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Zerlegung eines konvexen Polygons in konvexe Polygone

Wir wollen folgende Fragestellung untersuchen: Gegeben ist ein ebenes
konvexes Polygon P. auf dessen Rand p Eckpunkte liegen. Dieses Polygon P soll in

/ konvexe Polygone P} zerlegt werden. Wir setzen voraus, dass keine Ecke eines

Polygons P oder P} innerer Punkt einer Kante eines anderen Polygons ist. Wir
betrachten das zerlegte Polygon P und bezeichnen die Gesamtzahl der (äusseren und
inneren) Eckpunkte mit e, die Gesamtzahl der Kanten mit k.

Der Eulersche Polyedersatz besagt

e+f=k+l. (1)

Mit/ bezeichnen wir die Anzahl der /-Ecke (i>3) unter den Polygonen Pp
Dann gilt

f=f3+f4+fS+f6+ ¦ • ¦ (2)

*=1/_(3/3+4/4+5/5+-••+/>). (3)

Setzt man (2) und (3) in (1) ein, so erhält man

/3 + 2/4+3/5 + 4/6+ • • • =2e-p-2. (4)

Für die folgenden Untersuchungen unterscheiden wir zwei Fälle, je nachdem
ob durch die Zerlegung in P innere Eckpunkte gegeben sind oder nicht.

Fall A. In P liegen keine inneren Eckpunkte, d. h.

e=p. (5)

Damit lautet die Gleichung (4)

f3 + 2f4+3f5 + 4f6+5f7+- • -=/?-2. (4A)
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Dies stellt eine notwendige Bedingung dar für die Anzahlen / der konvexen
/-Ecke, aus denen das konvexe p-Eck P ohne innere Eckpunkte kombiniert werden
kann. Weil wir auch die Umkehrung zeigen können, gilt

Satz 1. Ein konvexes p-Eck kann genau dann ohne innere Eckpunkte in konvexe
i-Ecke (i>3) so zerlegt werden, dass für jedes i genau f i-Ecke auftreten, wenn (4A)
gilt.

Beweis: Wir haben nur noch zu zeigen, dass sich zu allen nicht-negativen
ganzzahhgen Werten/, welche die Gleichung (4A) erfüllen, eine Zerlegung eines

konvexen/7-Ecks P in konvexe /-Ecke (/>3) so finden lässt, dass für jedes / genau

/ /-Ecke auftreten. Sei also P ein beliebiges konvexes p-Eck. Zeichnet man alle von
einem beliebigen Eckpunkt von P ausstrahlenden Diagonalen, so wird P in p-2
Dreiecke zerlegt. Zwei benachbarte dieser Dreiecke kann man zu einem Viereck
zusammenfassen, drei zu einem Fünfeck usw. Also kann man durch Weglassen
einzelner Diagonalen alle Lösungen von (4A) realisieren. Die entstandenen Polygone

Pj sind als Durchschnitte eines konvexen Polygons P mit Halbebenen auch
konvex.

Fall B. Innere Eckpunkte sind vorhanden, d.h.

e>p. (6)

Unter den p Randecken von P seien p 2wertige (d. h. mit genau 2 ausstrahlenden

Kanten). Weil alle Polygone Py (/= 1, ...,f) konvex sind, liegen im Inneren
von P keine 2wertigen Ecken. Ausser von den genannten p Ecken strahlen von
jedem Eckpunkt mindestens 3 Kanten aus. Jede Kante wird von 2 Eckpunkten
begrenzt. Also gilt

3e<2k+p. (7)

Kombiniert mit (1) heisst das

k<3f+p-3. (8)

Weil alle Polygone _?; (/=1> •••>./) konvex sein sollen, müssen mindestens
3 Eckpunkte von P eine Wertigkeit > 3 haben; d.h.

p^3+p. (9)

Mit (9) lautet (8)

k<3f+p-6. (10)

Kombination von (1) und (10) liefert

2f>5 + e-p. (11)
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Aus den Gleichungen (2) und (4) folgt andererseits

f<2e-p-2 (12)

Will man ein konvexes p-Eck P mit e—p>0 inneren Ecken in / konvexe
Polygone P} zerlegen, so stellen die Beziehungen (11) und (12) notwendige
Bedingungen dar, denen die Werte p, e,f genügen müssen Weil wir auch die
Umkehrung zeigen können, gilt

Satz 2. Ein konvexes p-Eck lasst sich genau dann in f konvexe Polygone
zerlegen, so dass das entstehende Netz e—p>0 innere Ecken enthalt, wenn die
Beziehungen (11) und (12) erfüllt sind

Beweis Wir haben noch folgendes zu zeigen Wenn positive ganze Zahlen
p,e,f den Beziehungen (6), (11) und (12) genügen, dann lassen sich konvexe Polygone

Pi, Pf finden, aus denen sich ein konvexes p-Eck P mit einer Gesamtecken-
zahl e zusammensetzen lasst Um dies zu beweisen, zeigen wir zunächst, dass zu
jedem Tripel positiver ganzer Zahlen/?, e,/ die der Forderung

/> 2,5 + -^-,/minimal (110

genügen, sich konvexe Polygone Px, Pf finden lassen, aus denen sich em
konvexes p-Eck mit einer Gesamteckenzahl e zusammensetzen lasst Wir beweisen die
geometrische Realisierbarkeit von (IT) durch Induktion nach e—p Sei e-/?=l
Aus (IF) folgt/= 3 Die Realisierbarkeit erkennt man aus Figur 1 (Das/?-Eck ist
in der Figur 1 als Kreis gezeichnet, weil die Realisierbarkeit unabhängig von dem
Wert von/?> 3 sein muss Nun lassen wir e—p jeweils um 2 wachsen Dann wachst
nach (IF)/jeweils um 1 Die Möglichkeit der Realisierung erkennt man aus den
Figuren la und lb Damit ist die Realisierbarkeit von (IT) fur alle ungeraden
Werte von e—p klar Betrachten wir jetzt den Fall e—p 2 Aus (IF) folgt/= 4

Die Realisierbarkeit erkennt man aus Figur 2 Nun lassen wir e—p jeweils um 2

wachsen Dann wachst nach (IF)/jeweils um 1 Die Möglichkeit der Realisierung

Figur 1 ^^- ^-^ Figur la
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Figur lb Figur 2

Figur 2a Figur 2b

erkennt man aus den Figuren 2a und 2b. Damit ist auch für alle geraden Werte
von e—p die Realisierbarkeit von (IF) klar. Zerlegt man die in der so konstruierten
Realisierung von (IF) auftretenden Polygone mit mehr als drei Ecken durch sich
nicht schneidende Diagonalen in Dreiecke, so erhöht sich die Flächenzahl/. Diese
Flächenzahl kann man so lange erhöhen, bis das Polygon P in lauter Dreiecke
zerlegt ist. Die Anzahl dieser Dreiecke ist wegen (4) gleich der rechten Seite

von (12).
Satz 2 macht eine Aussage über die Realisierbarkeit konvexer Polygonzerlegungen

in Abhängigkeit von p, e,f. Nun wollen wir anstelle von / die Werte

/ (/> 3) ins Spiel bringen. Aus (2), (4) und (11) ergibt sich

3/3 + 2/4+/5-/7-2/8- >12- P- (13)

Die Beziehungen (4) und (13) stellen in dem durch (6) definierten Fall B
notwendige Bedingungen dar für die Anzahlen/ der konvexen /-Ecke, aus denen sich
das konvexe Polygon P bei vorgegebenen Werten für p und e zusammensetzen
lässt. Wieder stellt sich die Frage nach der Umkehrung. Sind (4), (6) und (13)
hinreichende Bedingungen in dem Sinn, dass sich zu allen nicht-negativen ganzzahhgen

Werten fürp,e,f3,f4,f5, welche den Beziehungen (4), (6) und (13) genügen,
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eine konvexe Polygonzerlegung realisieren lässt? Diese Frage ist zu verneinen, wie
schon ein einfaches Beispiel zeigt. Gegeben sei/? 3, e=6,/3 2,/4 l,/s= 1,/Ä 0

(h>6). Die genannten Werte erfüllen ersichtlich die Gleichung (4) und die
Ungleichungen (6) und (13). Aber es kann keine passende Polygonzerlegung dazu
geben, wie man durch folgende Überlegung sieht: Wir wählen im Innern eines
Dreiecks P mit den Ecken EX,E2,E3 drei Punkte (innere Ecken) A,B,C derart, dass

EXABCE2 ein konvexes Fünfeck ist. Ohne dieses Fünfeck zu zerstören können wir
(bei beliebigem Verbinden von Ecken) kein konvexes Viereck finden.

Weil, wie dieses Gegenbeispiel lehrt, (4), (6) und (13) noch keine hinreichenden

Bedingungen für die Realisierbarkeit sind, erhebt sich die Frage: Welche
Forderungen muss man zusätzlich stellen, um hinreichende Bedingungen zu erhalten?
Mit dem folgenden Satz soll ein erster Schritt zur Beantwortung dieser Frage
gemacht werden.

Satz 3. Seienp, e,f3,f4,f5,... nicht-negative ganze Zahlen mit den Eigenschaften
a) sie genügen der Gleichung (4),
b) esistop,
c) allef sindfür l> 4 Null, bis aufhöchstens eines, das wir ggf.fy nennen,
d) fy=l
e) e>y+l.
Dann gibt es eine dazu passende Zerlegung eines konvexen p-Ecks P in konvexe

PolygonePx,..., Pf.

Für den Beweis unterscheiden wir zwei Hauptfälle.
Fall 1. Für /> 4 sind alle/Null. Dann wird aus (4)

f3 2e-p-2. (40

Die Realisierbarkeit dieser Gleichung (40 folgt unmittelbar aus dem Beweis

von Satz 2.

Fall 2. Es gibt cinfy 1 0+3). Die Gleichung (4) lautet nun

f3 2e-p-y. (4")

Fall 2.1. y<p-l.
P sei ein beliebiges konvexes p-Eck. Man zeichne ein konvexes y-Eck Px in P

derart, dass Px und P in y- 1 Kanten übereinstimmen. Alle inneren Eckpunkte
legen wir in das konvexe Vieleck P\PX. Es besitzt/?-y+ 2 Randecken, enthält e-p
innere Eckpunkte und lässt sich (gemäss Fall 1) in

f3 2(p-y+2 + e-p)-(p-y+ 2)-2 2e-p-y (14)

Dreiecke zerlegen - in Übereinstimmung mit (4").

Fall 2.2. y>p-l.
Zunächst betrachten wir den Sonderfall e=y+l. Dann muss nach (4") gelten

/3=v-/?+2. (15)
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Die Realisierbarkeit von (15) erkennt man leicht: P sei ein beliebiges konvexes
p-Eck. Man zeichne ein konvexes v-Eck Px in P derart, dass Px und P in /? — 2 Kanten

übereinstimmen. Die y—p + 2 innerhalb P liegenden Seiten von Px bilden
zusammen mit der in Px nicht enthaltenen Ecke von P y—p + 2 Dreiecke. Der
allgemeine Fall e>y+ 1 wird so geklärt, dass man zu obiger Figur innere Eckpunkte
hinzufügt und feststellt, dass sich dadurch die Anzahl der Dreiecke um das Doppelte

der Anzahl der hinzugefügten Eckpunkte vergrössert - in Übereinstimmung
mit (4").

Es erscheint bemerkenswert darzulegen, dass die auf die Fälle 1 bzw. 2

bezogene Ungleichung (13), nämlich

3/3> 12-/? (130

bzw.

3f3>6-p+y (IT)

aus (4), (6) und e) folgt: Weil nur ganzzahhge Werte in Frage kommen, bedeutet (6)

e^.p+1. (16)

In der Ebene gibt es keine Zweiecke; daher ist

2/>_>6. (17)

Aus (16) und (17) folgt

3e^9+p. (18)

Setzt man (18) in (40 ein, so erhält man (130-
Aus (16) und e) folgt

3 + 2y+p<3e. (19)

Setzt man (19) in (4") ein, so erhält man (13").
Also ist (unter den Voraussetzungen a) bis d) des Satzes 3 die Forderung e)

schärfer als (13). Dass man in Satz 3 nicht einfach e) durch (13) ersetzen kann,
zeigt das Gegenbeispiel/? 3, e= 6,/3 3,/4=/5 0,/6= 1,/Ä 0 (h> 1).

Ändert man die ursprüngliche Fragestellung so ab, dass man e und /6 nicht
vorgibt, sondern geeignete Werte annehmen lässt, dann kann man unschwer aus
dem Theorem von Eberhard [1] und analogen Sätzen [2, 3] Ergebnisse für konvexe
Polygonzerlegungen herleiten. Das Theorem von Eberhard zum Beispiel besagt:
Für alle nicht-negativen ganzen Zahlen/3,/4,/5,/7,/8,..., die der Gleichung

^(6-/)/= 12 (20)

z__3
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genügen, gibt es ein dreidimensionales konvexes Polyeder mit lauter 3wertigen
Ecken, das jeweils/ konvexe /-Ecke als Seitenflächen besitzt. Nun ist es bezüglich
jeder Seitenfläche möglich, ein Schlegel-Diagramm des Polyeders zu zeichnen.
Ein Schlegel-Diagramm stellt eine Zerlegung eines konvexen Polygons P in konvexe
Polygone Pj dar. Aus dem Theorem von Eberhard folgt also:

Es seien / f/>3, /+6j nicht-negative ganze Zahlen, die der Gleichung (20)
genügen, undf sei ein nicht-verschwindendes dieser f. Dann gibt es dazu ein konvexes

j-Eck P, das in konvexe Polygone so zerlegt werden kann, dass die Anzahl der i-Ecke
(i^rj)fi ist; die Anzahl derj-Ecke istfj— 1. Dabei sind alle Ecken 3wertig.

Gerd Blind, Universität Stuttgart
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Über gewisse «-komponierbare Graphen

Im folgenden sei mit F stets ein endlicher, schlichter und zusammenhängender
Graph1) bezeichnet, welcher mindestens eine Kante enthält.

Es werde der Begriff des Kompositionsgrades2) eines Graphen eingeführt,
welcher sich auf die «Zusammensetzung» eines Graphen aus besonders
«einfachen» Graphen bezieht.

Unter dem Kompositionsgrad c(T) eines Graphen F sei die kleinste unter
den natürlichen Zahlen z verstanden, für welche F eine Darstellung

als Vereinigung von geeigneten Bäumen Bt^F besitzt. Ein n-komponierbarer Graph
sei ein Graph _T mit c (F) n.

Für jeden Graphen F besteht nun die Abschätzung

ax(F)^c(F)(a0(F)-l), (1)

wobei mit a0(F) bzw. ax(T) die Anzahl der Knotenpunkte bzw. Kanten von F

1) Die Definitionen aller in der vorliegenden Note verwendeten und nicht näher definierten
graphentheoretischen Begriffe findet man bei K. Wagner [1].

2) Man vergleiche dazu auch [3] und [4].
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