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Zerlegung eines konvexen Polygons in konvexe Polygone

Wir wollen folgende Fragestellung untersuchen: Gegeben ist ein ebenes kon-
vexes Polygon P, auf dessen Rand p Eckpunkte liegen. Dieses Polygon P soll in
f konvexe Polygone P; zerlegt werden. Wir setzen voraus, dass keine Ecke eines
Polygons P oder P; innerer Punkt einer Kante eines anderen Polygons ist. Wir be-
trachten das zerlegte Polygon P und bezeichnen die Gesamtzahl der (dusseren und
inneren) Eckpunkte mit e, die Gesamtzahl der Kanten mit .

Der Eulersche Polyedersatz besagt

et+f=k+1. ¢y

Mit f; bezeichnen wir die Anzahl der i-Ecke (i=3) unter den Polygonen P;.
Dann gilt

f=htfatfs+fe+ -, )
k=hQfs+A4fs+5fs+ - +p). 3)
Setzt man (2) und (3) in (1) ein, so erhédlt man

fat+2fy+3fs+afe+---=2e—p—2. 4)
Fiir die folgenden Untersuchungen unterscheiden wir zwei Fille, je nachdem

ob durch die Zerlegung in P innere Eckpunkte gegeben sind oder nicht.
Fall A. In P liegen keine inneren Eckpunkte, d. h.

e=p. )
Damit lautet die Gleichung (4)
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Dies stellt eine notwendige Bedingung dar fiir die Anzahlen f; der konvexen
i-Ecke, aus denen das konvexe p-Eck P ohne innere Eckpunkte kombiniert werden
kann. Weil wir auch die Umkehrung zeigen kénnen, gilt

Satz 1. Ein konvexes p-Eck kann genau dann ohne innere Eckpunkte in konvexe
i-Ecke (i=3) so zerlegt werden, dass fiir jedes i genau f; i-Ecke auftreten, wenn (4A)
gilt.

Beweis: Wir haben nur noch zu zeigen, dass sich zu allen nicht-negativen
ganzzahligen Werten f;, welche die Gleichung (4A) erfiillen, eine Zerlegung eines
konvexen p-Ecks P in konvexe i-Ecke (i> 3) so finden lasst, dass fiir jedes i genau
/i i-Ecke auftreten. Sei also P ein beliebiges konvexes p-Eck. Zeichnet man alle von
einem beliebigen Eckpunkt von P ausstrahlenden Diagonalen, so wird P in p—2
Dreiecke zerlegt. Zwei benachbarte dieser Dreiecke kann man zu einem Viereck
zusammenfassen, drei zu einem Fiinfeck usw. Also kann man durch Weglassen
einzelner Diagonalen alle Losungen von (4A) realisieren. Die entstandenen Poly-
gone P; sind als Durchschnitte eines konvexen Polygons P mit Halbebenen auch
konvex.

Fall B. Innere Eckpunkte sind vorhanden, d.h.

e>p. (6)

Unter den p Randecken von P seien p 2wertige (d.h. mit genau 2 ausstrah-
lenden Kanten). Weil alle Polygone P; (j=1, ..., /) konvex sind, liegen im Inneren
von P keine 2wertigen Ecken. Ausser von den genannten p Ecken strahlen von
jedem Eckpunkt mindestens 3 Kanten aus. Jede Kante wird von 2 Eckpunkten
begrenzt. Also gilt

3e<2k+p. (7)
Kombiniert mit (1) heisst das
k<3f+p—3. ®)

Weil alle Polygone P; (j=1, ..., f) konvex sein sollen, miissen mindestens
3 Eckpunkte von P eine Wertigkeit >3 haben; d.h.

p=3+p. 9)
Mit (9) lautet (8)
k<3f+p-—6. (10)

Kombination von (1) und (10) liefert

2f>5+e—p. (11)
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Aus den Gleichungen (2) und (4) folgt andererseits
f<2e—p-2. (12)

Will man ein konvexes p-Eck P mit e—p>0 inneren Ecken in f konvexe
Polygone P; zerlegen, so stellen die Beziehungen (11) und (12) notwendige Be-
dingungen dar, denen die Werte p,e,f geniigen miissen. Weil wir auch die Um-
kehrung zeigen konnen, gilt

Satz 2. Ein konvexes p-Eck lisst sich genau dann in f konvexe Polygone zer-
legen, so dass das entstehende Netz e—p> 0 innere Ecken enthdlt, wenn die Bezie-
hungen (11) und (12) erfiillt sind.

Beweis. Wir haben noch folgendes zu zeigen: Wenn positive ganze Zahlen
p.e.f den Bezichungen (6), (11) und (12) geniigen, dann lassen sich konvexe Poly-
gone P, ..., P,finden, aus denen sich ein konvexes p-Eck P mit einer Gesamtecken-
zahl e zusammensetzen lisst. Um dies zu beweisen, zeigen wir zunichst, dass zu
jedem Tripel positiver ganzer Zahlen p, e, f, die der Forderung

=25+ e—z—”— £ minimal (11)

geniigen, sich konvexe Polygone P, ..., P, finden lassen, aus denen sich ein kon-
vexes p-Eck mit einer Gesamteckenzahl e zusammensetzen lasst. Wir beweisen die
geometrische Realisierbarkeit von (11’) durch Induktion nach e—p: Sei e—p=1.
Aus (11’) folgt f=3. Die Realisierbarkeit erkennt man aus Figur 1. (Das p-Eck ist
in der Figur 1 als Kreis gezeichnet, weil die Realisierbarkeit unabhingig von dem
Wert von p> 3 sein muss.) Nun lassen wir e— p jeweils um 2 wachsen. Dann wichst
nach (11’) fjeweils um 1. Die Moglichkeit der Realisierung erkennt man aus den
Figuren la und 1b. Damit ist die Realisierbarkeit von (11°) fiir alle ungeraden
Werte von e—p klar. Betrachten wir jetzt den Fall e—p=2. Aus (11’) folgt f=4.
Die Realisierbarkeit erkennt man aus Figur 2. Nun lassen wir e—p jeweils um 2
wachsen. Dann wichst nach (11’) f jeweils um 1. Die Moglichkeit der Realisierung

Figur 1 Figur la
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Figur 1b % E Figur 2 % i
Figur 2a % i Figur 2b % i

erkennt man aus den Figuren 2a und 2b. Damit ist auch fir alle geraden Werte
von e— p die Realisierbarkeit von (11’) klar. Zerlegt man die in der so konstruierten
Realisierung von (11’) auftretenden Polygone mit mehr als drei Ecken durch sich
nicht schneidende Diagonalen in Dreiecke, so erhoht sich die Flachenzahl f. Diese
Flachenzahl kann man so lange erhohen, bis das Polygon P in lauter Dreiecke
zerlegt ist. Die Anzahl dieser Dreiecke ist wegen (4) gleich der rechten Seite
von (12).

Satz 2 macht eine Aussage iiber die Realisierbarkeit konvexer Polygonzer-
legungen in Abhingigkeit von p,e,f. Nun wollen wir anstelle von f die Werte
f; (i= 3) ins Spiel bringen. Aus (2), (4) und (11) ergibt sich

3fat2futfs—fr—2fs— - =12—p. (13)

Die Beziehungen (4) und (13) stellen in dem durch (6) definierten Fall B not-
wendige Bedingungen dar fiir die Anzahlen f; der konvexen i-Ecke, aus denen sich
das konvexe Polygon P bei vorgegebenen Werten fiir p und e zusammensetzen
lasst. Wieder stellt sich die Frage nach der Umkehrung. Sind (4), (6) und (13) hin-
reichende Bedingungen in dem Sinn, dass sich zu allen nicht-negativen ganzzah-
ligen Werten fur p,e,f3,/s,f5, ..., welche den Beziehungen (4), (6) und (13) geniigen,
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eine konvexe Polygonzerlegung realisieren ldsst? Diese Frage ist zu verneinen, wie
schon ein einfaches Beispiel zeigt. Gegeben sei p=3,e=6, f3=2, f4=1, fs=1, f,=0
(h=6). Die genannten Werte erfiillen ersichtlich die Gleichung (4) und die Un-
gleichungen (6) und (13). Aber es kann keine passende Polygonzerlegung dazu
geben, wie man durch folgende Uberlegung sieht: Wir wihlen im Innern eines
Dreiecks P mit den Ecken E|, E,, E; drei Punkte (innere Ecken) 4, B, C derart, dass
E,ABCE, ein konvexes Fiinfeck ist. Ohne dieses Fiinfeck zu zerstoren konnen wir
(bei beliebigem Verbinden von Ecken) kein konvexes Viereck finden.

Weil, wie dieses Gegenbeispiel lehrt, (4), (6) und (13) noch keine hinreichen-
den BRedingungen fiir die Realisierbarkeit sind, erhebt sich die Frage: Welche For-
derungen muss man zusitzlich stellen, um hinreichende Bedingungen zu erhalten?
Mit dem folgenden Satz soll ein erster Schritt zur Beantwortung dieser Frage
gemacht werden.

Satz 3. Seien p, e, f3,f4.f5, ... nicht-negative ganze Zahlen mit den Eigenschaften
a) sie geniigen der Gleichung (4),
b) esiste>p,
c) allef;sind fiir >4 Null, bis auf hochstens eines, das wir ggf. f, nennen,
d f=1
e) ex=y+1.
Dann gibt es eine dazu passende Zerlegung eines konvexen p-Ecks P in konvexe
Polygone P, ..., Py

Fiir den Beweis unterscheiden wir zwei Hauptfille.
Fall 1. Fiir /> 4 sind alle f; Null. Dann wird aus (4)

3=2e—p—12. 4)

Die Realisierbarkeit dieser Gleichung (4') folgt unmittelbar aus dem Beweis
von Satz 2.
Fall 2. Es gibt ein f/,= 1 (y+ 3). Die Gleichung (4) lautet nun

f3=2e—p—y. @)

Fall2.1. y<p—1.

P sei ein beliebiges konvexes p-Eck. Man zeichne ein konvexes y-Eck P in P
derart, dass P, und P in y—1 Kanten iibereinstimmen. Alle inneren Eckpunkte

legen wir in das konvexe Vieleck P\P,. Es besitzt p—y+2 Randecken, enthilt e—p
innere Eckpunkte und lasst sich (geméss Fall 1) in

[3=2@~y+2+e—p)—(p—y+2)—2=2e-p—y (14)
Dreiecke zerlegen - in Ubereinstimmung mit (4”).

Fall2.2. y=p—1.
Zunichst betrachten wir den Sonderfall e=y+ 1. Dann muss nach (4”) gelten

fz=y—p+2. (15)
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Die Realisierbarkeit von (15) erkennt man leicht: P sei ein beliebiges konvexes
p-Eck. Man zeichne ein konvexes y-Eck P, in P derart, dass P; und P in p—2 Kan-
ten iibereinstimmen. Die y—p+2 innerhalb P liegenden Seiten von P, bilden zu-
sammen mit der in P, nicht enthaltenen Ecke von P y— p+2 Dreiecke. Der allge-
meine Fall e>y+1 wird so geklart, dass man zu obiger Figur innere Eckpunkte
hinzufiigt und feststellt, dass sich dadurch die Anzahl der Dreiecke um das Dop-
pelte der Anzahl der hinzugefiigten Eckpunkte vergrossert - in Ubereinstimmung
mit (4”).

Es erscheint bemerkenswert darzulegen, dass die auf die Fille 1 bzw. 2 be-
zogene Ungleichung (13), ndmlich

3f3212—p (13)
bzw.

3f326—p+y (137)
aus (4), (6) und e) folgt: Weil nur ganzzahlige Werte in Frage kommen, bedeutet (6)

exp+1. (16)

In der Ebene gibt es keine Zweiecke; daher ist

2p=6. (17
Aus (16) und (17) folgt

. 3ex9+p. (18)
Setzt man (18) in (4) ein, so erhilt man (13’).
Aus (16) und e) folgt
3+2y+p<3e. (19)

Setzt man (19) in (4”) ein, so erhilt man (13”).

Also ist (unter den Voraussetzungen a) bis d) des Satzes 3 die Forderung e)
schirfer als (13). Dass man in Satz 3 nicht einfach e) durch (13) ersetzen kann,
zeigt das Gegenbeispiel p=3,e=6, /3=3, f4,=/;=0,fs=1,£,=0 (h=17).

Andert man die urspriingliche Fragestellung so ab, dass man e und f; nicht
" vorgibt, sondern geeignete Werte annehmen ldsst, dann kann man unschwer aus
dem Theorem von EBERHARD [1] und analogen Sétzen [2, 3] Ergebnisse fiir konvexe
Polygonzerlegungen herleiten. Das Theorem von Eberhard zum Beispiel besagt:
Fiir alle nicht-negativen ganzen Zahlen f3, f4,f5./7./s, ..., die der Gleichung

Z(6——i)f,-= 12 (20)

i3
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geniigen, gibt es ein dreidimensionales konvexes Polyeder mit lauter 3wertigen
Ecken, das jeweils f; konvexe i-Ecke als Seitenflachen besitzt. Nun ist es beziiglich
jeder Seitenfliche moglich, ein Schlegel-Diagramm des Polyeders zu zeichnen.
Ein Schlegel-Diagramm stellt eine Zerlegung eines konvexen Polygons P in konvexe
Polygone P; dar. Aus dem Theorem von Eberhard folgt also:

Es seien f; (i=3, i+ 6) nicht-negative ganze Zahlen, die der Gleichung (20) ge-
niigen, und f; sei ein nichi-verschwindendes dieser f; Dann gibt es dazu ein konvexes
j-Eck P, das in konvexe Polygone so zerlegt werden kann, dass die Anzahl der i-Ecke
(i%)) f; ist; die Anzahl der j-Ecke ist f;— 1. Dabei sind alle Ecken 3wertig.

Gerd Blind, Universitdt Stuttgart
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Uber gewisse n-komponierbare Graphen

Im folgenden sei mit I” stets ein endlicher, schlichter und zusammenhéngender
Graph') bezeichnet, welcher mindestens eine Kante enthilt.

Es werde der Begriff des Kompositionsgrades?) eines Graphen eingefiihrt,
welcher sich auf die «Zusammensetzung» eines Graphen aus besonders «ein-
fachen» Graphen bezieht.

Unter dem Kompositionsgrad c¢(I') eines Graphen I" sei die kleinste unter
den natiirlichen Zahlen z verstanden, fir welche I” eine Darstellung

V4

F=UB,

i=1

als Vereinigung von geeigneten Biumen B;<=I” besitzt. Ein n-komponierbarer Graph
sei ein Graph I mit ¢ (I")=n.
Fiir jeden Graphen I” besteht nun die Abschitzung

ay(M)=c(l)(ag(I)—-1), M

wobei mit ay(I") bzw. a, (I") die Anzahl der Knotenpunkte bzw. Kanten von I

1) Die Definitionen aller in der vorliegenden Note verwendeten und nicht niher definierten graphen-
theoretischen Begriffe findet man bei K. WAGNER [1].
2) Man vergleiche dazu auch [3] und [4].
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