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Ein Analogon zu den ganzzahligen pythagoräischen Dreiecken

1. Auf ein solches Analogon wurde kürzlich durch eine Aufgabe von
E. Kramer (Ljubljana) aufmerksam gemacht1), in der verlangt wurde, bestimmte
Angaben über die arithmetische Natur der ganzzahhgen primitiven Dreiecke mit
Spitzenwinkel 120° zu bestätigen. Arithmetisch ausgedrückt handelt es sich um die
Lösungen der diophantischen Gleichung

a2 + ab + b2=c2 (1)

in teilerfremden natürlichen Zahlen a,b,c. Vom geometrischen wie auch vom
arithmetischen Standpunkt aus erscheint es naturgemäss, auch die Dreiecke mit
Spitzenwinkel 60° in die Betrachtung einzubeziehen, was auf die diophantische
Gleichung

a2-ab + b2=c2

hinausläuft, oder also auf die Zulassung auch negativer ganzer Zahlen in (1),
wobei dann die beiden Fälle ab>0 und ab<0 (im folgenden Plustyp und
Minustyp genannt) zu unterscheiden sind. Der Fall ab 0 ist geometrisch wie
arithmetisch uninteressant und sei im folgenden durchweg stillschweigend
ausgeschlossen.

2. Es sei zunächst daran erinnert, dass die ganzzahligen primitiven pythagoräischen

Dreiecke (Spitzenwinkel 90°)

a2 + b2=c2 (2)

l) Amer. Math. Monthly 82 (1975), N° 10, E. 2566.
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bekanntlich durch die Parameterdarstellung

a — u2— v2, b 2uv mit (u, v)= 1, w^ v mod 2 (3)

und dann

c=u2+v2

gehefert werden Man beweist das am elegantesten durch den Ansatz

y — a + bi miU2= — 1,

bei dem dann Normbildung _V(y) a2-i-.>2 c2 hefert Die bekanntlich eindeutige
Primzerlegung im quadratischen Zahlkorper von / V — 1 lasst leicht erkennen,
dass bei Primitivität der Losung a,b,c von (2), d h fur (a,b)= 1, und bei durch
a=l, b 0 mod2 festgelegter Reihenfolge von a, b notwendig y q>2 mit ganzem
tp u+ vi ist, woraus sich die angegebene Parameterdarstellung (3) ergibt

3. Diese wohlbekannte, hier nur kurz skizzierte Schlussfuhrung für die
pythagoräischen Dreiecke (2) übertragt sich auf die hier zu betrachtenden stumpf-
bzw spitzwinkligen Dreiecke (1) wie folgt

Man setze

(2a + b) + bV^3 l + V^T
y a + bp= mit /?

2 H 2

(primitive 6 Einheitswurzel,/?2=/?- 1) (4)

Dann druckt sich die zu untersuchende Gleichung (1) wie folgt aus

N(y)^2a+%+3b2^+ab +b^, (5)

mit ganzrationalen teilerfremden a,b,c Die so definierte ganze Zahl aus dem
quadratischen Zahlkorper K von V -3 ist primitiv, d h ohne natürliche Teiler
ausser 1 Daher ist y nicht teilbar durch alle in K unzerlegten Pnmzahlen, die

/?= — 1 mod3, und auch nicht durch den Primteiler l + p der einzigen in K
verzweigten Primzahl 3___(1+/?)2, weil aus l+p\y im Hinblick auf _V(l + />) 3

nach (5) folgte 31 c und daraus in gelaufiger Weise der Reihe nach weiter 312a + b,
31 b, 31 a, im Widerspruch zu der vorausgesetzten Primitivität der Losung a, b, c

In der bekannthch emdeutigen Primzerlegung von y m K treten demnach
nur Primteiler n der in K vollzerlegten Primzahlen/? 1 mod 3 auf, und zwar jeweils
höchstens emer der beiden konjugierten n, lt und dieser im Hinblick auf (5)
notwendig zu geradem Exponenten Auf Grund dieser Beschaffenheit der Primzerlegung

von y hat man y etp2 mit ganzem cp und einer Einheit e /?v aus K Wegen
p= —(p2)2 kann dabei noch <p so normiert werden, dass e= +1, also y= ±q>2 ist
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Sieht man von der Mitführung der entgegengesetzten — a, —b zu den Lösungspaaren

a, b von (1) ab, so kann man sich auf

y tp2 (6)

beschränken. Setze dann

tp u+vp (7)

mit ganzrationalen Koordinaten u, v, die wegen der Primitivität von y (und damit
von tp) teilerfremd sind und wegen l+pXy (und damit auch X tp) der Inkongruenz
u ^ v mod 3 genügen. Nach (4), (6), (7) drücken sich die zum Ausgang genommenen
Lösungspaare a,b (von ihren entgegengesetzten abgesehen) wie folgt durch die
Koordinaten u, v von tp als Parameter aus:

a u2— v2, b 2uv+ v2 mit (u,v)= 1, w^vmod3, (8)

und wie man leicht bestätigt, wird das zugehörige

c=u2+uv+v2.

Umgekehrt liefert, wie leicht zu sehen, jedes derartige Paar u, v eine primitive
Lösung a,b, c der Ausgangsgleichung (1). Auch diese weniger bekannte Parameterdarstellung

findet sich bereits in der Literatur2).

4. Wegen der Invarianz der Parameterdarstellung (8) bei gleichzeitiger
Vorzeichenumkehr der Parameter u, v kann man sich auf etwa v>0 beschränken. Zur
Gewinnung einer Übersicht über die Lösungspaare a, b ersetzt man zweckmässig den
Parameter u durch die Differenz d=u—v.

Die Parameterdarstellung (8) wird dann

a 2dv + d1=d(d+2v) \
y ,.n _

b^2dv + 3v2=v(2d+3v)\mü(d^=l^^0mod3' (9)

Für d>0 sind dann auch a,b>0, so dass Lösungspaare a, b vom Plustyp
resultieren.

Für d< 0 hingegen hat man

3
ab<0 für — d<—-voder 2v< —d,

2
3

ab>0 für-—v< —d<2v,

2) Siehe dazu Dickson, History of the Theory of Numbers II, S 405, New York 1966
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so dass neben Lösungspaaren vom Minustyp auch nochmals solche vom Plustyp
resultieren. Man kann aber ohne Verlust auf die so resultierenden negativen
Lösungspaare vom Plustyp verzichten, weil deren entgegengesetzte, positive
Lösungspaare —a,—b, oder vielmehr ihre vertauschten —b, —a, bereits unter den
zuvor mit d>0 gewonnenen Lösungspaaren vorkommen. Siehe dazu die Ausführungen

über die Lösungsgesamtheit im Schlussabschnitt 6.

5. Lösungen vom Plustyp. Betrachte zunächst die beiden kleinsten Werte der
Parameterdifferenz d. Die Parameterdarstellung (9) lautet für sie:

d=l d=2
\a 2v+l 1 ^ föf 4v + 4 1

|z> 2v + 3v2J mitv>obelieblg' (Z> 4v + 3v2J mit v > ° unSerade •

Für d= 1 ist die kleinere Lösungszahl a ungerade und durchläuft alle ungeraden
natürlichen Zahlen ausser 1.

Für d=2 ist die eine Lösungszahl a durch 8 teilbar - es ist das vom Fall v=l
abgesehen die kleinere Lösungszahl -, und sie durchläuft alle durch 8 teilbaren
natürlichen Zahlen, während die andere Lösungszahl b ungerade ist.

Allgemein erkennt man aus den Parameterformeln (9) leicht, dass nur ungerade
oder durch 8 teilbare Lösungszahlen auftreten.

6. Übersicht über alle Lösungen. Durch wiederholte Anwendung der
Substitution tp -? ptp, also

u + vp^up + v(p—l)= —v+ (u + v)p,

in Matrizenschreibweise

CMM) 0-
erhält man aus jedem Parameterpaar j ein Sextupel solcher Paare

(u\ f~v\ /-(« + v)\ f-u\ / v \ /u + v

\v)' U + vj' V u )' \-v)' \-(u+v))' \-u
und damit ein Tripel von Lösungspaaren

(;)¦ r:b)y uu
mit der Quersumme j. Durch Übergang zum Konjugiert-komplexen cp -> Tp. also
y -> y, und somit ^^'

a + bp-*a — bp2^>(a + b) — bp
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erhält man dazu das Tripel

fa + b\ —a \ f — b'rn- (.;•»)• c:)- (ioo

Als einfachstes Beispiel seien die beiden kleinsten solchen Tripelpaare (d= 1, 2

mit v= 1 entsprechend) angeführt3):

3 -8 5 7 -15 8

5 3 -8 8 7 -15

8 -3 -5 15 -7 -8
5 8 -3 -8 15 -3,

In jedem solchen Dreieckstripel (10), (10') gibt es, wie aus der Quersumme f

leicht ersichtlich, genau ein positives Lösungspaar mit seinem entgegengesetzten
vertauschten, beide vom Plustyp, während die beiden anderen Lösungspaare vom

60°

6060°
120

3) Siehe dazu auch die nachstehenden Figuren der zugehörigen Dreieckstripel.
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Minustyp sind. Aus der im vorhergehenden Abschnitt 5 gewonnenen Übersicht
über die arithmetische Natur der Lösungspaare vom Plustyp ist hiermit auch eine
solche für die begleitenden Lösungspaare vom Minustyp gewonnen. Auch in ihnen
treten nur alle ungeraden natürlichen Zahlen ausser 1 und alle natürlichen Vielfachen
von 8 auf.

Die damit gewonnene Übersicht über die Lösungen der zugrundegelegten
diophantischen Gleichung (1) kann auch auf mannigfache Weise durch
elementararithmetische Betrachtungen innerhalb des rationalen Zahlkörpers gewonnen
werden. Doch scheint mir, wie schon gesagt, die hier durchgeführte Heranziehung
der eindeutigen Primzerlegung im Körper der sechsten Einheitswurzeln interessanter
und eleganter. Helmut Hasse, Hamburg

Untersuchungen zu einem hyperoskulierenden Büschel
von Kegelschnitten

II. Teil

Als zweiter Zugang zu einem hyperoskulierenden Büschel von Kegelschnitten
soll hier eine in der ebenen Kinematik auftretende birationale quadratische
Transformation verwendet werden1).

Der erste Momentanpol Px eines ebenen Zwangslaufes liege im Ursprung
eines kartesischen Koordinatensystems. Die Polbahntangente falle mit der x-Achse
zusammen, und der zweite, auf der j-Achse liegende Momentanpol P2 - auch
Wendepol genannt - habe die Koordinaten ^(0, —2p). Dann lautet die Gleichung
des Wendekreises w im Bezugsmoment der Bewegung

x2+y2 + 2py=0. (1)

Alle von Px verschiedenen Punkte der Gangebene F, die sich mit dem Wendekreis

decken, und nur diese, durchlaufen im Augenblick der Bewegung Wendepunkte

ihrer Bahnkurve. Ein beliebiger Punkt X(x,y) ist mit dem zugehörigen
Krümmungsmittelpunkt X(<^,rj) durch eine birationale quadratische Verwandtschaft

T verknüpft. Die Transformationsformeln für T lauten bezüglich des

vorgegebenen Koordinatensystems

2pxy 2py2
C

x2+y2 + 2py" n x2+yi + 2py' W

l) Im ersten Teil dieses Beitrages wurde eine von K H Schellbach eingeführte Konstruktion der
Krummungsmitte zur Untersuchung eines hyperoskulierenden Kegelschnittbuscheis ausgewertet

[5]
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