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146 Elementarmathematik und Didaktik

Bemerkungen zur Exponentialfunktion mit rationalem Definitionsbereich

In [2] wurde fiir den schénen Nachweis der steigenden Monotonie und der
Beschrinktheit, also der Konvergenz, der Folge ((1+ 1/n)") jeweils an entscheiden-
der Stelle die fiir alle @, b e R und fiir alle n e N giiltige Gleichung

a"—b"= (a—b) Y a" b+~ (1)
=1

benutzt. Mit ihr ist ebenfalls im wesentlichen beweisbar der

Satz. Fiir jede Folge nichtnegativer reeller Zahlen (ay,a,, ...) gilt: Wenn
lim a,=g ist, dann ist fiir alle ke N

lim ¥a,=Vg .

n—

Beweis. Sei (a;,a,, ...) eine beliebige gegen g konvergierende Folge nicht-
negativer reeller Zahlen und sei k € N beliebig gewihlt.
Fiir den Beweis ist es giinstig, eine Fallunterscheidung zu machen.

1. Fall: g=0.
Die Voraussetzung lim a,=0 impliziert: Zu jedem ¢eR" existiert ein n(e)eN

n— oo

derart, dass fur alle natiirlichen Zahlen n>n(¢) folgt, dass |a,—0| <& ist. Aus
der Nichtnegativitit der reellen Zahlen a,a,, ... und der Monotonie der ¥ -
Funktion ergibt sich ebenfalls fiir alle natiirlichen Zahlen n> n (¢), dass Va, <« ist,
also auch | {S/c_z; — 0| <e gilt. Damit ist der 1. Fall bewiesen.

2. Fall: geR™.
Die Voraussetzung lim a,=g impliziert: Zu jedem eeR" existiert ein n(¢)eN

derart, dass fiir alle natiirlichen Zahlen n>n (¢) folgt, dass |a,—g| <& - (¥ g )*!
ist. Da nach (1)

=g = (V)= (Y gl ~(Ya, V&) 3 (Va,) k= (¥5) -

ist, folgt fur alle natiirlichen Zahlen n> n (¢) die Abschédtzung

I%—%I=I - an—8 |< ‘a"_i|_1<a.
S (Vayr-i(vg)-r (V&)

i—1

Damit ist der 2. Fall bewiesen. Beide Fille zusammen beweisen den Satz.

Dieser Satz versetzt uns in Verbindung mit den Grenzwertsdtzen fiir Folgen -
sie gehoren zum Standardstoff zumindest eines Analysisleistungskurses im
Gymnasium - und der fir alle n, xe N giiltigen Gleichung
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1+3-‘———xf71(1+ :
n =0 n+i> (2)

in die Lage, die Exponentialfunktion fiir den Definitionsbereich Q sukzessive zu

erkliren. Vorab beweisen wir jedoch (2) durch vollstindige Induktion iiber x.
Dazu sei ne N beliebig gewihlt.

1 1 0 1
x=1: 14+ —=1+ =n<1+—>
n n+0 - n+i
+1 1
REN P WU S PRSI S U S PE n  J P P E.
n n n n n(n+x) n n+x nm+x)

=( ) ()~ [ () [0 )

Damit sind die Vorbereitungen abgeschlossen. Sie erlauben eine schrittweise
und konstruktive Definition der Exponentialfunktion, die zuerst fiir N erklart wird
und dann iber Z auf Q erweitert wird. Wir sind der Meinung, dass dieses kon-
struktive Vorgehen fiir den Schiiler kanonischer ist als das reihenmissige Vorgehen,

da es dem gewohnten Prinzip der Erweiterung entspricht und zudem nur Kenntnisse
iiber Folgen benutzt.

1.Schritt: xeN.

1 n+i 1 n+i
oy ey lim <1+———~+ ) . <1+———+ )
= I1 7= nze " ll : =717 i n ll .
i=0 i= ! 1= — o0 l

° lim <1+*_) o (1+,__.>
n— o n+1i n+1i
x—1 1 n x—1 1 n
i=0n— o0 n+1i no o i=0 n+i

. x—1 1 n . x \"
— lim [17 (1+~——,)] — lim <1+——)
n—=>x Li=0 n+1 2)n—- o n

2.Schritt: x=0

o= 1= lim 1= lim(l+~0—>n

n— o n— oo n

3.Schritt: xeZ~
Fir jedes xe Z~ gilt die Gleichung x= — | x|, wobei | x| e N ist.
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ixl 1 1
eX=¢ Xl =

Telxl T PRGN TTRRNE]
lim (1+ ) - lim <1+ )
n— oo n—|x| n— oo n—|x|

x n—|x| | x| n
tim | (1+ X! ) (1+ il )] lim<1+——lxl )
n— oo n—|x| n—|x| n- o n—|x|

. 1 n—|x\" x\"
= lim —= 1m( ) = lim (1____)
n—oc i | x| n—w n n— o n

— lim (1+3‘.>
n— oo n

4.Schritt: xeN~1: ={n~!|neN}.
Zu jedem xeN~! existiert ein geN derart, dass die Gleichung x=¢~! gilt.

~1 ~1
_ . 1 \9"74 1 \4
X =ed 1=[hm (1+—> ] - lim[<1+——) }
n— o qn Satzn— o0 gn

1 n n
~ lim (1+~—) _ 1im(1+i)
n— oo qn n— oo n

5.Schritt: xe Q »
Zu jedem xeQ existieren peZ und geN derart, dass die Gleichung x= r gilt.

1/ 1/
ex=eP/‘1=[eP]1/‘1=[lim <1+—’3—)q'] s 1im[<1+£—)q'] ’
n— oo qn Satzn— qn

= lim (1+£—> — lim (1+—x—)
n—oo qn n— oo n
Durch die Zusammenfassung der Schritte 1. bis 5. ist damit die Exponential-
funktion
e:Q—-R 4
, X
X e*: = lim (1+—>

n— oo h

" folgenmissig erklart.
Die steigende Monotonie der Exponentialfunktion in Q ist iiber diese
Definition aufgrund der Vertriglichkeit der lim -bildung bei Folgen mit der

n— oo
Ordnungsstruktur auf R - d.h. wenn fiir zwei konvergente Folgen (a;,a,, ...) und
(by,b,, ...) reeller Zahlen fiir alle neN gilt, dass a,<b, ist, dann ist folglich

lim a,< lim b, - leicht zu zeigen. Seien dazu x,yeQ beliebig gewdhlt mit x < .

n— o n—oc
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Dann folgt fiir alle ne N, dass

(o) <0 )

ist, also

n n
lim <l+f—) < lim <1+l)
n— o n n— oo n

und damit, dass
ef<e

ist.
Dieter Riithing, Paderborn (BRD)
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Aufgaben

Aufgabe 753. M sei eine Menge, und E (M) sei die Menge aller endlichen Teil-
mengen von M. Ferner sei K ein Korper, und R sei die Menge aller Abbildungen
von E(M) in K. Definiert man fir f,geR die Summe f+g durch (f+g) (X)=
f(X)+g(X) fur alle Xe E (M) und das Produkt fg durch (fg) (X)= szf (Y) g (X\Y)

fiir alle Xe E (M), so ist R (+, - ) ein Ring mit 1. Dabei ist die Eins die durch e (¢)=1
und e(X)=0 fir X+ ¢ definierte Abbildung e. Man rechnet leicht nach, dass die
Menge I aller fe R, fiir die f(¢)=0 ist, ein Ideal von R ist. Zeige: Ist I=Rf|+- - -+
Rf, mit f;e I, so ist M endlich, und es gilt | M| <n. Insbesondere folgt also, dass I
nicht endlich erzeugt ist, wenn M unendlich ist.
H. Liineburg, Kaiserslautern, Bundesrepublik Deutschland
Losung des Aufgabenstellers. Es sei feI. Es gibtdann 7, ..., r,e R mit f= Z rf
Daher ist

i=1
fta)=3, 5 n(fitlahn= 3 r(@)ila).

i=1Y<la
Bezeichnet man mit f* die Einschrinkung von fe I auf {{a}|ae M}, so ist also
f*eKft+ - - -+ Kf¥, so dass der Vektorraum {f*|fe I} endlich erzeugt ist. Definiert
manfirae M die Abbildungf, durchf,({a}) = 1 undf,(X)= 0fiir X # {a},sofolgteinmal
f.€Iund zum andern, dass die Menge der f; linear unabhingig ist. Also ist
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