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Uber grazidse Numerierungen von Graphen

In der Theorie der Numerierung von Graphen') geht man nach [1] und [2] von
endlichen, schlichten, zusammenhingenden, ungerichteten Graphen?) G=(E, K)
aus und ordnet mittels beliebiger Vorschriften f bzw. g den n= | E| Ecken von G
nicht negative ganze Zahlen bzw. den k= | K| Kanten von G positive ganze Zahlen
zu. Geht man speziell von einer injektiven Abbildung 2 E—{0,1, ..., k} aus und
definiert dann mittels f die Abbildung

K—{1,2,.... k)

{e.et=f(e)=f()],

so ergibt sich die interessante Frage, ob es Graphen gibt, deren Ecken mittels
einer injektiven Abbildung f so numeriert werden konnen, dass die Abbildung g
bijektiv ist. Wie schon in [2] gezeigt, ist diese Frage zu bejahen. Graphen, deren
Ecken und Kanten sich mittels der speziell definierten Abbildungen numerieren
lassen, heissen nach [1] und [2] graziés. Die durch f hervorgerufene Numerierung
der Ecken grazioser Graphen nennen wir im folgenden kurz graziése Numerierung.
Die Figur la zeigt den graziésen Graphen G=(E, K) mit E={ e}, e,, 3,4, €s},

es

e, e
a) Figur 1 b)

1) Wir verstehen hier unter einem Graphen G das geordnete Paar G=(E, K), wobei E eine beliebige
Menge und K =R, (E)={{e,¢'}|e,¢’ € E,e #¢'} bedeuten.
2) Zur Definition der graphentheoretischen Grundbegriffe vergleiche man etwa [3], [4] und [5].
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K= {{elae2}’ {81,64}, {623 63}, {83’ 64}. {63’ 65}, {64’ 65}} s

E-{0,1,...,6} K—-{1,2,...,6}
e;—3 {e), e} 2
. €5 {e),e31—4
A P g | lesen—5
e,—6 {e;,eq) 3
es—0 {es,es}—1
{64’65}_)6

Ist ein Graph grazis, so gibt es stets mindestens zwei zugehorige verschiedene
grazidse Numerierungen. Zum Nachweis dieser Aussage gehen wir von einem
graziosen Graphen G = (E, K) mit einer zugehorigen Injektion

E—{0,1,... k}
g

e—f(e)furalleee E
und der induzierten Bijektion

K—-{1,2,...,k}

{e, ¢} = |f(e)—f(¢)]| furalle {¢,¢} € K

aus und definieren zwei neue Abbildungen /" und g’ mit

. E—{0,1,...,k}
i
e—~>k—f(e)furallee e E
und
’ K—{1,2,...,k}
g

l {e,e'} = | f(e)—f"(¢)]| furalle {e,¢} € K.

Man erkennt dann unmittelbar, dass f” injektiv ist und g’=g ist. Die durch f”
hervorgerufene graziése Numerierung von G nennen wir komplementar zu der von
f bestimmten Numerierung. In Figur 1b ist die zur Figur la komplementire
Numerierung angegeben.

Bezeichnet nun /" die Menge aller endlichen, schlichten, zusammenhéngenden,
ungerichteten Graphen, so besteht nun in der Theorie der graziésen Graphen die
Hauptaufgabe in der Bestimmung moglichst grosser Teilklassen grazidser Graphen
von ['.

In der vorliegenden Note wollen wir uns nun unter Verwendung der in [1] und
[2] gewonnenen Ergebnisse der Bestimmung von vier Klassen grazidser Graphen
aus I zuwenden. Dazu benutzen wir entscheidend die in [1] bewiesene Tatsache,
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dass ein Kreis C;=(E,K) der Linge k mit E={ey,ey, ..., e,_1}, K={{e;e;;}|i
=1, 2, ..., k—=2}u{epe,_} und k>3 genau dann grazids ist, wenn k=0 (4)
oder k=3 (4) gilt. Zur Bestimmung der oben schon erwidhnten vier Klassen
grazioser Graphen aus I” beschrinken wir uns nun auf Kreise C,=(FE, K) mit
k=0(4). Nach [1] ergibt die folgende injektive Abbildung f mit

E-{0,1,...,k}

.ﬁ u—] )

e,~ 2 (=Dia__furp=0,1,...,k—1
i=0

eine graziose Numerierung von C,. Hierbei sind die a; positive ganze Zahlen mit

e k
=ifuri=1,2,..., -i——l

a,-=i+1ﬁiri=?, —+1,..., k=1
Daraus ergibt sich
U
Ex falls u gerade
b k—’“‘_l—[z“ } falls  ungerade
3 v+ | falls pung .

sowie die zu f komplementidre Numerierung

k— —';— , falls u gerade

p—1 [2u]
> -+ L) , falls 4 ungerade.

(i) f7(e,) =

In der Figur 2 sind die beiden durch f und f” hervorgerufenen grazidsen
Numerierungen von C;, dargestellt.

Zur Vereinfachung der folgenden Untersuchung sei noch darauf hingewiesen,
dass mit jedem graziosen Graphen G auch jeder zu G isomorphe Graph G’'=¢ (G)
grazids ist. Man braucht ndmlich nur die graziose Numerierung von G in der Weise
auf ’=¢ (G) zu ubertragen, dass man fiir jede Ecke a von G die a zugeordnete
Zahl auch dem Bild ¢ (@) in G’ zuordnet.

Nach diesen Vorbereitungen konnen die vier Teilklassen grazidser Graphen
aus I" ohne besondere Schwierigkeiten bestimmt werden. Es gilt zunéchst der

Satz 1. Es sei C,=(E,K) ein Kreis der Ldnge k mit k=0(4). Dabei sei
E={eye, ..., ex_1} und K= {{e;e; }1i=0,1, ..., k—2} U {{eg, ex_1}}. Dann ist der
durch Hinzufiigen der Kante {ej,e;_,} zu C, gewonnene Graph G,=(E,K,) mit
E\=E K=K v {{e},e,_,}} grazios.
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Beweis. Zum Beweis dieser Behauptung gehen wir von der komplementiren
Numerierung mit der zugehorigen injektiven Abbildung f” von (ii) fiir C; aus und
definieren eine Abbildung f;: E,—{0,1, ..., k+ 1} folgendermassen:

E,—-{0,1,...,k+ 1}
fi: 1 e~ f(e) furi=0,1,..., k=2
l ek_1—>k+1
fiist offenbar eine Injektion. Fiir die von f; induzierte Abbildung
Ki—-{1,2,..., k+1}
81-
{es e} = 1f1(e)—f1(e)| furalle {e; ¢} € K

gilt: g; und g’ stimmen auf der Menge K \{{ey,e,_}, {€x—_2€x—_1}, {€1.€x—1}}
iiberein. Mit Hilfe von (ii) hat man sofort

g1({eg.ex—1))=1=g ({ex—_n.€x-1})
k
g1 ({ex—nex_1})= ‘i=8’ ({eo-€x-1})

gi({eper_1})=k+1.
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Figur 3

Hieraus und aus der Surjektivitit von g’ folgt die Surjektivitit von g;. Da
weiterhin Bild und Urbild von g, endlich sind, ist g, bijektiv. Also ist G, grazios.

In der Figur 3 sind zwei graziose Graphen aus der durch Satz 1 bestimmten
Teilklasse von I” angegeben.

Bemerkung. Adjungiert man zu C; statt der Kante {e;,e,_,} eine Kante {e; e;} mit
i—j= +2(k), so ist der jeweils entstehende Graph zu G, isomorph und somit auf
Grund der obigen Vorbemerkung ebenfalls grazios.

Eine dhnliche Klasse grazioser Graphen wird in Satz 2 bestimmt.

Satz 2. Es sei C,=(E,K) ein Kreis der Linge k mit k=0(4). Dabei sei
E={eyey, ..., ex_,} und K={{e,e;,}1i=0,1, ..., k—2} U {{eg,ex_}}. Dann ist der
durch Adjunktion der Kante {ey,e;} zu C) gewonnene Graph Gy=(E,,K;) mit E,=E,
Ky,=K u {{ey, es}} grazios.
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Beweis. Fiir k=4 gilt G,= C,. Fiir k> 8 gehen wir von der graziésen Numerierung
mit der zugehorigen injektiven Abbildung f in (i) fiir C;, aus und definieren wegen
f(e;)=k in naheliegender Weise

E,—{0,1,...,k+ 1}
fr: | e—>f(e) fiiri=0,2,3,...,k—1
l el_*k+1.

f, ist offenbar eine injektive Abbildung. Fiir die von f, induzierte Abbildung g, mit

K= {1,2, .. k+1)
&2 )
{ene}— 1 f2(e) —fr(e)| furjedes {e; e} € K,

gilt: g, stimmt auf der Menge K,\{{ey, e}, {e1,e,}} mit g iiberein. Mit (i) hat man
sofort

g ({ep, 1)) =k+1
ga(ee})=k=g({eg.e1})
g (lep,es})=k—1=g({e;,e;}).

Da g bijektiv ist, folgt damit auch, dass g, bijektiv ist. Also ist G, grazios.

In der Figur 4 sind zwei Vertreter aus der durch den Satz 2 bestimmten Klasse
grazioser Graphen dargestellt.

Bemerkung. Adjungiert man zu C, anstelle der Kante {ej,e;} eine Kante {e, e}
mit i—j= +3(k), so ist jeder der so gewonnenen Graphen zu G, isomorph und
damit ebenfalls grazios.

Betrachtet man die injektive Abbildung f'in (i) genauer, so erkennt man direkt,
dass fir jeden Kreis C, mit k=0 (4) stets f(E)={0,1, ..., k}\{(3k/4)} gilt. Die
(3k/4) aufeinander folgenden nicht negativen ganzen Zahlen 0,1, ..., 3k/4)—1
kommen also unter f als Bilder vor, und zwar in der folgenden Weise:

k
fley)=ifuri=0,1,..., ?—1
“ k. . k
f(ek_(2i+1))=—2—+1 furi=0,1,..., 7——1

Unter Beriicksichtigung dieser Tatsache ergibt sich dann der
Satz 3. Es sei C,=(E,K) der in Satz 2 beschriebene Kreis. Ferner sei a¢ E und
E’'=Eu{a}. Bildet man dann sukzessive die (3k/4) Graphen Gy, G,, ..., G 3k /a1
mittels der folgenden Vorschrift *
Go=(E, Ko) mit Ky=K L {{a, eo}},
Gi=(E,K) mit K;=K,_,u {{a,ey}} fiiri=1,2,...,(k/2)—1,
G jay+j=(E', K j1y+)) mit Koy j= K /oy +j- 1Y @ € 254+ n}}
firj=0,1,..., (k/4)—1,
soist G, firi=0, 1, ..., 3 k/4)— 1 grazios.
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Beweis. Sei i € {0,1, ..., (3k/4)— 1} beliebig und G; der oben definierte Graph mit
G;=(E,K)), |E;| =k+1und | K;| =k+i+ 1. Die Abbildung

I E—{0,1,....k+i+1}
fio La-k+i+1
] e,~f(e,) fire, e E

ist offenbar injektiv. Da f eine graziése Numerierung des Graphen C, liefert, folgt
aus den Vorbetrachtungen zu diesem Satz sofort, dass fiir die von f; induzierte
Abbildung g;: K;—{1,2, ..., k+i+ 1} gilt:

g:(K)={1,2,...,k}
g (K\NK)={k+1,k+2,...,k+i+1}.

Alsoist g, fiuri=0,1, ..., (3k/4)— 1 grazios.

Die Figur 5 zeigt zwei Graphen aus der durch Satz 3 bestimmten Klasse.

Es seien Cb=(E’ K®) und C§=(E¢<K°) zwei Kreise der Linge k mit E°=
{bo,bl, cwny bk—]}’ E¢= {Co,cl, wavy ck-—l} und Kb= {{bivbi+l} ‘ l=0, 1, ey k-—2} (o
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{{bO’bk—l}}’ KC={{Ci,Ci+1}|i=O,1, . iy k‘_Z} () {{Co, ck-—l}}' Dabei sei E?n E‘=g.

12

10 ¢

Figur 5

Die beiden Kreise sind trivialerweise isomorph. Ist ¢ : E®— E°¢ ein solcher Iso-

morphismus, so nennen wir jeden Graphen P,=(E,K) mit E=E’U E° und

K=K’uU K°U {{b,» (b)}|i=0,1, ..., k—1} ein Prisma mit 2k Ecken’). Da alle

Prismen mit 2k Ecken offenbar isomorph sind, kann man sich etwa auf den Fall
MY K=Kt U KL {{b,,c;_1}|i=1,2,....,k—1} U {{bg cx_1}}

beschrinken. Im weiteren sei wieder k=0 (4). Dann gilt

Satz 4. Es sei k € N mit k=0 (4). Dann ist das Prisma P, mit 2 k Ecken grazios.

3) Siehe Figur 6.
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Beweis. Es sei P, = (E, K), wobei K die Darstellung (*) besitze. Setzt man

%, falls u gerade

k—

fb(by)=fc(c;4)= ‘u.__l

2

k+2

2u
[ ] , falls 4 ungerade,

57

so definiert dies nach (i) zwei Abbildungen f?: Eb—1{0,1,... k},f E‘—{0, 1, ..., k},
welche graziose Numerierungen der zugehérigen Kreise CY, C§ liefern. Wir

definieren nun:
E—-{0,1,...,3k}

k
b2,~+1—>fb(b2,-+1)+2kﬁiri=0,1,...,”2——1
f:
bzl-——-*fb(bz,-)ﬁiri;’o,l,..., ’]%""1

c;i—ff(c)+kfuri=0,1,...,k—1.

fist offensichtlich injektiv. Fiir die von finduzierte Abbildung

K—1{1,2,...,3k)

{x,y} = |f(x)—f(y)| fur alle {x,y} € K
gilt offenbar:

g(KH={1,2,...,k}

g(K)={2k+1,2k+2,...,3k}.

Um noch zu zeigen, dass g (K\(KPUK))={k+1,k+2, ..., 2 k}, setzen wir

l 0, falls i gerade
0 (b)) =
l 1, falls i ungerade

und erhalten somit f(b)=2k - 6 (b)) +f° (b)) furi=0,1, ...

Dann folgt

g({bsciy) =1f(b)—f(ci—y)l
=12k -8 (b)+L (b)—k—f(ci—
=k+ |2 (b) =1 (b;—1)|

furi=1,2,...,k—1und
g ({bo,cr—1}) = 1f(bo)—f(ck-1)I

= | /2 (bp) —k—f° (b 1)
=k+ /2 (bo) =10 (b1 .

(1)
(2)
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Da f? eine grazidse Numerierung von C? liefert, hat man damit g (K\(K? U K°))

={k+1,k+2,...,2k}. Hieraus und aus (1) und (2) ergibt sich die Surjektivitit von
g. Also ist g bijektiv und P, daher grazids.

Die Figur 6 zeigt das Ps.
1 24 o
b, b, B
234y, by 20
b, bg bg
2 21 3
16 8 12
c1 CO c-’
9« c, C¢ ¥ 11
C; c‘ Cs
15 10 13
Figur 6

Abschliessend sei noch kurz darauf hingewiesen, dass die in Satz 1 und Satz 2

bestimmten Teilklassen zu einer umfassenderen Klasse grazioser Graphen gehoren.
Es gilt ndmlich allgemein, dass jeder beliebige Kreis C,=(FE, K) der Lange k € N\
{1, 2} mit E={eyey, ..., e,_,} und K={{e,e;,}1i=0, 1, ..., k—=2}u{eyex_ 1}, zu
dem man eine beliebige Kante {e,e,} mit e, e,e E adjungiert, zu einem grazidsen
Graphen wird. Der Beweis dieser Aussage wiirde jedoch den Rahmen dieser Arbeit
sprengen.

H. Bodendiek, H. Schumacher und H. Wegner, Duisburg
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