX. (3)

De meme, il existe un vecteur B(Y) tel que F(Y)— F(0)=B(Y)x Y et la condition
(1)devient: (B(X)xX-B(Y)xY) • (X- Y) 0, soit (B(X)-B(Y)) -1x7=0.
Xx Yn'etant pas nul, d'apres la condition X• YxZ^O, on deduit de cette relation
(de coplanarite)

B(X) B(Y) + a (X, Y)X+ß(X, Y) Y,

oü a (X, Y) et ß (X, Y) sont deux scalaires.
En remplagant, dans (3), B (X) par cette valeur, il vient

F(X) F(0)+(B(Y) + ß(X,Y)Y)xX. (4)

On ecrit F(Z) d'apres (4) et on en soustrait F(X)

F(Z)-F(X) B(Y)x(Z-X) + ß(Z,Y)YxZ-ß(X,Y)YxX.
La condition (1) implique:

(ß(Z,Y)YxZ-ß(X,Y)YxX) -(Z-X)=0,soit
(ß (Z, Y)-ß(X, Y)) Xx Y• Z 0.

Xx Y- Z n'etant pas nul, il vient ß (Z, Y) ß(X, Y) et, en posant A(Y,Z) B(Y)
+ ß(Z,Y)Y, (4)s'ecrit:

F(X) F(0)+A(Y,Z)xX. (5)
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On a ainsi ob tenu le resultat suivant: (Y,Z) etant un couple de vecteurs satisfaisant
Yx Z^O, il existe un vecteur A (Y,Z) tel que l'expression (5) donne F(X), quel que
soit X pour lequel X YxZ n'est pas nul De plus, A(Y,Z) est unique, etant Solution

du Systeme d'equations compatibles obtenues en prenant l'expression (5) pour
deux vecteurs fixes X et X' non paralleles.
On va montrer que A(Y,Z) est constant
En effet, soit (YhZx) avec Yx x Zx^0 et soit_4 =_4 (YX,ZX)
(Y,Z) etant un couple satisfaisant Yx Z^O, on peut trouver deux vecteurs Xx et X2
venfiant les conditions XxxX2 j=0,X{ YxxZx=£0etXl YxZ^O, i=l,2 (On peut
trouver deux vecteurs non paralleles et n'appartenant pas ä deux plans donnes
On a alors, d'apres (5)

F(Xl) F(0) + AxXl
F(Xl) F(0)+A(Y,Z)xXl, i=l,2

Par soustraction, il vient

(A-A(Y,Z))xXt 0, i=l,2

D'oü, puisque Xx x X2 n'est pas nul,

A(Y,Z) A (6)

La demonstration est alors achevee, car la formule (2) est evidemment venfiee

pour _V=0, et si X n'est pas nul, on peut trouver un couple (Y,Z) de vecteurs tels

que X YxZne soit pas nul et la formule (2) decoule alors de (5) et (6)
G Archinard, Geneve
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