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Figur 3. Ubergangsfliche U zwischen einer Wendelfliche W, und einer Wendelfliche W, (Ubergang
zwischen W, und U lings der Erzeugenden e;, zwischen U und W, lings ey; p;=3/n=2p,, n=1,
v=n/3).

Der Anschluss an die erste Wendelfliche kann stattfinden in der Erzeugenden
v=0; als Ubergangsbedingung fiir die zweite Wendelfliche erhilt man die folgende
Beziehung: p,=p; - cosnv.

Durch geeignete Wahl von » kann noch die Hohe beeinflusst werden, in der
der zweite Ubergang stattfinden soll; danach erst kann die genaue Lage der zweiten
Wendelfliche festgelegt werden. Die Abwicklung des koaxialen Einheitszylinders
gemdss Figur 1 wiirde hier zwei geneigte Geraden mit den Anstiegen p; bzw. p,
zeigen, die durch eine Sinuslinie knicklos miteinander verbunden sind.

E. Hartmann, Zuoz
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p—adische Kettenbriiche und Irrationalitit p-adischer Zahlen

In der vorliegenden Note wird zunichst der Korper der p-adischen Zahlen
und ein von Th. Schneider angegebener Kettenbruchalgorithmus fiir solche Zahlen
beschrieben. Als Hauptergebnis wird sodann ein notwendiges und hinreichendes
Kriterium fiir Irrationalitidt p-adischer Zahlen bewiesen.

1. p-adische Zahlen. Sei p eine feste Primzahl. Fiir me Z, m # 0 werde ord (m, p):
=Max{jeZ |p'teiltm} gesetzt. Ist acQ, a#0 und a=s/t mit 5,teZ und beide #0,
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so setzt man weiter |a|,: =pordEP—ord(p); diese Definition ist offensichtlich von
der fiir a gewihlten Darstellung s/t unabhingig. Mit |0 p- =0 ist klar, dass die
Abbildung | - |, Q—R alle Eigenschaften besitzt, die man von einer Bewertung
eines Korpers, hier des speziellen Korpers Q der rationalen Zahlen, verlangt
(vgl. etwa [1], S. 49). Diese Bewertung ist nichtarchimedisch, da |a+b| P<
Max(|al ), |b|P) fur alle a, b€ Q gilt.

Eine unendliche Folge {a,|a,€Q},_¢ ;. . heisst nun eine p-Cauchy-Folge, wenn
es zu jedem reellen ¢>0 ein N=N(¢) gibt so, dass fiir alle m,a>N gilt:
|a,—a,l ,<e. Zum Beispiel ist die durch a,: =27_, p* definierte Folge eine p-
Cauchy-Folge; aus a,=(1—p"*!)/(1—p) sicht man weiter, dass |a,—1/(1 -p)l,=
1p"+ 1/ (p— 1) ,=p~""!'>0 mit n— oo gilt. Daher sagt man, dass diese spezielle
Folge {a,} beziiglich der Bewertung |- |, gegen die rationale Zahl 1 /(1—p)
konvergiert. Hat man irgendeine p-Cauchy-Folge {a,|a,€Q}, so braucht es aber
kein aeQ zu geben so, dass |a,—a|,—0 bei n— oo gilt; d.h. eine beliebige p-
Cauchy-Folge rationaler Zahlen braucht beziiglich | - |, in Q nicht zu konver-
gieren. Anders ausgedriickt: Q ist beziiglich der Bewertung | - |, nicht vollstindig.

Analog zur Cantorschen Methode der Konstruktion der reellen Zahlen aus den
rationalen kann man aber einen neuen mit Q, bezeichneten, Q umfassenden
Korper konstruieren, in dem jede p-Cauchy-Folge rationaler Zahlen konvergiert
(vgl. [1], S. 48ff). Q, heisst Korper der p-adischen Zahlen und die Fortsetzung
der (normierten) p-adischen Bewertung | - |, von Q auf Q, wird wieder mit | - |,
bezeichnet; jede p-Cauchy-Folge von Elementen aus Q,, also von p-adischen
Zahlen, konvergiert beziiglich | - |, in Q,,d.h.Q,ist | - | ,-vollstandig.

Hat man nun irgendein {€Q,, £#0, so ist |{|,=p~* mit einem gewissen
wohlbestimmten aeZ. Weiter kann man dieses ¢ in eindeutiger Weise in eine
kanonische p-adische Reihe der folgenden Gestalt entwickeln

E=2% ,b,p'mitallend,e{0,1,...,p— 1} und b,#0. (D

2. p-adische Kettenbriiche. Im Korper R der reellen Zahlen, also der Vervoll-
stindigung von Q beziiglich des gewohnlichen Absolutbetrags | - |, ist eine reich-
haltige Kettenbruchtheorie entwickelt (vgl. etwa [4]). Die Frage liegt nahe, ob sich
auch fiir p-adische Zahlen ein Algorithmus angeben lidsst mit Eigenschaften, die
analog sind zu solchen, wie sie von den reguliren Kettenbriichen reeller Zahlen
her bekannt sind. Mit dieser Frage hat sich zuerst K. MAHLER [2], [3] beschaftigt.

1968 hat dann TH. SCHNEIDER [5] einen vom Mahlerschen verschiedenen
Kettenbruchalgorithmus fiir p-adische Zahlen vorgeschlagen. Dieser verlduft wie
folgt: Fir £eQ,, {#0 sei ageZ definiert durch |£|,=p~?; dann ldsst sich
schreiben £=p%0- &35! mit | & »=1. Entwickelt man nun ¢, in die kanonische
p-adische Reihe (1), =22 ¢bg, p° mit by ,e{0,....,p—1}, byo#0, so ist
léo—b0’0|p< 1. Ist éO_—bO,O#Oa SO gllt éo=b0’0+pal . él—l mit a;= 1, !éllp"_'l und
die Entwicklung 2732 4by,,p* von &, liefert wieder ein b, mit 0<b, o<p und
|$1—by0lp<1. Auf diese Weise kann man fortfahren, solange die £,— b, o#0 sind.
Man erhilt eine Entwicklung von ¢ der Gestalt

ézaO/bO'I"al/bl_'_-" +an—l/bn—1+an/fn’ (2)
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wo a,=p® und b,=b, , gesetzt und die Pringsheimsche Schreibweise ([4], S. 3)
benutzt ist; der Kiirze wegen sei (2) im folgenden als

é=[ao;b0,al;...;b ’an; én]

n—1
geschrieben. Bricht das geschilderte Verfahren ab, d.h. wird irgendwann &,=5b,,
so hat man ¢ in einen endlichen p-adischen Kettenbruch [ay; by,ay;...;b,_1,a,;b,]
entwickelt; andernfalls wird ¢ durch die Anwendung des beschriebenen Algo-
rithmus ein Symbol der Art

lag; bo,ay;...;b,_1,a,;...] 3)

zugeordnet, das man einen unendlichen p-adischen Kettenbruch nennt.

Dies sei an einem numerischen Beispiel verdeutlicht: Sei p=3, &= —1/2;
dann ist ay=0, £,= —2 und fir —2 erhilt man die kanonische 3-adische Reihe
1+2% 2.3, da nach 1. gilt: 232, 3'=1/(1—3)=--1/2. Somit ist by o=1, also
3al. 1‘1=—3 und damit a;=1, {;= —1. Die Entwicklung &;=—-1=272,2-3"
zeigt dann by o=2 und —3=¢,—b;(=3%- &1 also a,=1, &= —1. Es ist klar,
dass hier das Verfahren nicht abbricht und dass man a,=1, {,=—1, b, (=2 fur
alle v>1 erhilt; damit wird der Zahl &=—1/2 der folgende unendliche
(periodische) 3-adische Kettenbruch zugeordnet: [1;1,3;2,3;...;2,3;...].

Schneider hat nun a.a.O. analog zur Vorgehensweise bei den regulidren
Kettenbriichen im Reellen gezeigt, dass die Folge {[ag;bo,a);...;b,]}n=01,... der
rationalen Néherungsbriiche von (3) p-adisch (d.h. beziglich |- |,) gegen ¢
konvergiert, dass man also & gleich dem Ausdruck in (3) setzen kann. Und ausser-
dem: Schreibt man irgendeinen unendlichen Kettenbruch der Form (3) hin mit
b,e{l,2,...,p—1} und a, von der Form p%, a,eZ und a,> 1 fir v> 1, so konvergiert
dieser p-Kettenbruch immer in Q,; bezeichnet man noch b,+[a,, ;6,4 1,8,42; .. .]
mit £, so ist in den Schneiderschen Formeln implizit die Aussage |, =1 fur alle
n=0 enthalten.

Damit kann man nun zeigen, dass die Entwicklung von ¢ in einen p-Ketten-
bruch eindeutig ist. Denn sei

$=lag; bo,ay; - ..1=lag; bo, ay; .. ] )
mit a,,a, und b,,b, wie bisher und seien etwa beide p-Kettenbriiche unendlich,

so ist agly'=ag(&)~", also lagl,=lagl, und ap=ay &=¢& und somit
bo+a, /& =by+d, /). Dies ergibt

|bo—bol,=a1/E1—a, /&)1 ,<Max(ld)],, la;],)<]1,

also by=by und a,/¢,=a] /€| und man kann induktiv fortfahren. Ist in (4) einer der
p-Kettenbriiche endlich, so zeigt man ebenso leicht, dass beide endlich sein miissen
von gleicher Linge und dass wieder a,=a,,b,=b, gilt.
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3. Irrationalititskriterium. In [5] wurde weiter die Frage nach der Darstellung
rationaler bzw. quadratisch irrationaler Zahlen aus Q, durch p-Kettenbriiche
aufgeworfen. Das erste Problem wird vollstindig gelost in folgendem Satz, der ein
notwendiges und hinreichendes Irrationalitdtskriterium fiir p-adische Zahlen
enthalt.

Satz. Sei feQP, f #0. Es ist £€Q genau dann, wenn der p-Kettenbruch von &
entweder endlich ist oder periodisch mit der Periodenlinge 1 und a,=p, b,=p—1
fiir alle geniigend grossen n.

Beweis. Zuniachst habe ¢ einen unendlichen p-Kettenbruch, der periodisch ist
von der angegebenen Form. Es gibt also ein ny= 0 so, dass fiir alle n> n gilt:

E=p—1+Ip;p—Lp;...;p—Lp;...]=p—1+p/&,.

Hieraus folgt, dass &, fiir n>n, der quadratischen Gleichung &2—(p— 1)&,—p
=(,—p)(,+ 1)=0 geniigt. |¢,|,=1 impliziert {,= — 1 fiir n>n, und nach (2) ist
£eQ.

Zum Beweis der Umkehrung sei ¢ e Q, habe aber einen unendlichen p-Ketten-
bruch der Form (3). Schreibt man
&=p™0 (xo/x,) ™" mit Xo, %1€ Z,x0> 0, (X0, X1) = (X0, p) = (x1,P)=1, (5)

so werden in eindeutiger Weise rekursiv
b, .efl,....p—1},a,=pn(mita,> 1)undx,, € Z—pZ (6)
in dieser Reihenfolge so bestimmt, dass gilt

Xp_1=b,_1X,+ax,, firn>1. (7

Schreibt man noch qg fiir p"b, so folgt aus (5) und (7)
&=lao; bo,ay; .. ].

Hieraus und weil fiir ¢ die p-Kettenbruchentwicklung (3) vorausgesetzt wurde,
folgt wegen der Eindeutigkeit dieser Entwicklung sofort a,=a,, b,= b, fir alle n>0;
speziell bricht damit auch die Folge {x,} nicht ab. Weiter ist x,eZ, x,#0 und
(x,,x,41)=1 fur alle n>0 wie man aus (5), (6) und (7) induktiv leicht sicht. Aus (6)
und (7) folgt

lxn+1‘ = Ixn—l_bn——lxnl/ang('xn—ll +(p—1)|x,,|)/p furn>1. (8)

Wegen (x,,_,x,)=11ist | x,_;| # | x,|, solange nicht |x,_,| = |x,| =1.
Daher folgt aus (8)

| Xp+1) <Max(Ix,_l,|x,|), falls nicht x,_,x,e{+ 1, —1}.
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Da alle |x,| =1 sind, muss es also ein n, geben so, dass x,e{+ 1, — 1} fiir alle
n=ny. x,_1=x, fur ein n>n, impliziert nach (6) und (7) b,_;=1 (modp), also
b,_,=1, was a,x,,,=0 liefern wiirde. So ist x,= —x,_; fur alle n>ng, also
(I+b,_1)x,_1=a,x,,; und somit 1+b,_,=a, fiir alle n>n, Nach (6) hat man
a,=p,b,_,=p— 1 fur diese n, was den Satz vollstindig beweist.

Das Analogon zum Eulerschen Satz ist natiirlich hier auch richtig: Hat £€Q,
einen unendlichen periodischen p-Kettenbruch mit einer Periode, die nicht von der
Form des obigen Satzes ist, so ist ¢ eine quadratische Irrationalitit. Ob die
Umkehrung hiervon, also das Analogon zum Satz von Lagrange, richtig ist, bleibt ein
interessantes offenes Problem; man siehe dazu auch [5]. Jedenfalls scheinen sich die
aus dem Reellen bekannten Beweismethoden fiir diese Umkehrung im p-adischen
Fall nicht zu bewéhren.

In dieser Situation kann man wenigstens folgendes tun: Man nehme spezielle
quadratische Polynome der Form X?—c¢ mit ceZ und nicht Quadratzahl; ist die
Primzahl p#2 kein Teiler von ¢ und ist das Legendre-Symbol (;—) gleich +1,

so zerfillt X?2—c iber Q,, aber nicht iiber Q, in Linearfaktoren (X—¢) (X—7).
Nun lasse man einen Computer ein hinreichend langes Anfangsstiick der p-Ketten-
bruchentwicklung fiir eines der ¢, #€Q, berechnen. In den Fillen (p,c)=(5,—1),
(7,2), (11,5), (13,3) wurden jeweils die ersten funfhundert Elemente a,b, des
p-Kettenbruchs tatsidchlich ermittelt; dabei zeichnete sich in keinem Fall eine
Periodizitdt ab. Diese Rechnungen wurden auf der Anlage CYBER 76/72 von
Control Data am Rechenzentrum der Universitit zu Koln durch Herrn
Dr. M. Pohst durchgefiihrt, der auch das Programm geschrieben hat und dem an
dieser Stelle nochmals gedankt sei.

P. Bundschuh, Universitit Koln
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Aufgaben

Aufgabe 761. In einer Ebene seien ein Dreieck A BC sowie ein Punkt P gegeben.
A’B’C’ bezeichne das aus ABC durch Punktspiegelung an P entstehende Dreieck.
Eine durch P verlaufende Gerade schneide B’'C’ in A, C’A’ in B, A’B’ in C,. Man
zeige, dass sich die Geraden A4, BB;, CC; in einem Punkt schneiden.

G. Bercea, Miinchen, BRD
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