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Eigenvalues of Real Symmetrie Matrices

Nearly every linear algebra book contains a proof that the characteristic roots
of a real Symmetrie matrix A are real. The proofs use either a complex eigenvector
of A or the compaetness of the unit sphere to find a vector which maximizes the
quadratic form <x,Ax>. The following is a new direct proof not using complex
numbers or compaetness, indeed not even using matrices.

Proposition. All characteristic roots of a Symmetrie Operator on a real finite
dimensional inner product space are real.

Proof. If A is Symmetrie and p (x) (x — a)2 + b is a factor of the minimal
polynomial of A, there is a vector v+0 such that /?(_4)v 0. Then 0< <(A — al)v,
(A—aI)v> <v, (A — al)2v> — b)<v,v> sob<0 and/? has real roots. If wis an
eigenvector for one of these roots the orthogonal complement of w is A -invariant
and A restricted to it is Symmetrie. By induction on dimension the proof as well as

the diagonalization ofA is completed.
Note that the last two sentences of the proof are needed only to guarantee

(without using complex eigenvectors) that all the irreducible factors of the characteristic

polynomial are also factors of the minimal polynomial.
Ladnor Geissinger, University of North Carolina, USA

Aufgaben

Aufgabe 745. In einem ebenen Quadratgitter bezeichne A eine «Figur», d.h.
eine nichtleere endliche Menge von Gitterquadraten, n(A) deren Anzahl. Weiter sei

q2(A) die Anzahl der Gitterquadrate in einem kleinsten, A enthaltenden
achsenorientierten Quadrat im Gitter. Schliesslich setze man d(A): n(A)/q2(A). Es wird
nun eine Folge A0,AX, ...,Am, von Figuren wie folgt definiert: A0 ist eine beliebige

Ausgangsfigur; Am entsteht aus_4m_b indem man jedes Gitterquadrat hinzufugt,

das mit einem solchen von_4m_ x mindestens eine Gitterstrecke gemeinsam hat.
Beweise, dass d(Am)-+ %(m-+ oo), unabhängig vonA0.

P. Wilker, Bern

/. Lösung. W* sei ein Quadrat im Gitter mit der Seitenzahl k. Das Glied W%

der mit W* beginnenden Folge besitzt n(W*n) 2m(m— l) + 4km + k2

Gitterquadrate und sein einhüllendes Quadrat hat deren q2(W^)= (k+ 2m)2. Beides ist
leicht einzusehen.

* Sei nun A0 eine behebige Ausgangsfigur, Wl ein Gitterquadrat innerhalb A0
und W* ein kleinstes, A0 enthaltendes Quadrat im Gitter. Die aus diesen drei
Figuren entstehenden Folgen sollen A^W^W^ lauten. Aus Wl^AQ^Wk folgt,
wie sofort ersichtlich, Wlm^Am^ W^ und hieraus

n(Wl) 2m2 + 2m+\^n(AJ^2m2 + (4k-2)m + k2 n(Wkm).
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Weiter ist (l + 2m)2^q2(Am) (k + 2m)2, und man erhält durch Kombination
dieser Ungleichungen

2m2+2m+l 2m2 + (4k-2)m + k2

(2m + k)2 ^ä{A^^ (2m+l)2 "

Hieraus folgt unmittelbar die Behauptung.
Ch. Meier, Bern

2. Lösung (mit _V-dimensionaler Verallgemeinerung). Die iV-dimensionale
Verallgemeinerung lautet: Eine «Figur» A ist eine nichtleere endliche Menge von
Gitterwürfeln der Kantenlänge 1; q(A) sei die Kantenlänge eines kleinsten A
enthaltenden Würfels aus Gitterwürfeln. _4' entstehe aus A durch Hinzunahme aller
Einheitswürfel, welche an wenigstens einer (N— l)-dimensionalen Seitenfläche von
einem Element von A anliegen. Ein Minimalwürfel zu A muss wenigstens ein Paar
von gegenüberliegenden (N— l)-dimensionalen Seitenflächen derart haben, dass

an jeder von ihnen wenigstens ein Element v bzw. w von A anliegt: denn sonst wäre
dieser Würfel nicht minimal. Beim Übergang zu A' sorgen V und W dafür, dass

q(A') q(A)+2, also, bei_4m=_4,m_1

q(Am)=q(A0)+2m. (1)

Ein achsenparalleler Würfel der Kantenlänge k enthält (als konvexe Hülle
der Seitenflächen-Mittelpunkte) ein verallgemeinertes «Oktaeder» der Diagonalenlänge

k mit dem Volumen kN/N\. Derselbe Würfel ist enthalten in einem dazu
ähnlichen und ähnhch gelegenen «Oktaeder» der Diagonalenlänge 2 k, mit dem
Volumen (2k)N/N\. Man betrachte nun einen einzelnen Gitterwürfel w0 aus einer
Figur A0 und die aus ihm entstehenden Figuren W0=wx<^Ax, wm^Am; wx
enthält ein Oktaeder der Diagonalenlänge 2, und bei jedem Schritt wächst die
Diagonalenlänge des in wm und damit in Am enthaltenen «Oktaeders» um 2, so dass für
die Anzahl der Einheitswürfel in Am gilt

Andererseits hegt der _40 umbeschriebene Minimalwürfel der Kantenlänge
q(A0) in einem «Oktaeder» der Diagonalenlänge 2q(A0), Ax in einem solchen einer
um 2 vermehrten Diagonalenlänge, und Am schliesslich in einem «Oktaeder» der
Diagonalenlänge 2 (q (_40) + m), also

Das Verhältnis der Anzahl der Gitterwürfel von Am zum Volumen des

achsenparallelen umbeschriebenen Minimalwürfels ist nach (1)
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d{Äm)~
{q(AQ) + 2mV- N^( q(4^Y

'

\ 2m
Aus (2) und (3) erhält man

\ 2m J

l -Uo) -*"

1 + ..(^o)
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und daraus schliesslich

]imd(Am) —
m-+co iv!

Bemerkung. Unabhängig von der Ausgangsfigur nähert sich Am immer mehr
einem «Oktaeder».

D. Laugwitz, Darmstadt, BRD

Weitere Lösungen sandten A. Bager (Hjorring, Dänemark), J. Binz (Bolhgen
BE), Ch. Blatter (Zürich), L. Kuipers (Mollens VS), D. Laugwitz (Darmstadt, BRD;
2.Lösung), O.P. Lossers (Eindhoven, Niederlande), Hj. Stocker (Wädenswil ZH)
und M. Vowe (Therwil BL).

Aufgabe 746. Eine Ungleichung am ebenen Dreieck mit Gleichheit genau für
das gleichseitige Dreieck habe die Gestalt

0<X=Ls2<Mr2+NrR + PR2=Y,

worin L, M, N, P von s, r, R unabhängige reelle Zahlen sind. Man bestimme bei
festem w>0 und festem v<2u die grösstmögliche Konstante A:_>0, welche die
Verschärfung

X+k(R-2r)(uR-vr)<Y

von X<> Y gestattet. I. Paasche, München, BRD

Lösung des Aufgabenstellers. Auf das unnötig einschränkende Wort «genau»
der Aufgabenstellung verzichten wir. In Spezialfällen bestimmt sich k kmsLX leicht:
4s2+k(R-2r)R^n2r2+m2rR + 27R2 (m,n reell) zeigt A:max=ll wegen des

möglichen ausgearteten Grenzfalles ^:_R:r=2:l:0, bei dem übrigens Gleichheit
4^2= 16R2 eintritt. In s2 + k(R-2r)R^3r2+4rR + 4R2 ist aus demselben Grunde,
Ä;max=0, usw. Im allgemeinen Fall stützen wir uns auf [1], Theorem 1. Die
Ungleichung

0<Ls2 + k(R-2r)(uR-vr)^Mr2+NrR + PR2(k^0), (0)
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also

0<Ls2^(M-2vk)r2+(vk + N+2uk)rR + (-uk + P)R2 (1)

bedeutet nach Division durch L genau

0<s2^(3-2T)r2+(T+4-2U)rR + (U+4)R2 (2)

mit geeigneten T, U, weil Gleichheit für s:R:r= 3^3:2:1 (gleichseitiges Dreieck)
besteht:

27 (3-2 7)l-(r+4-2£/)2 + (£/+4)4.

Nach [1] Theorem 1 zerfällt die Gesamtheit der für alle ebenen Dreiecke
gültigen Ungleichungen (2) in die beiden folgenden Klassen:

(c0) T= 0 und U^ 0 Klasse c0

(do) T<0und U= P(4-2T)~l>0 Klasse </0.

Andere allgemein gültige Ungleichungen (2) mit sonst unbeschränkten
variablen T, U gibt es nicht. Für unsere Zwecke ist nun ein anderer, ebenfalls
erschöpfender Klassenzerfall nicht nur vorteilhaft, sondern einschlägig: Jedes t aus
0_i t^ 2 gestattet die beiden komplementären Klassen

(ct) T+tU=0und £/_?_0 Klassect
(dt) T+tU<0undU^T2(4-2T)~l>0 Klasse dt.

Wir behaupten: Bei variablem / ist die Klasse c2 maximal, ihr Komplement
d2 also minimal. Beweis: Für T= -2 U-e^ -2 U besagt U= T2(4-2T)~l offenbar

4 l/k 2 Ue + e2^ 0. Jetzt erkennt man:

s 0 bewirkt U= 0, also Klasse c2

e>0 bewirkt U>0, also Klasse d2. Beweisende.

Für die Tatsache, dass (0), (1), (2) für gewisse k in Klasse c2 oder d2 liegt,
verabreden wir eine naheliegende Sprechweise: die betreffenden Werte der
Variablen k^O hegen in c2 oder d2, kurz k in c2 oder d2 (mindestens also k 0).
Wenn nun k 0 mit Parametern Tr, U in c2 liegt, so kann es maximal sein. Dann
hegt für alle w>0 und 2u — v>0 kein k in d2. Gibt es jedoch eine Verschärfung
k>0 mit Parametern T, U, so kann dieses k (nach /c 0 in c2) jeder der beiden
Extremalklassen c2 und d2 angehören: Gemäss (1) (2) (c2) (d2) folgt aus

L(r+ 2(/) (3L-M)/2 + 2(P-4L)^0 nur L(T+2U) (3L-M+2vk)/2 +
2(P—4L — uk)%0, woraus Klasse c2 (i_.) oder d2 (<) ablesbar ist. Liegt jedoch
k=0 in d2, so auch jede mögliche Verschärfung k>0. Dann tritt c2 überhaupt nicht
auf. Wir zeigen: Das optimale &=Ä;max existiert (ausser im beiseitegelassenen
Trivialfall w=v=0, wo jedes k=0 erlaubt ist) und lässt sich sogar explizit als



96 Aufgaben

Funktion von u und v bestimmen, indem T, U durch u, v, k und drei der L, M, N, P
ausgedrückt werden: Insgesamt zeigt der Koeffizientenvergleich in (1) (2)

M-2vk 3L-2LT • 1

N+2uk+vk 4L + LT-2LU -2
P-uk 4L + LU -4
M+2_V+4P + 0 + 0=27L + 0 + 0 (gewichtete Summenprobe). (3)

Liegt nun irgendein k^O in (der Klasse «kleiner» k) c2, so findet man das

grosste k kmax) aus c2 so: Aus dem Ungleichungspaar (c2) folgt das Paar

0=2L(T+2U)=-l3L-M+4P-2(2u-v)k und 0=LU=P-uk-4L, und
hieraus vermöge (3) das Paar k^(-20L+ N+4P)/(2u-v) und k^(P-4L)/u.
Das grosste noch in c2 liegende k ist also

(-20L + N+4P P-4L \k m\n\ l^max; letzteresmc2(=)oder d2(<). (4)

Die beiden Nenner sind nach Voraussetzung > 0. Die beiden Zähler sind ^ 0,
weil auch k 0 in c2 liegt. Probe: (-20L + _V+4P)/L -20 + (T' + 4-2U') + 4 •

(4+U')=T' + 2U'==0 und (P-4L)/L (4 + U)-4= U=0. - Liegt jedoch (das
vorerst nur vermutete) kmax nicht in c2, was sich schon durch irgendein k aus d2

ankündigt, so untersucht man d2 analog mittels (1), (2), (3), (d2): (-20L + N+4P)/
(2u— v)<kund

LT LT (M-3L-2vk)20< - -=P-uk-4L LU.4L-2LT 4(M+L-2vk)
Hieraus ist kmax=0 bestimmbar als die grössere der (für v^O) beiden Wurzeln

k der höchstens quadratischen Gleichung in k (für sie ist -20L + _V+4P<
2uk— vk)

(M-3L-2vk)2 4(M+L-2vk)(P-uk-4L). (5)

Dass die Diskriminante=0 ist, wird durch [1] gesichert, kann aber auch hier
durch Rechnung bestätigt werden. - Beispiele: 4s2 + k(R — 2r)(R + r) 21 R2

hat &max=5 + (l/3) V249 « 10,26; das ist eine in d2 liegende Wurzel k der Gleichung
3/c2-30/c-8 0. Das grosste k aus c2 ist k 28/3 9,3 Selbstverständlich ist
(5) wegen des ausgeschlossenen Trivialfalles w v=0 stets nach k auflösbar. Aber
die so gefundene grosste Wurzel k braucht nicht in d2 zu liegen und braucht dann
auch nicht /cmax zu sein. Dieser Fall tritt ein bei k=2 (in c2) für 4s2+k(R-2r)R^
27 R2. Auch fcmax= 11 hegt in c2, so dass d2 nicht vorkommt. Dagegen ist die grössere
der beiden Wurzel /c 0 und -4/3 von (5) im Fall s2 + k(R-2r)R
3r2+4rR + 4R2 wohl in c2, stellt aber zugleich kmax dar. Auch hier kommt d2 nicht
vor. In praxi hat man zuerst (5) nach k aufzulösen, es sei denn kmax sei anderweitig
unmittelbar evident, wie eingangs durch die Ausartung ^:R:r=2:l:0. Liegt die
einzige oder die grössere Wurzel k jedoch in c2, so auch kmax, gewinnbar aus (4).
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Anmerkung. Beliebig viele bekannte und weitere Dreiecksungleichungen (auch
in a, b, c; r^ rb, r^ s^ s^s^s — a.s — b^s — c; usw.) können mittels (4) (5) k-verschärft
werden, falls sie nicht schon /c-optimal sind (kmax 0). - Die nicht verlangten, aber
beachtenswerten Grenzfälle w 0> v und 2 u— v 0 schhessen sich unserer Methode
stetig an. Wenn man will, verwendet man dann bei (4) in bekannter Art das

praktische Symbol 4- oo.

[1] Frucht/Klamkin, On Best Quadratic Triangle Inequahties, Geometnae Dedicata 2, 341-348
(1973)

Eme Teillösung sandte M Vowe (Therwil BL)

Aufgabe 747. Es sei a eine ganze Zahl. Für welche natürlichen Zahlen n > 3

wird der Quotient

_ (n-3)\(n-l)[an2 + (2a + 3)n-2]+l
An''~

n(n + 2)

ganzzahlig? I. Paasche, München, BRD

Lösung. Es bezeichne Bn den Zähler von An. Für jedes n>3 ist Bn ungerade.
Somit ist jede natürliche Zahl n der verlangten Art ungerade, und n und «4-2 sind
teilerfremd. Also gilt n(n + 2)\Bn<=>n\Bn und (n + 2)\Bn. Man bestätigt leicht das
Bestehen der Kongruenzen

Bn=(n-3)\(n-l)(-2)+l (n-l)\ + l(modn), (1)

Bn=(n-3)\(n-l)(-%)+l (n+l)\+l(modn + 2). (2)

Nach dem Satz von Wilson (man beachte, dass auch dessen Umkehrung gilt)
folgt aus (1) und (2)

Bn=0 (modn)on ist eine Primzahl,

Bn=0 (mod n + 2)<=> n + 2 ist eine Primzahl.

Die Antwort lautet also: An ist genau dann ganzzahlig, wenn n und n + 2
Primzahlen sind.

J. Feher, Pecs, Ungarn

Weitere Lösungen sandten A. Bager (Hjorring, Dänemark), G. Bercea (München,

BRD), J. Binz (Bolligen BE), O. Buggisch (Darmstadt, BRD), P. Bundschuh
(Köln, BRD), K. Grün (Linz, Österreich), H. Harborth (Braunschweig, BRD),
L. Kuipers (Mollens VS), R. Tichy (Wien, Österreich), M. Vowe (Therwil BL) und
A. Wieckowski (Poznan, Polen).
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Aufgabe 748. Für natürliche Zahlen n, k bezeichne [(n + 1) (n + 2) • • (n + k)]
das Produkt der Nichtprimzahlen in der Folge n+l, n + 2, ...,n + k. Man zeige, dass
6! 8 • 9 • 10 die einzige Lösung der Gleichung n! [(n + 1) (n + 2) • • (n + k)Y ist.

P. Erdös, Budapest, Ungarn

Lösung. Aus n\ [(n+l)(n + 2)-(n + k)]' kann man die 2 möglichen Werte
von k bei gegebenem n berechnen, indem man für beide Glieder die höchste Potenz
von 2 bestimmt, die das Ghed teilt. Für kleine Werte von n, z.B. n<,20, findet man
sofort, dass nur n 6 eine Lösung ist.

Es ist klar, dass die Gleichung falsch ist, wenn es eine Primzahl /? > 3 gibt, so
dass

n+k n+k
—<P*—; (•)

denn in diesem Falle können die/?-Potenzen auf beiden Seiten nicht gleich sein. Aus

n(x)>~^—(l + ~ fürx>59,
logx V 2logx/

n(x)<~^—(l + —z—) fürx>l,logx \ ^
_3

logx V* 2logx

[s. J. Barkley Rosser and L. Schoenfield, Approximate formulas for some functions
of prime numbers, Illinois J. of Math. 6, 64-94 (1962)] folgt, dass

71
(—x\ > n (x) für x> 100. (*•)

Durch Vergleichung mit einer Liste von Primzahlen folgt dann sogar (**) für
x>9. Also gibt es eine Primzahl/? mit der Eigenschaft (*) für w>20. Damit ist die
Behauptung bewiesen.

J.H. van Lint, Eindhoven, Niederlande

Weitere Lösungen sandten H. Harborth (Braunschweig, BRD) und H. Warncke
(Porto Alegre, Brasilien).

Neue Aufgaben

Die Lösungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift
erbeten bis 10. Februar 1977 an Dr. H. Kappus. Dagegen ist die Einsendung von
Lösungen zu den mit Problem A, B bezeichneten Aufgaben an keinen Termin
gebunden.
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Bei Redaktionsschluss dieses Heftes sind noch ungelöst: Problem 60IA (Band
25, S.67), Problem 625 B (Band 25, S.68), Problem 645 A (Band 26, S.46), Problem
672A (Band 27, S.68), Aufgabe 680 (Band 27, S. 116), Problem 724A (Band 30,
S.91), Problem 764A (Band 31, S.44).

Aufgabe 769. In einer Ebene e seien 3 Punkte AX,A2,A3 gegeben. Es gibt genau
zwei gleichwinklige Kreisbogendreiecke in e mit den Ecken At und Winkeln at a,
0<a<n. Man bestimme die Kugel K mit Zentrum in e so, dass bei der stereographischen

Projektion von s aufÄjene beiden Dreiecke in zwei kongruente, gleichseitige
Kreisbogendreiecke abgebildet werden.

C. Bindschedler, Kusnacht

Aufgabe 770. Let k be an integer > 1. A positive integer n is called A-perfect,
if g (n) 2kn, where o (n) denotes the sum of all positive divisors of n. Prove the
following results for odd A-perfect numbers:
(i) If k is odd, then any odd ,1-perfect number is of the Form pa k2, where p is a

prime 1 (mod4), a 1 (mod4) and (p,k)=l.
(ii) If k is odd and ^ 0 (mod 3), then any odd A-perfect number is of the form

12r+lor36* + 9.

(iii) If n is of the form 12/+ 1, then n=pak2 with p prime and 1 (mod 12) and
a lor9(modl2).

D. Suryanarayana, Waltair, India

Aufgabe 771. Es seien at 0=1, 2, 3) die Seitenlängen eines beliebigen ebenen
Dreiecks. Man beweise die Ungleichung

3 1 / 3 \ / 3 \ 1/2

J. Brejcha, Brno, CSSR

Aufgabe 772. Sei a> 1 ganzzahlig und die Folge (Rk)k=o,\, rekursiv definiert
durch

R0=0, Rx=l, Rk=aRk_x + Rk_2fürk=2.

Man beweise

und damit die Irrationalität dieser Reihe. P. Bundschuh, Köln, BRD
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