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OR in Two Dimensions

The QR process is one of the most efficient ways of determining the
characteristic values of a matrix. It is a unitary analog of the LR process of
RUTISHAUSER [1]. However even the best proofs available are unfit for beginners’
consumption and the later developments of the process are not yet fully understood.
We present here a discussion of the two-dimensional case, in its simplest form. The
formal description of the process will be given in the n-dimensional case.

Let A be a complex n X n matrix. It is well-known that 4 can be written in the
form

A=0R (1)

where Q is unitary and R upper triangular. This is essentially the result of the
Gram-Schmidt orthogonalization process. Moreover, if we require the diagonal
elements of R to be positive, then the representation (1) is unique.

The QR-algorithm consists in deriving sequences of matrices {4,}, {Q,},
{R,} from A=A, by repeated use of (1). Given 4,=Q,R, we form the reversed
product 4, , ;=R,0, and factorize thisas 4, 1= Q, . R, ;. Since

An+ 1= RnQn = (Q::Qn) RnQn = Q::(Qan) Qn = Q;’;AnQn (2)
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the matrices {4,} are all (unitarily) similar to 4 and have the same characteristic
values as 4. The basic fact is that, in certain circumstances, the sequence {4,}
converges geometrically to an upper triangular matrix, which has the characteristic
values of 4 on the diagonal. For discussions of this result see the original papers of
H. RUTISHAUSER [1], J.G.F. Francis [2], V.N. KuBLANOWSKAJA [3] and more
recent work of B. PARLETT [4, 5, 6], A.S. HOUSEHOLDER [7], G.W. STEWART [8]
and J. H. WILKINSON [9].

In practice, appropriate “shifts” are introduced and quadratic convergence can
be obtained.

For simplicity we discuss the real two dimensional case. Let

=l 3l

be real and unimodular, det A=1. We compute the QR decomposition. If, where
c=cosf,s=sin 0,

s M R O R

then
c=a (a2+y2)“1/2,s=y(a2+y2)‘1/2.
Next

{42=[c s} [a ,b’] |:c _s]___[(a+5—(a/(az+y2)) y—ﬂ—(y/(a2+y2))].

s—cd Ly ol Ls —y /(a2 +7?) a/(a*+7?)
If we write
A= [a,, h ]
" Ly, 4,
then the recurrence relations determining @, 1, ¥ ,+ 1 are

an+1=(al+61)_(an/(at21+7r21 )~
n=12, ... 3)

Vat1=—7a/(@Z+73),
What we have to prove from (3) is that, in certain circumstances

a,~4,y,—0

where 1 is an appropriate characteristic value of 4. The solution to non-linear
systems of difference equations such as (3) is not usually easy.
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We assume that 4 has a dominant characteristic value A. This means that A
has distinct real characteristic values which are reciprocal, since A is unimodular.
We may assume that 1 is positive for otherwise we could deal with — 4. Hence

A+ i '=a+5=k,say, where k>2.

We discuss an example first. We normalize the matrix
L
-1 2
to a unimodular

23 - 1/\/3]’

A=A‘=[—1\/3 2/\/3

with characteristic roots \/3, 1 /v/3.
Application of the relations (3) gives

n=1 n=2 n=3 n=4
a,/\3= 2/3 14/15 122/123 1094 /1095
va/V3= —1/3 1/5 ~3/41 9/365

which indicates that a,— /3, 7,— 0. The general form of a,, y, can be conjectured
from the above table and established by induction. We find

a, 3x9'+1 (=1yy, = 2x3"!
V3309 '+1)7 V3 309v+1)’

so that the convergence of {y,} is ultimately geometric with common ratio ;=172
while that of {a,} is ultimately geometric with common ratio =14,

In the general real 2 x 2 case we can prove that

. 1_p(az+y2+aq)—(a+q)
n+1— 2 2
(a+g)+v @)
I a))
yn+l—( l) (a+q)2+}’2

where v,=A"— 1", p=p, =V, 1/Vn 4= 0= —Vp_1/V, Since p,~ A, g,~ — A~ ! this
givesa,—4,y,—0.
In order to establish (4) we write x,=a,, y,=(—1)"y, in (3) to get

xn+lzk_—(xn/(x%'{'y%))ayn—i-l=yn/(x%1+ygz), (5)
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which we combine as z,, =k —2Z,/(z,Z,), i.e.,
- -1,
Zy1=k—z;',n=12,..., (6)
where z,=x,+iy,, Z2,=x,— iy,.

We have therefore reduced our problem to that of the iteration of the
fractional linear transformation

z

This is a well-known problem. An essentially geometric solution is given,
e.g., by T.J.’A. BRoMwICH [10, p. 22, ex.4]. This depends on the fact that (7) can be
represented in the form

w— A z—A
= 12 ’
w—A"1 A (z—l'1> (7

which gives

Py

_Z'lil___i__l—zn( z— 4 )

Zpp1— A1 z;— A7

so that z,— A, as required. We can derive (7)) using the fact that a fractional linear
transformation with fixed points at 0,00 is necessarily linear, or by using the cross-
ratio property of fractional linear transformations. For details compare, e.g.
CARATHEODORY [11, p. 14] or KREYSZIG [12, p. 503].

A second method is simply to establish, by induction,

le+1

®

Zn+17
" z1+4q

where z;=a—iy and p=p,, q=¢q, are as defined above. Taking the real and
imaginary parts of (8) gives (4).

Our third method, preferable in the matrix context, follows. We begin by
recalling that if

aw+f az+b
= ,W=
YW+ 0 cz+d

then

W= Az18 where [A B]=[a ﬁ:l [j b]
- Cz+D C D Yy 0} dl’
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Thus the iteration of a fractional linear transformation is equivalent to the
powering of a matrix.
We use the following result.

Lemma. If M is a 2 X 2 matrix with distinct characteristic values 4, u then

n=[adi”— be " —ab (A”——,u")n] )

cd (A" — u) —bcA"+adpu
where
[
d
is a unimodular matrix which diagonalizes M.

Proof. Either by induction or let D=diag [4, u] so that T-'MT=D,
M=TDT !and

M"={TDT- Y {TDT~ ... (TDT™ 1}
=TD'T-!
_[a b] [” 0 d —
c d 0 ,u”] [—C a]
which gives (9), on multiplying out.

k
We now observe that when 4 = [l O] then

y RV
=(]—31—-1K—1/2
r=@=47) [1 1 ]

where 1 is as already defined. The rest of the discussion is a matter of elementary
algebra.
Writing as before, v,= A"— 17", we find from (9)

vn+1(x1+iy1)—vn
Vy (X1 +iy1)— vu—

Zp 1= X1 Ty =

Multiplying above and below on the right by v,(x;—iy;)—v,_; and equating
real and imaginary parts shows that

l Xpn+1= {vnvn+l(x%+y%)+vnvn——l_xl (v31+vn+lvn—l)}/Da

Yne1=E=Vor1va_ 1)1/ D,
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where
D=v2(x}+y})—2v,_ v x;+vi_|.

This is another form of (4). We find that, as n— o,

5

[ Fn1=2=20= A7) @+ 5>+ 1—ka] +OG=)D
(10)
l Yns1=A—= A" H}/D,

where
D=[(a— A" )+y] 22"+ 0 (1)=0 (™).

The relations (10) establish the convergence of the Q R-process.

Note that when the matrix A is symmetric, as well as unimodular, we have
ad—y*=1, ie, a(k—a)—y*=1, ie a?+y*+1=ka so that (10) gives
x,—A=0 (A", y,=0 (A", in agreement with the numerical results in the special
case.

Erwin Kreyszig (University of Windsor, Canada) and
John Todd (California Institute of Technology, Pasadena, USA)
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