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Minustyp sind. Aus der im vorhergehenden Abschnitt 5 gewonnenen Übersicht
über die arithmetische Natur der Lösungspaare vom Plustyp ist hiermit auch eine
solche für die begleitenden Lösungspaare vom Minustyp gewonnen. Auch in ihnen
treten nur alle ungeraden natürlichen Zahlen ausser 1 und alle natürlichen Vielfachen
von 8 auf.

Die damit gewonnene Übersicht über die Lösungen der zugrundegelegten
diophantischen Gleichung (1) kann auch auf mannigfache Weise durch
elementararithmetische Betrachtungen innerhalb des rationalen Zahlkörpers gewonnen
werden. Doch scheint mir, wie schon gesagt, die hier durchgeführte Heranziehung
der eindeutigen Primzerlegung im Körper der sechsten Einheitswurzeln interessanter
und eleganter. Helmut Hasse, Hamburg

Untersuchungen zu einem hyperoskulierenden Büschel
von Kegelschnitten

II. Teil

Als zweiter Zugang zu einem hyperoskulierenden Büschel von Kegelschnitten
soll hier eine in der ebenen Kinematik auftretende birationale quadratische
Transformation verwendet werden1).

Der erste Momentanpol Px eines ebenen Zwangslaufes liege im Ursprung
eines kartesischen Koordinatensystems. Die Polbahntangente falle mit der x-Achse
zusammen, und der zweite, auf der j-Achse liegende Momentanpol P2 - auch
Wendepol genannt - habe die Koordinaten ^(0, —2p). Dann lautet die Gleichung
des Wendekreises w im Bezugsmoment der Bewegung

x2+y2 + 2py=0. (1)

Alle von Px verschiedenen Punkte der Gangebene F, die sich mit dem Wendekreis

decken, und nur diese, durchlaufen im Augenblick der Bewegung Wendepunkte

ihrer Bahnkurve. Ein beliebiger Punkt X(x,y) ist mit dem zugehörigen
Krümmungsmittelpunkt X(<^,rj) durch eine birationale quadratische Verwandtschaft

T verknüpft. Die Transformationsformeln für T lauten bezüglich des

vorgegebenen Koordinatensystems

2pxy 2py2
C

x2+y2 + 2py" n x2+yi + 2py' W

l) Im ersten Teil dieses Beitrages wurde eine von K H Schellbach eingeführte Konstruktion der
Krummungsmitte zur Untersuchung eines hyperoskulierenden Kegelschnittbuscheis ausgewertet

[5]
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Entsprechend gilt fur die Umkehrtransformation T~x

2p£rj 2pn2
x— —

i2+n2-2prj ' y=- e+ n2-2pr1
(3)

Unterwirft man eme nicht durch Px gehende Gerade g der Transformation T,

ergibt sich ein nicht zerfallender Kegelschnitt k Dieser oskuhert den an der
Polbahntangente gespiegelten Wendekreis - aus kinematischer Sicht als Ruckkehrkreis

r bezeichnet - m Px Die Bilder aller nicht durch Px gehenden Geraden ergeben

somit ein Netz von Kegelschnitten Diese haben den Ruckkehrkreis r in Px als

gemeinsamen Krummungskreis Die drei Hauptpunkte dieses Feldes sind daher m
Px zusammengeruckt und spannen dort ein Linienelement zweiter Ordnung von r
auf Die Polbahntangente ist die dreifach zu zahlende Hauptgerade in beiden
Feldern Das Bild einer durch Px gehenden Geraden zerfallt in zwei Geraden,
namhch die Gerade selbst und die Polbahntangente Die Gesamtheit der Bildkegelschmtte

stellt em homaloides Netz dar Eme nicht durch Px gehende Gerade g
bildet sich auf eine

Hyperbel
Parabel ab, je nachdem die Schnittpunktkoordinaten von g mit w

Ellipse

getrennt reell I

zusammenfallend j smd

konjugiert komplex

Xlxj)

*«

Abb 1
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Abbildung 1 zeigt, wie die Transformation T konstruktiv zu realisieren ist
Auf emem Polstrahl bilden die Punktmengen {X} und {\} zwei gleichlaufende
projektive Punktreihen, deren Fixpunkte m Px zusammenfallen Ihre Gegenpunkte
hegen m den von Px verschiedenen Schnittpunkten des Polstrahles mit w bzw r
Den Punkten der Polbahntangente entspricht der erste Momentanpol [1], [2], [3]

Nach diesen Vorbetrachtungen sollen die Geraden eines Buscheis {g} der
Transformation T unterworfen werden, wobei der Trager C des Buscheis em von
Px verschiedener Punkt der Polbahntangente (x-Achse) ist Mit C(-c,0), c>0,
und dem Achsenabschnitt v auf der y-Achse als Buschelparameter ergibt sich fur {g}

vx — cy+vc 0 mit (—oo<v<oo) (4)

Die Anwendung von (3) auf (4) fuhrt für v + 0 auf die Gleichung eines nicht-
zerfallenden Kegelschnittes Diese werde wieder auf das xy-System bezogen

vcx2— 2pvxy+(2p + v)cy2 — 2pvcy 0 (5)

In dem nicht auszuschhessenden Fall l/v=0 gilt die Gleichung

cx2—2pxy+cy2 — 2pcy=0 (5')

Fur den Durchmesser d emes Kegelschnittes aus {/c} resultiert nach (5)

y=-x (6)
P

Da m (6) v nicht enthalten ist, haben die Bildkegelschmtte von {g} bezüglich
Px neben r als gememsamen Krummungskreis zusätzlich d als gemeinsamen Durchmesser

Das Geradenbuschel {g} wird durch die Transformation Tm ein hyperosku-
herendes Büschel von Kegelschnitten übergeführt Dabei ist d die Polare von C
bezughch des Wendekreises w

Wie m [5] gezeigt wurde, umhüllen die Achsen der Kegelschnitte eines
hyperoskulierenden Buscheis eine Parabel nh Ihre Gleichung lautet nach [5], Formel 2,

im vorhegenden Fall unter Beachtung von m c/p

(px + cy)2 + pc(2px — 2cy+pc) 0 (7)

Aus Gleichung (7) lassen sich einige geometrische Lagebeziehungen von nh
ablesen, die in die Sprechweise der ebenen Kmematik übertragen werden sollen

Das dem Geradenbuschel {g} mittels T zugeordnete Kegelschnittbuschel {k}
besitzt eine Achsenhüllparabel nh, die die Polbahntangente im Trager C von {g}
und die Polbahnnormale im Mittelpunkt K des Ruckkehrkreises r berührt C, K und
der Brennpunkt Fh liegen auf der Polaren von Px bezughch nh Die Polare d von C
bezüglich des Wendekreises w ist die Leitgerade von nh Die Parallele ga zu g durch
Px schneidet den Ruckkehrkreis ausser in Px im Bild des Fernpunktes von g, also

in dem einfach zu zahlenden Schnittpunkt G—(rK)



E Schröder Untersuchungen zu einem hyperoskulierenden Büschel von Kegelschnitten 9

Dieser kinematische Zugang eröffnet auch eine Konstruktionsmoghchkeit fur
die Asymptoten der Hyperbeln aus {/c} Eme den Wendekreis w in den nicht
zusammenfallenden Punkten Wx und W2 schneidende Gerade aus {g} geht mittels
der Transformation T in eine Hyperbel uber Die Asymptoten dieser Hyperbel
smd die Parallelen zu (Px Wx) bzw (Px W2) durch M Dabei ist M Halbierungspunkt
der Strecke Px3t Fur die Achsen von k bietet sich ein zweifacher Zugang, namhch
als Tangenten aus M an die Hullparabel nh oder als Winkelhalbierende der Asymptoten

an (vgl Abb 2)

yu

Abb 2

In diesem Zusammenhang ist noch ein dritter Zugang zu dem hyperoskulierenden

Kegelschnittbuschel {/c} von Interesse Der aus einer Geraden g durch die
Transformation T erzeugte Bildkegelschnitt k ist auch als zentnsch-kolhneares Bild
des Ruckkehrkreises r (Krummungskreis von k in Px) erklärbar Dabei ist Px das

Kollmeationszentrum, die Parallele ga zu g durch Px die Kolhneationsachse und g
die Fluchtgerade Durch Spiegelung von g an ga erhalt man die Verschwmdungs-
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gerade gv dieser Kollmeation Damit smd alle Bestimmungsstucke bereitgestellt,
um die Transformation r-+K konstruktiv ausfuhren zu können [1], [4] Zu dem
Schnittpunkt Hv von d mit der Verschwmdungsgeraden gv sucht man die Polare h

bezüglich r auf Diese schneidet den Durchmesser d im Urbild Af* des
Mittelpunktes M von k M hegt einerseits auf dem Kolhneationsstrahl durch Af*, andererseits

auf der Parallelen zur x-Achse durch den Punkt A (gji), da A bei der
Kollmeation m sich übergeht und Cv m den Fernpunkt der x-Achse transformiert
wird Der Brennpunkt Fh der Achsenhüllparabel nh ergibt sich nach der in [5],
Abb 2 und 3, abgeleiteten Konstruktion Ferner schneidet der Kreis um Fh mit
der Strecke MFh als Radius die Parallele zu d durch Fh m den Punkten / und //
Die Verbindungsgeraden (MI) und (MII) legen Haupt- und Nebenachse des Bild-
kegelschnittes k fest Die Langen der Achsen sind mittels der angedeuteten
Nebenkonstruktion leicht auffindbar Durchlauft g alle Geraden des Buscheis {g}, so
ergibt sich eine einparametrige Schar von zentrischen Kolhneationen Wendet man
die Schar dieser Kolhneationen auf den Ruckkehrkreis r an, ergibt sich das gleiche
Büschel {k} sich paarweise hyperoskuherender Kegelschnitte Der Kreis r gehört
diesem Büschel nicht an (vgl Abb 3)

yn

cl?

Abb 3
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Ist C der Fernpunkt der x-Achse, so ist Px der allen Kegelschnitten von {k}
gemeinsame Scheitelpunkt. Die Achsenhüllparabel zerfallt in die doppelt zu
zählende Gerade mit der Gleichung y p. In diesem Sonderfall gehört der Rückkehrkreis

r dem hyperoskulierenden Kegelschnittbuschel an.
Eberhard Schröder, Technische Universität Dresden, DDR
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Kleine Mitteilungen

Eine Bemerkung zu einer Integralformel von Cauchy

1. Nach einer im dreidimensionalen euklidischen Raum von Cauchy [1] 1841

gefundenen Beziehung lässt sich die Oberfläche eines konvexen Korpers als Integral
über zweidimensionale Inhalte darstellen, die sich durch Normalprojektion des Ei-
körpers ergeben. Es gilt die Integralformel

>-MF(A)=-\f(A,u)du, (1)
71 J

m der A einen konvexen Körper mit inneren Punkten, f(A,u) den Flächeninhalt des

Normalrisses von A in Richtung u auf die Ebene E(u) bezeichnet; du bedeutet die
Richtungsdichte, d.h. das Flächenelement der Einheitskugel, über die sich die
Integration in (1) wie stets im folgenden erstreckt. Unter Verwendung von (1) kann
F(A) nach oben abgeschätzt werden, indem man den Normalriss f(A,u)
allgemeiner durch Parallelprojektion von A in Richtung u auf die Randfläche K einer
Kugel K ersetzt, für die A c K gilt. Es ergibt sich, dass in der aufzustellenden
Ungleichung das Gleichheitszeichen genau dann eintritt, wenn A eine zu K konzentrische

Kugel ist.
2. Zunächst zu diesem Spezialfall: Seien A und K konzentrische Kugeln mit

den Radien r bzw. R^r, F(A) bzw. F(K)=4nR2 ihre Oberflächen, sowie fK die
Mantelfläche der Kugelhaube von K mit Grundkreisradius r. Dann güt/#= 2 nRh
2nR(R-\/R2-r2) (Abb.l). Mit fK: 2nR(R + \/R2-r2)^4nR2-fK ergibt sich

aus(l):
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