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2 1
——(10g2) } ——2—logx+2.

Letzteres ist fur alle x grosser als in Satz 2 behauptet.
Eine verniinftige Abschidtzung nach oben scheint sich nicht so einfach zu

ergeben. Fir d=1 kann man O(\/; ) erhalten, aber nach [2] oder [3] gilt d=
(r,a (r)) > 1 fiir fast alle r. Direkte Anwendung der Abschitzung aus [5] ergibt wohl
nur O (x).

Heiko Harborth, Braunschweig
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Kleine Mitteilungen

On Support Functions of Compact Convex Sets

The support function s (K,.) of a compact convex set K in d-dimensional
euclidean space E is defined by A (K,u)=sup{<x,u>|x € K} for each u e E?
where <.,.> denotes the ordinary inner product in E¢ A well known result in the
basic theory of finite dimensional convexity is the following:

Theorem. A positively (linear) homogeneous convex function h on E° is the
support function h (K,.) of some compact convex set K.

There are two proofs of this result in the literature, the first using directional
derivatives of 4 (see, for example, [1], [2]), the second using polar cones (the sketch
in [4]) or, equivalently, conjugate functions [3].

What is somewhat surprising is that there is a third proof, which more directly
and intuitively makes use of the convexity of the function A. Indeed, perhaps the
most curious feature of this proof is that it seems not to have been found earlier.

The new proof can be outlined very simply. If we write

H (W={xe EY <x,u><hw)}, Hu={xekE <x,u>=h(u),
for each u € E4 then the set

K={xe E <x,u><h@)forallue E4=N{H ™ (u)|u e E%
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is clearly compact and convex, though not obviously non-empty. So, since
K< H™ (u) for each u € E% to prove that A is the support function of X, it is enough
to show that KNH (u)# @for each u € EY. This we do by showing that H~ (v))N- - -
NH ™~ (v)NH (u)#0 for each choice of v, ..., v;€ E% and then applying Helly’s
theorem in H (u) to the family of sets H— (v)NH (u). (Since H (0)= E¢, we need only
consider u#o0.) We remind the reader that (one version of) Helly’s theorem states
that if an arbitrary family of closed convex sets in a (d— 1)-dimensional space has
the property that the intersection of every d of the sets is non-empty, and some
finite intersection of the sets is bounded, then the whole family has a non-empty
intersection. Since it is clear that H= (v)NH  (—v)N-- -NH ™ (vpNH  (—v,) is
bounded whenever {vy, ..., v} is linearly independent, Helly’s theorem is applicable
in this case. )

So, our main task is to show that each intersection CNH (1) is non-empty,
where for brevity we shall write C=H ™~ (v))N---NH ™ (v;). We need to consider five
separate cases. In the first two, we suppose {v;, ..., v} to be linearly dependent. In-
ductively, we may assume the theorem to hold in d— 1 or fewer dimensions (the case
d=1 will be implicitly established below), so that C is a non-empty cylinder. If
u e lin{v, ..., v;} (lin denotes the linear hull), then CNH ™ (u) is a non-empty cylin-
der supported by H (u); otherwise C contains a line which is not parallel to H (u),
and so meets H (). In either case, our intersection is non-empty.

For the remaining cases, then, we take {v,, ..., v;} to be linearly independent.
Thus C is a simplicial cone, with apex a=H (v{))N- - -NH (v,), and for each j=1, ..., d,
the intersection of C with all its bounding hyperplanes H (v;) except H (v)) is a ray
(half-line) L;, along which < x,v;> decreases without limit from <a,v;> =h(v)).

Since {vy, ..., v,} is a basis of E% we can write each (non-zero) u € E4in the form
u=4A4vi+---+2i4v, for some unique real numbers 4y, ..., 4, Then, along L,

d d
<X,u> =Z /1,-<x,v,-> =Z }.,h(v,)-i—}.]( <X,V;> "‘h(vj))
i=1

=1

=<a,u>+tA(<x,v>—<a,v>),

since <x,v,> =h(v))= <a,v;> fori#j.

We now have three cases to consider. If some 4; are positive and some negative,
then whatever the value of <a,u> may be, we can choose some j=1, ..., d, so that
the value of <x,u> along L; will assume the value % ().

Secondly, if each 4;>0 (with at least one positive), then the condition that 4 is
positive homogeneous and convex implies that

d
h(u)s}:/l,-h(v,-)= <a,u>.
i=1

Now if 4;>0, then along L;, <x,u> decreases indefinitely, and thus some-
where takes the value 4 (u).

Finally, if all ,<0, we observe that 0=~h (o)< h (u)+ h(—u), so that (with —u
instead of  in the argument above)
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d
Rz —h(—uw)= =2, (—A)h(v)=<a,u> .

i=1

Then if 4;<0, along L;, <x,u> increases indefinitely, and will therefore some-
where take the value A (u).
Hence we have established in all cases that CNH (u)#@, and so, by our earlier
remarks, we have completed the proof of the theorem.
Peter McMullen, University College, London
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Die Eindeutigkeit der Verbindungsebene im Raum

Wird Hilberts absoluten rdumlichen Inzidenzaxiomen das (starke) Parallelen-
axiom beigefugt ([1], §2, §22), dann erweisen sich gewisse vorher notwendige For-
derungen im erweiterten System als iiberfliissig (s. [2]). Indessen ist das Postulat,
dass drei nichtkollineare Punkte in hochstens einer Ebene liegen, zur Begriindung
der rdumlichen affinen Geometrie notwendig. Wiirde es namlich weggelassen, so
konnte man sich mehrere Ebenen denken, die beziiglich der auf ihnen liegenden
Punktmengen vollstindig @ibereinstimmten. Doch selbst wenn man diese Besonder-
heit des Hilbertschen Systems, in dem Ebenen Grundobjekte und nicht Punkt-
mengen sind, axiomatisch ausschliesst, so hat man sich noch nicht auf die affine
Geometrie beschriankt. In der Tat lassen sich (genau) 39 nichtaffine Modelle
konstruieren, die den erwdhnten Forderungen geniigen und in denen auf keiner
Geraden mehr als zwei Punkte liegen. Sie umfassen allesamt fiinf oder sechs
Punkte und konnen, da Geraden und Punktpaare sich eineindeutig entsprechen,
durch blosses Auffithren der zu den einzelnen Ebenen gehdrenden Punktmengen
charakterisiert werden. Hervorgehoben sei das durch

ABCD, ABCE, ABDE, ACDE

beschriebene minimale Modell, sowie das einzige mit nicht nur Vierpunkte-Ebenen,
dessen Struktur aus der Aufzéhlung

AB, ABCD, ABCE, ABCF, ABDE, ABDF, ABEF, CDEF

abzulesen ist.
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Entscheidend ist nun aber, dass das Postulat der Eindeutigkeit der Verbin-
dungsebene gestrichen werden kann, wenn (neben dem Erheben der erwihnten
schwachen Identitidtsforderung) verlangt wird, dass auf einer Geraden wenigstens
drei Punkte liegen. Dann kann nadmlich mit Hilfe des Eindeutigkeitsteils des
Parallelenaxioms gezeigt werden, dass jeder Punkt einer Ebene mit zwei Punkten
eines festen, in ihr liegenden Geradendreiecks kollinear ist. Das bedeutet aber,
dass er mit jeder durch das Dreieck gehenden Ebene inzidiert.

Es sei noch bemerkt, dass wenn die in [2] vorgeschlagene Variante des Paral-
lelenaxioms benutzt wird, das Postulat der Eindeutigkeit der Verbindungsebene
auch dann uberfliissig ist, wenn man auf die Voraussetzung kollinearer Punktetripel
verzichtet.

D. Ruoff und J. Shilleto, University of Regina, Regina, Canada
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Aufgaben

Aufgabe 749, Fiir ein ebenes Dreieck bezeichnen r den Inkreisradius, F den
Mittelpunkt des Feuerbach-Kreises, G den Schwerpunkt, H den Hohenschnittpunkt
und 7 den Inkreismittelpunkt. Man beweise IF:(IG- IH)<3:4r mit Gleichheit
genau fir gleichschenklige Dreiecke. I. Paasche, Miinchen, BRD

Losung: Bekanntlich liegen die Punkte H, F, G auf der Eulerschen Geraden des
Dreiecks so, dass gilt:

HG=4FG=4HF/3 (1

Die drei Ptoleméischen Ungleichungen (Vgl. z.B. El. Math. 30 (1975) S.133)
" fur die vier Punkte I, H, F, G liefern mit (1):

4JF<3IG+IH; 3IG<4lF+IH; IH<A4IF+3IG (2.1,2,3)

mit Gleichheit fur I, H, F, G auf einem Kreis oder auf einer Geraden. Da H,F, G
stets auf einer Geraden liegen, gilt das Gleichheitszeichen dann, wenn auch I sich
auf dieser Geraden befindet, d.h., fiir gleichschenklige Dreiecke. Weiter ist bekannt,
dass der Inkreis und der Feuerbach-Kreis eines Dreiecks einander beriihren, d. h.
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