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QR in Two Dimensions

The QR process is one of the most efficient ways of determining the
characteristic values of a matrix. It is a unitary analog of the LR process of
Rutishauser [1]. However even the best proofs available are unfit for beginners'
consumption and the later developments of the process are not yet fully understood.
We present here a discussion of the two-dimensional case, in its simplest form. The
formal description of the process will be given in the «-dimensional case.

Let A be a complex nxn matrix. It is well-known that A can be written in the
form

A QR (1)

where Q is unitary and R upper triangulär. This is essentially the result of the
Gram-Schmidt orthogonalization process. Moreover, if we require the diagonal
elements of R to be positive, then the representation (1) is unique.

The ÖR-algorithm consists in deriving sequences of matrices {An}, {Qn},
{Rn} from A=AX by repeated use of (1). Given An=QnRn we form the reversed

product An+ x RnQn and factorize this as An+ x Qn + xRn+ x. Since

An+X RnQn= (Q$Qn)RnQn=Q*n(QnK)Qn=Q*nAnQn (2)
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the matrices {An} are all (unitanly) similar to A and have the same charactenstic
values as A The basic fact is that, in certain circumstances, the sequence {An}

converges geometncally to an Upper triangulär matrix, which has the charactenstic
values of A on the diagonal For discussions of this result see the original papers of
H Rutishauser [1], J G F Francis [2], V N Kublanowskaja [3] and more
recent work of B Parlett [4, 5, 6], A S Householder [7], G W Stewart [8]
and J H Wilkinson [9]

In practice, appropriate "shifts" are mtroduced and quadratic convergence can
be obtained

For simphcity we discuss the real two dimensional case Let

=u-y

be real and ummodular, det ^4 1 We compute the QR decomposition If, where
c cos6,s sm6,

—n-_-_ [o3
_y öj Ls —cj L0 CJ

then

c a(a2 + y2) xl2, s=y (a2 + y2) l/2

Next

Vc sl Va ß~\ Vc sl==r(a + S-(a/(a2+y2))y-ß-(y/(a2+y2))l
2 ls-c\ ly ö] ls -cj L -y/(a2 + y2) a/(a2+y2) J

Ifwe write

"«« ßn

then the recurrence relations determinmg an+ x, yn+ x are

^n+\s=s(^i + Sl)-(an/(al + yl))
«=1,2, (3)

yn+\=-yn/tä+yi)>

What we have to prove from (3) is that, in certain circumstances

an-+k,yn-~>0

where k is an appropriate characteristic value of A The Solution to non-lmear
Systems ofdifference equations such as (3) is not usually easy
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We assume that A has a dominant charactenstic value k This means that A
has distmct real characteristic values which are reciprocal, since A is ummodular
We may assume that k is positive for otherwise we could deal with -A Hence

k + k l a + ö k, say, where k > 2

We discuss an example first We normahze the matrix

to a ummodular

2/V3 -1/V3-

with charactenstic roots \^3, l/\/3
Application of the relations (3) gives

«=i «=2 n=3 n=4
a„/V- 2/3 14/15 122/123 1094/1095

y„/V3= -1/3 1/5 -3/41 9/365

which mdicates that a„-> \/3, y„->0 The general form of an, yn can be conjectured
from the above table and estabhshed by induction We find

an 3x9" x+l (-l)nyn 2x3" l

V3 3(9nl+l)' V3 3(9" l+l)'
so that the convergence of {yn} is ultimately geometrie with common ratio % k~2

while that of {an} is ultimately geometrie with common ratio %=k~4

In the general real 2x2 case we can prove that

p(a2 + y2 + aq)-(a + q)
a"+l '

(a + q)2 + y2
(4)

^+1 (-D\„. „^„2,„ r(pg+i)
(a +^+ y2

where v^^-A"", jp=Jp„ v„+1/vw, tf 4„ -vn-\frn Since/?„~A, ^--A"1 this

gives <*„-?/., y„->0
In order to establish (4) we write xn an, yn= (- l)n yn m (3) to get

xn+\==k-(xn/(x2+y2)),yn+x=yn/(x2+y2), (5)
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which we combine as zn+ x k- zn/(znzn), 1 e

zn+x k-z-\n=l,2, (6)

where zr =xr + iyr,zr=xr- iyr

We have therefore reduced our problem to that of the Iteration of the
fractional hnear transformation

kz-l
w= (7)

z

This is a well-known problem An essentially geometrie Solution is given,
e g by T J FA Bromwich [10, p 22, ex 4] This depends on the fact that (7) can be

represented in the form

w—k
„ ,,/ z — k
k'2w-k'1

which gives

zn+x — k

fer) <7')

zx-k~x

so that zw-> k, as required We can denve (7) using the fact that a fractional linear
transformation with fixed points at 0,oo is necessarily linear, or by usmg the cross-
ratio property of fractional linear transformations For details compare, e g
Caratheodory [11, p 14] or Kreyszig [12, p 503]

A second method is simply to establish, by induction,

pzx+l
z ^zx + q

where zx a — iy and p=pn, q qn are as defined above Taking the real and

imaginary parts of (8) gives (4)
Our third method, preferable m the matrix context, follows We begin by

recalling that if

rrr aw+ß az + b
W= -, w= -

yw + o cz + d

then

H£s-»-i_-H3 n
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Thus the iteration of a fractional linear transformation is equivalent to the
powering of a matrix.

We use the following result.

Lemma. IfM is a 2 x 2 matrix with distinct characteristic values k, p then

JadX*-bcf -__(„»-0»)l
lcd{Xn-fi") -bcXn + adfi"] l '

where

is a unimodular matrix which diagonalizes M.
Proof. Either by induction or let D diag [k, p] so that T~XMT=D,

M TDT-x and

Mn={TDT~x}{TDT-x}... {TDT~ '}

TDnT-\

fa bl p" Ol r d ¦

Lc d\ LO M»\ l-c
ich gives (9), on multiplying out.

rk
We now observe that when A

—

T-(X-X-i)-*$ \~]],

a then

where A is as already defined. The rest of the discussion is a matter of elementary
algebra.

Writing as before, vn kn — k ~ n, we find from (9)

_ vn+x(xx + iyx)-vn
zn+\ xn+l~T~iyn+\ — ~

vn(xx + iyx)-vn_x

Multiplying above and below on the right by vn(xx — iyx)—vn_x and equating
real and imaginary parts shows that

1 ^«+is=(vS-vn+1vw_1)<y1/A
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where

D v2(x2x+y\)-2vn_xvnxx+ v2.x

This is another form of (4) We find that, as n -> oo,

f xn+\-^[2(k-k~x){a2+y2+l-ka}+0(k~2n)]/D,
(10)

yn + x (k-k-x)2y/D,

where

D [(a-k~x)2+y2]k2n+0(l)=0(Aln)

The relations (10) establish the convergence of the gjR-process
Note that when the matrix A is Symmetrie, as well as ummodular, we have

aö — y2=l, le, a(k — a) — y2=l, le a2+y2+l ka so that (10) gives
xn — k O (k~4n),yn ö(k~2n), in agreement with the numencal results m the special
case

Erwin Kreyszig (University ofWmdsor, Canada) and
John Todd (California Institute ofTechnology, Pasadena, USA)

REFERENCES

[I] H Rutishauser Solution of Eigenvalue Problems with the LR Transformation, in Further
contributions to the Solution of simultaneous linear equations and the determinatwn of eigenvalues
National Bureau of Standards, Apphed Math Senes 49, 47-81 (1958)

[2] J G F Francis, The QR-Transformatwn, Parts 1, 2, Computer J 4, 265-271, 332-345 (1961/2)
[3] V N Kublanowskaja, On Some Algonthms for the Solution of the Complete Problem of Proper

Values, Z VyCisl Mat i Mat Fiz 1, 555-570 (1961), U S S R Computational Math and Math
Phys 7, 637-657 (1961)

[4] B Parlett, Convergence ofthe QR Algonthm, Numer Math 7, 187-193 (1965)
[5] B Parlett, The Development and Use ofMethods ofLR Type SIAM Review 6, 275-295 (1964)
[6] B Parlett, Presentation geometrique des methodes de calcul des valeurs propres Numer Math 21,

223-233(1973)
[7] A S Householder, The Theory ofMatrices in Numencal Analysis (Blaisdell, 1964)
[8] G W Stewart, Introduction to Matrix Computatwns (Academie Press, New York 1973)
[9] J H Wilkinson, The Algebraic Eigenvalue Problem (Clarendon Press, Oxford 1965)

[10] T J l'A Bromwich, An Introduction to the Theory of Infinite Series, 2nd ed (Macmillan, London
1926)

[II] C Caratheodory, Conformal Representation (University Press, Cambndge 1937)

[12] E Kreyszig, Advanced Engineering Mathematics, 3rd ed (Wiley, New York 1972)


	QR in two dimensions

