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-(log2)J-ylogx + 2.

Letzteres ist für alle x grösser als in Satz 2 behauptet.
Eine vernünftige Abschätzung nach oben scheint sich nicht so einfach zu

ergeben. Für d= 1 kann man 0(Vx) erhalten, aber nach [2] oder [3] gilt d=
(r,o (r)) > 1 für fast alle r. Direkte Anwendung der Abschätzung aus [5] ergibt wohl
nur O (x).

Heiko Harborth, Braunschweig
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Kleine Mitteilungen

On Support Functions of Compact Convex Sets

The support function h(K,.) of a compact convex set K in d-dimensional
euchdean Space Ed is defined by h(K,u) sup{<x,u> \x e K] for each u e Ed,

where <.,. > denotes the ordinary inner product in Ed. A well known result in the
basic theory of finite dimensional convexity is the following:

Theorem. A positively (linear) homogeneous convex function h on Ed is the

support function h (K,.) ofsome compact convex set K.

There are two proofs of this result in the literature, the first usmg directional
derivatives of h (see, for example, [1], [2]), the second using polar cones (the sketch
in [4]) or, equivalently, conjugate functions [3].

What is somewhat surprising is that there is a third proof, which more directly
and intuitively makes use of the convexity of the function h. Indeed, perhaps the
most curious feature of this proof is that it seems not to have been found earlier.

The new proof can be outlined very simply. Ifwe write

H~(ü)={x e Ed\ <x,u> ^h(u)}, H(u)={x e Ed\ <x,u> =h(u)},

for each u e Ed, then the set

K= {x e Ed\ <x,u> ^h(u) for all u e Ed} C\{H~(u)\u e Ed}
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is clearly compact and convex, though not obviously non-empty. So, since

K^H~ (u) for each u e Ed, to prove that h is the support function of K, it is enough
to show that KC\H(u)=fi 0for each u e Ed. This we do by showing that H~(vx)fi • • •

nH~(vd)nH(u)^0 for each choice of vh vdeEd, and then applying Helly's
theorem in H(u) to the family of sets H~(v)f\H(u). (Since H(o) Ed, we need only
consider u^o.) We remind the reader that (one version of) Helly's theorem states
that if an arbitrary family of closed convex sets in & (d— 1 )-dimensional space has
the property that the intersection of every d of the sets is non-empty, and some
finite intersection of the sets is bounded, then the whole family has a non-empty
intersection. Since it is clear that H~(vx)f)H~(-vx)f)• • t\H~ (vd)VlH~ (- vd) is

bounded whenever {vh vd} is linearly independent, Helly's theorem is applicable
in this case.

So, our main task is to show that each intersection Cf)H(u) is non-empty,
where for brevity we shall write C= H~ (vx)f) • • • f\H~ (vd). We need to consider five
separate cases. In the first two, we suppose {vb vd] to be linearly dependent.
Inductively, we may assume the theorem to hold in d— 1 or fewer dimensions (the case

d= 1 will be implicitly estabhshed below), so that C is a non-empty cylinder. If
u e lin{vb v^} (lin denotes the linear hüll), then CC\H~(u) is a non-empty cylinder

supported by H(u); otherwise C contains a line which is not parallel to H(u),
and so meets H(ü). In either case, our intersection is non-empty.

For the remaining cases, then, we take {vh v^} to be linearly independent.
Thus Cis a simplicial cone, with apex a H(vx)f) • • • f)H(vd), and for eachy 1,..., d,
the intersection of C with all its bounding hyperplanes H(vt) except H(Vj) is a ray
(half-line) Lp along which < x, Vj> decreases without limit from < a, v;> h (vy).

Since {vb v^} is a basis of Ed, we can write each (non-zero) u e Ed in the form
u kx vx+ • • • +kdvd, for some unique real numbers kx,..., kd. Then, along Lp

d d

<x,w> =£ A,<cx,v,> =Z klh(vl) + kJ(<x,vJ> -h(Vj))
i=\ i=\

<a,u> +kj(<x,Vj> - <a,Vj>),

since < x, vt > h (vz) < a, vt > for / i=j.
We now have three cases to consider. If some kx are positive and some negative,

then whatever the value of <a,u> may be, we can choose somey"= 1, d, so that
the value of < x, u > along L} will assume the value h (ü).

Secondly, if each 1,^0 (with at least one positive), then the condition that h is

positive homogeneous and convex implies that

d

^(w)^Z^^(v/)= <^u> •

/=1

Now if kj>0, then along Lp <x,u> decreases indefinitely, and thus some-
where takes the value h (ü).

Finally, if all kt ^ 0, we observe that 0 h (o) ^ h (u) + h (- u), so that (with - u

instead of u in the argument above)
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d

h(u)^-h(-u)^ -S (-k^h(vt)= <a,u>
1= 1

Then if k;<0, along Lp <x,u> mcreases indefinitely, and will therefore some-
where take the value h (u)

Hence we have estabhshed m all cases that Cf\H(u)^0, and so, by our earlier
remarks, we have completed the proof of the theorem

Peter McMullen, University College, London
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Die Eindeutigkeit der Verbindungsebene im Raum

Wird Hilberts absoluten raumlichen Inzidenzaxiomen das (starke) Parallelenaxiom

beigefugt ([1], §2, §22), dann erweisen sich gewisse vorher notwendige
Forderungen im erweiterten System als überflüssig (s [2]) Indessen ist das Postulat,
dass drei nichtkollineare Punkte in höchstens einer Ebene liegen, zur Begründung
der räumlichen affinen Geometrie notwendig Wurde es namhch weggelassen, so
konnte man sich mehrere Ebenen denken, die bezuglich der auf ihnen liegenden
Punktmengen vollständig übereinstimmten Doch selbst wenn man diese Besonderheit

des Hilbertschen Systems, in dem Ebenen Grundobjekte und nicht
Punktmengen sind, axiomatisch ausschhesst, so hat man sich noch nicht auf die affine
Geometrie beschrankt In der Tat lassen sich (genau) 39 nichtaffine Modelle
konstruieren, die den erwähnten Forderungen genügen und in denen auf keiner
Geraden mehr als zwei Punkte liegen Sie umfassen allesamt fünf oder sechs

Punkte und können, da Geraden und Punktpaare sich ememdeutig entsprechen,
durch blosses Auffuhren der zu den einzelnen Ebenen gehörenden Punktmengen
charakterisiert werden Hervorgehoben sei das durch

ABCD, ABCE, ABDE,ACDE

beschriebene minimale Modell, sowie das einzige mit nicht nur Vierpunkte-Ebenen,
dessen Struktur aus der Aufzahlung

AB, ABCD, ABCE, ABCF, ABDE, ABDF, ABEF, CDEF

abzulesen ist
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Entscheidend ist nun aber, dass das Postulat der Eindeutigkeit der
Verbindungsebene gestrichen werden kann, wenn (neben dem Erheben der erwähnten
schwachen Identitätsforderung) verlangt wird, dass auf einer Geraden wenigstens
drei Punkte hegen. Dann kann nämlich mit Hilfe des Eindeutigkeitsteils des

Parallelenaxioms gezeigt werden, dass jeder Punkt einer Ebene mit zwei Punkten
eines festen, in ihr liegenden Geradendreiecks kollinear ist. Das bedeutet aber,
dass er mit jeder durch das Dreieck gehenden Ebene inzidiert.

Es sei noch bemerkt, dass wenn die in [2] vorgeschlagene Variante des
Parallelenaxioms benutzt wird, das Postulat der Eindeutigkeit der Verbindungsebene
auch dann überflüssig ist, wenn man auf die Voraussetzung kollinearer Punktetripel
verzichtet.

D. Ruoff und J. Shilleto, University of Regina, Regina, Canada
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Aufgaben

Aufgabe 749. Für ein ebenes Dreieck bezeichnen r den Inkreisradius, F den
Mittelpunkt des Feuerbach-Kreises, G den Schwerpunkt, H den Höhenschnittpunkt
und / den Inkreismittelpunkt. Man beweise IF:(IG IH)<l3:4r mit Gleichheit
genau für gleichschenklige Dreiecke. I. Paasche, München, BRD

Lösung: Bekanntlich hegen die Punkte H, F, G auf der Eulerschen Geraden des
Dreiecks so, dass gilt:

HG=4FG 4HF/3 (1)

Die drei Ptolemäischen Ungleichungen (Vgl. z.B. El. Math. 30 (1975) S. 133)
* für die vier Punkte /, H, F, G liefern mit (1):

4IF<3IG+ IH; 3IG<4IF+!H; IH<4IF+3lG (2.1,2,3)

mit Gleichheit für /, H, F, G auf einem Kreis oder auf einer Geraden. Da H, F, G

stets auf einer Geraden liegen, gilt das Gleichheitszeichen dann, wenn auch / sich
auf dieser Geraden befindet, d.h., für gleichschenklige Dreiecke. Weiter ist bekannt,
dass der Inkreis und der Feuerbach-Kreis eines Dreiecks einander berühren, d.h.
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