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Eigenvalues of Real Symmetric Matrices

Nearly every linear algebra book contains a proof that the characteristic roots
of a real symmetric matrix 4 are real. The proofs use either a complex eigenvector
of A or the compactness of the unit sphere to find a vector which maximizes the
quadratic form <x,4x>. The following is a new direct proof not using complex
numbers or compactness, indeed not even using matrices.

Proposition. All characteristic roots of a symmetric operator on a real finite
dimensional inner product space are real.

Proof. If A is symmetric and p(x)=(x—a)*+b is a factor of the minimal
polynomial of A4, there is a vector v4+0 such that p(4)v=0. Then 0< < (4 —al),
(A—alyv> = <v, (A—aD*v> =(—b)<v, v> so b<0 and p has real roots. If w is an
eigenvector for one of these roots the orthogonal complement of w is 4-invariant
and A restricted to it is symmetric. By induction on dimension the proof as well as
the diagonalization of 4 is completed.

Note that the last two sentences of the proof are needed only to guarantee
(without using complex eigenvectors) that all the irreducible factors of the character-
istic polynomial are also factors of the minimal polynomial.

Ladnor Geissinger, University of North Carolina, USA

Aufgaben

Aufgabe 745. In einem ebenen Quadratgitter bezeichne 4 eine «Figury, d.h.
eine nichtleere endliche Menge von Gitterquadraten, n(4) deren Anzahl. Weiter sei
q*(A4) die Anzahl der Gitterquadrate in einem kleinsten, 4 enthaltenden achsen-
orientierten Quadrat im Gitter. Schliesslich setze man d(4) := n(4)/q*(4). Es wird
nun eine Folge Ay, 44, ..., A,, ... von Figuren wie folgt definiert: 4 ist eine belie-
bige Ausgangsfigur; A4,, entsteht aus 4,, _,, indem man jedes Gitterquadrat hinzu-
fugt, das mit einem solchen von 4,,_ | mindestens eine Gitterstrecke gemeinsam hat.
Beweise, dass d(4,,)— % (m— ), unabhingig von A4,

P. Wilker, Bern

1. Losung. W* sei ein Quadrat im Gitter mit der Seitenzahl k. Das Glied W%,
der mit W* beginnenden Folge besitzt n(WX)=2m(m—1)+4km+k?* Gitter-
quadrate und sein einhiillendes Quadrat hat deren ¢? (W)= (k+2m)?. Beides ist
leicht einzusehen.

. Sei nun A, eine beliebige Ausgangsfigur, W' ein Gitterquadrat innerhalb 4,
und W* ein kleinstes, A, enthaltendes Quadrat im Gitter. Die aus diesen drei Fi-
guren entstehenden Folgen sollen A4,, W), W% lauten. Aus Wlc A, W* folgt,
wie sofort ersichtlich, W}, = 4,,< W und hieraus

n(W)=2m?+2m+1<n(4,)<2m?+@4k—2)m+k?=n(W-).
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Weiter ist (1+2m)?<q?(A,,)=(k+2m)? und man erhilt durch Kombination
dieser Ungleichungen

2 2 _ 2
2m +2m-;—1 <d(d)< 2m°+ 4k —-2ym+k
Rm+k) 2m+ 1)?

Hieraus folgt unmittelbar die Behauptung.
Ch. Meier, Bern

2. Losung (mit N-dimensionaler Verallgemeinerung). Die N-dimensionale
Verallgemeinerung lautet: Eine «Figur» A ist eine nichtleere endliche Menge von
Gitterwiirfeln der Kantenldnge 1; g(4) sei die Kantenlidnge eines kleinsten 4 ent-
haltenden Wiirfels aus Gitterwiirfeln. 4’ entstehe aus A durch Hinzunahme aller
Einheitswiirfel, welche an wenigstens einer (N — 1)-dimensionalen Seitenfliche von
einem Element von 4 anliegen. Ein Minimalwiirfel zu 4 muss wenigstens ein Paar
von gegeniiberliegenden (N -— 1)-dimensionalen Seitenflichen derart haben, dass
an jeder von ihnen wenigstens ein Element v bzw. w von A4 anliegt; denn sonst wire
dieser Wiirfel nicht minimal. Beim Ubergang zu A’ sorgen v und w’ dafiir, dass
q(A)=q(A)+2,also,bei4,,=A4,,_,

qAdm)=q(4g)+2m. (D

Ein achsenparalleler Wiirfel der Kantenlinge k enthilt (als konvexe Hiille
der Seitenflichen-Mittelpunkte) ein verallgemeinertes «Oktaeder» der Diagonalen-
linge k mit dem Volumen k"/N!. Derselbe Wiirfel ist enthalten in einem dazu
dhnlichen und &hnlich gelegenen «Oktaeder» der Diagonalenldnge 2k, mit dem
Volumen (2k)¥/N!. Man betrachte nun einen einzelnen Gitterwiirfel w, aus einer
Figur Ay und die aus ihm entstehenden Figuren wjy=w, <4, ..., w,,S4,,; w, ent-
hilt ein Oktaeder der Diagonalenldnge 2, und bei jedem Schritt wichst die Diago-
nalenldnge des in w,, und damit in 4,, enthaltenen «Oktaeders» um 2, so dass fir
die Anzahl der Einheitswiirfel in A4, gilt

I
n(Am);(NL!). Q)

Andererseits liegt der 4, umbeschriebene Minimalwiirfel der Kantenldnge
q(A,) in einem «Oktaeder» der Diagonalenldnge 2q(4,), A, in einem solchen einer
um 2 vermehrten Diagonalenlinge, und A,, schliesslich in einem «Oktaeder» der
Diagonalenlinge 2 (g (4¢)+ m), also

n(,)s

N N
2¥(g+m)V _ 2Vm (1+ q(4o) )”. 3

N! N! m

Das Verhiltnis der Anzahl der Gitterwiirfel von 4,, zum Volumen des achsen-
parallelen umbeschriebenen Minimalwiirfels ist nach (1)
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nAp)  _ n(dy)
q(Ag)+2m)" 2NmN(l+ qéf;o) )N '
Aus (2) und (3) erhilt man L g(4g) 1

m

q(4y)
2m

d(4,)= ( 4)

1
U=~

1
qg ¥ =4
) 1+

N1+
( 2m

und daraus schliesslich

1
im d(4d.)=—.
Jim d(4n) =77

Bemerkung. Unabhingig von der Ausgangsfigur nihert sich 4,, immer mehr
einem «Oktaeder».
D. Laugwitz, Darmstadt, BRD

Weitere Losungen sandten A. Bager (Hjerring, Déanemark), J. Binz (Bolligen
BE), Ch. Blatter (Ziirich), L. Kuipers (Mollens VS), D. Laugwitz (Darmstadt, BRD;
2.Losung), O.P. Lossers (Eindhoven, Niederlande), Hj. Stocker (Wéadenswil ZH)
und M. Vowe (Therwil BL).

Aufgabe 746. Eine Ungleichung am ebenen Dreieck mit Gleichheit genau fiir
das gleichseitige Dreieck habe die Gestalt

0<X=Ls’<Mr+NrR+PR*=Y,

worin L, M, N, P von s, r, R unabhingige reelle Zahlen sind. Man bestimme bei
festem u>0 und festem v<2u die grosstmogliche Konstante k> 0, welche die Ver-
schiarfung

X+k(R=2r)(uR—vr)<Y
von X < Y gestattet. I. Paasche, Miinchen, BRD

Lésung des Aufgabenstellers. Auf das unnétig einschrinkende Wort «genau»
der Aufgabenstellung verzichten wir. In Spezialfillen bestimmt sich k= k,, leicht:
452+ k(R—2r)R=n*2+m*R+27TR* (m,n reell) zeigt kp,,=11 wegen des
moglichen ausgearteten Grenzfalles s:R:r=2:1:0, bei dem iibrigens Gleichheit
45*=16 R? eintritt. In s+ k(R—2r)R=3r*+4rR+4R? ist aus demselben Grunde,
Knax=0, usw. Im allgemeinen Fall stiitzen wir uns auf [1], Theorem 1. Die Un-
gleichung

0<Ls*+k(R—2r)(uR—vr)= Mr*+ NrR+ PR? (k= 0), 0)
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also

0< Ls?>=(M—2vk)r*+ (vk+ N+2uk) rR+ (— uk + P) R (1)
bedeutet nach Division durch L genau
0<s’=(3-2TrP+(T+4-2U)rR+(U+4)R? ()

mit geeigneten T, U, weil Gleichheit fiir s:R:r=23V/3:2:1 (gleichseitiges Dreieck)
besteht:

27=3-2D1—(T+4-20U)2+(U+4)4.

Nach [1] Theorem 1 zerfillt die Gesamtheit der fiir alle ebenen Dreiecke
giiltigen Ungleichungen (2) in die beiden folgenden Klassen:

(co) T=z0und U=z0 Klasse ¢,
dy) T<O0undU=z=T?*@-27)"'>0 Klasse d;.

Andere allgemein giiltige Ungleichungen (2) mit sonst unbeschrinkten
variablen T, U gibt es nicht. Fiir unsere Zwecke ist nun ein anderer, ebenfalls
erschopfender Klassenzerfall nicht nur vorteilhaft, sondern einschligig: Jedes ¢ aus
O0=1=2 gestattet die beiden komplementiren Klassen

(c) T+:tUz=0und U=0 Klasse c,
d) T+tU<0undU=z=T?@4-27)"'>0 Klasse d, .

Wir behaupten: Bei variablem ¢ ist die Klasse ¢, maximal, ihr Komplement
d, also minimal. Beweis: Fiir T= -2 U—e= —2U besagt U= T?(4—2T7)"! offen-
bar 4 U=2 Ue + &%= 0. Jetzt erkennt man:

¢ =0 bewirkt U=0, also Klasse ¢,
>0 bewirkt U> 0, also Klasse d,. Beweisende.

Fiur die Tatsache, dass (0), (1), (2) fiur gewisse k in Klasse ¢, oder d, liegt,
verabreden wir eine naheliegende Sprechweise: die betreffenden Werte der
Variablen k=0 liegen in ¢, oder d,, kurz k in ¢, oder d, (mindestens also k=0).
Wenn nun k=0 mit Parametern 7", U in c, liegt, so kann es maximal sein. Dann
liegt fiir alle #>0 und 2u—v>0 kein k in d,. Gibt es jedoch eine Verschirfung
k>0 mit Parametern T, U, so kann dieses k (nach k=0 in c,) jeder der beiden
Extremalklassen ¢, und d, angehoren: Gemiss (1) (2) (c;) (d4,) folgt aus
L(T"+2U)=@BL-M)2+2(P—-4L)=z0 nur L(T+2U0)=Q@L—M+2k)/2+
2(P—4L—-uk)=0, woraus Klasse ¢, (=) oder d, (<) ablesbar ist. Liegt jedoch
k=0 in d,, so auch jede mogliche Verschirfung k> 0. Dann tritt ¢, tiberhaupt nicht
auf. Wir zeigen: Das optimale k=k_,, existiert (ausser im beiseitegelassenen
Trivialfall u=v=0, wo jedes k=0 erlaubt ist) und ldsst sich sogar explizit als
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Funktion von u und v bestimmen, indem 7, U durch u, v, k und drei der L, M, N, P
ausgedriickt werden: Insgesamt zeigt der Koeffizientenvergleich in (1) (2)

M-2vk = 3L—-2LT -1
N+2uk+vk = 4L+LT-2LU -2
P—uk = 4L+LU -4
M+2N+4P+0+0=27L+0+0 (gewichtete Summenprobe).  (3)

Liegt nun irgendein k=0 in (der Klasse «kleiner» k) c,, so findet man das
grosste k (=kg,,) aus c, so: Aus dem Ungleichungspaar (c,) folgt das Paar
0=2L(T+2U0)=—13L—-M+4P-2Qu—v)k und O=LU=P—-uk—4L, und
hieraus vermoge (3) das Paar k=(—20L+N+4P)/2Qu—v) und k=(P—4 L)/ u.
Das grosste noch in ¢, liegende & ist also
—20L+N+4P P—-4L

Tu—y T, > =k, letzteresin ¢, (=) oderd; (<). (4)

k=min(

Die beiden Nenner sind nach Voraussetzung > 0. Die beiden Zahler sind =0,
weil auch k=0 in ¢, liegt. Probe: (—20L+N+4P)/L=—-20+(T"+4-2U")+4-
4+ U)=T'+2U==0 und (P—4L)/L=(@4+U)—4=U=0. - Liegt jedoch (das
vorerst nur vermutete) k,, nicht in ¢,, was sich schon durch irgendein k aus 4,
ankiindigt, so untersucht man d, analog mittels (1), (2), (3), (d5): (—20L+ N+4P)/
(Ru—v)<kund

- LT -LT (M—3L-2vk)
4L—-2LT 4(M+L-2vk)
Hieraus ist k,,= 0 bestimmbar als die grossere der (fiir v# 0) beiden Wurzeln

k der hochstens quadratischen Gleichung in k (fir sie ist —20L+N+4P<
2 uk—vk)

0 =P—uk—4L=LU.

(M—3L—2vk?=4(M+L—2vk)(P—uk—4L). (5)

Dass die Diskriminante= 0 ist, wird durch [1] gesichert, kann aber auch hier
durch Rechnung bestitigt werden. - Beispiele: 45+ k(R—2r)(R+r)=27R?
hatk,,,=5+(1/3) V249 = 10,26; das st eine in d, liegende Wurzel k der Gleichung
3k*—30k—8=0. Das grosste k aus c, ist k=28/3=9,3 ... Selbstverstindlich ist
(5) wegen des ausgeschlossenen Trivialfalles u=v=0 stets nach k auflosbar. Aber
die so gefundene grosste Wurzel k braucht nicht in 4, zu liegen und braucht dann
auch nicht k., zu sein. Dieser Fall tritt ein bei k=2 (in ¢,) fir 4s’+k(R—2r)R=
27 R%. Auch k=11 liegt in c,, so dass d, nicht vorkommt. Dagegen ist die grossere
der beiden Wurzel k=0 und -4/3 von (5) im Fall s?+k(R—2r)R=
3r2+4rR+4 R? wohl in c,, stellt aber zugleich k,,, dar. Auch hier kommt d, nicht
vor. In praxi hat man zuerst (5) nach k aufzuldsen, es sei denn k,,,, sei anderweitig
unmittelbar evident, wie eingangs durch die Ausartung s:R:r=2:1:0. Liegt die
einzige oder die grossere Wurzel k jedoch in ¢, so auch k,,,, gewinnbar aus (4).
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Anmerkung. Beliebig viele bekannte und weitere Dreiecksungleichungen (auch
inab,c r,ry,ry Sg,8,8.=s—a,s—b,s—c; usw.) konnen mittels (4) (5) k-verschirft
werden, falls sie nicht schon k-optimal sind (k,,,=0). - Die nicht verlangten, aber
beachtenswerten Grenzfille u=0>v und 2 u— v=0 schliessen sich unserer Methode
stetig an. Wenn man will, verwendet man dann bei (4) in bekannter Art das
praktische Symbol + co.

[1] FRUCHT/KLAMKIN, On Best Quadratic Triangle Inequalities, Geometriae Dedicata 2, 341-348
(1973).

Eine Teillosung sandte M. Vowe (Therwil BL).

Aufgabe 747. Es sei a eine ganze Zahl. Fiir welche natiirlichen Zahlen n>3
wird der Quotient

_ (n=3)!(n—D)[an’*+Q2a+3)n—2]+1

An: n(n+2)

ganzzahlig? I. Paasche, Miinchen, BRD

Losung. Es bezeichne B, den Zihler von A,. Fur jedes n>3 ist B, ungerade.
Somit ist jede natiirliche Zahl »n der verlangten Art ungerade, und » und #+2 sind
teilerfremd. Also gilt n(n+2)|B,<>n| B, und (n+2)|B,. Man bestitigt leicht das
Bestehen der Kongruenzen

B,=n—-3)!(n—1)(=2)+1=(n—-1)!+1 (modn), (D
B,=(n—=3)!'(n—1)(=8)+1=(n+1!+1(modn+2). 2)

Nach dem Satz von Wilson (man beachte, dass auch dessen Umkehrung gilt)
folgt aus (1) und (2)

B,=0 (mod n)<>n ist eine Primzahl,
B,=0(mod n+2)<>n+2 ist eine Primzahl.

Die Antwort lautet also: 4, ist genau dann ganzzahlig, wenn » und n+2 Prim-
zahlen sind.
J. Fehér, Pécs, Ungarn

Weitere Losungen sandten A. Bager (Hjorring, Ddnemark), G. Bercea (Miin-
chen, BRD), J. Binz (Bolligen BE), O. Buggisch (Darmstadt, BRD), P. Bundschuh
(K6ln, BRD), K. Griin (Linz, Osterreich), H. Harborth (Braunschweig, BRD),
L. Kuipers (Mollens VS), R. Tichy (Wien, Osterreich), M. Vowe (Therwil BL) und
A. Wieckowski (Poznén, Polen).
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Aufgabe 748. Fiir natiirliche Zahlen n, k bezeichne [(n+ 1)(n+2)- ... -(n+ k)]
das Produkt der Nichtprimzahlen in der Folge n+ 1, n+2, ..., n+ k. Man zeige, dass
6!=8-9-10 die einzige Losung der Gleichung n!=[(n+1)(n+2)- ... -(n+k)Y ist.

P. Erdos, Budapest, Ungarn

Losung. Aus n!=[(n+1)(n+2)---(n+ k)] kann man die 2 moglichen Werte
von k bei gegebenem n berechnen, indem man fiir beide Glieder die hochste Potenz
von 2 bestimmt, die das Glied teilt. Fiir kleine Werte von n, z. B. n< 20, findet man
sofort, dass nur n= 6 eine Losung ist.

Es ist klar, dass die Gleichung falsch ist, wenn es eine Primzahl p> 3 gibt, so
dass

n+k <n+k. .
4 <P=3 *)

denn in diesem Falle konnen die p-Potenzen auf beiden Seiten nicht gleich sein. Aus

7 (x)> ) fir x>59,

x (l+ 1
log x 2logx

n(x)< ) firx>1,

x (l+ 3
log x 2logx

[s. J. Barkley Rosser and L. Schoenfield, Approximate formulas for some functions
of prime numbers, Illinois J. of Math. 6, 64-94 (1962)] folgt, dass

4
T (?x) > 7t (x) fiir x> 100. (**)
Durch Vergleichung mit einer Liste von Primzahlen folgt dann sogar (**) fur
x=>9. Also gibt es eine Primzahl p mit der Eigenschaft (*) fiir n>20. Damit ist die

Behauptung bewiesen.
J.H. van Lint, Eindhoven, Niederlande

Weitere Losungen sandten H. Harborth (Braunschweig, BRD) und H. Warncke
(Porto Alegre, Brasilien).

Neue Aufgaben

Die Losungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift
erbeten bis 10.Februar 1977 an Dr. H. Kappus. Dagegen ist die Einsendung von
Losungen zu den mit Problem ... A, B bezeichneten Aufgaben an keinen Termin
gebunden.
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Bei Redaktionsschluss dieses Heftes sind noch ungelést: Problem 601 A (Band
25, S.67), Problem 625B (Band 25, S.68), Problem 645A (Band 26, S.46), Problem
672A (Band 27, S.68), Aufgabe 680 (Band 27, S.116), Problem 724 A (Band 30,
S.91), Problem 764 A (Band 31, S.44).

Aufgabe 769. In einer Ebene ¢ seien 3 Punkte 4, 4,, 45 gegeben. Es gibt genau
zwei gleichwinklige Kreisbogendreiecke in ¢ mit den Ecken 4; und Winkeln a,=a,
0<a<n. Man bestimme die Kugel K mit Zentrum in ¢ so, dass bei der stereogra-
phischen Projektion von ¢ auf K jene beiden Dreiecke in zwei kongruente, gleichseitige
Kreisbogendreiecke abgebildet werden.

C. Bindschedler, Kiisnacht

Aufgabe 770. Let 4 be an integer > 1. A positive integer n is called A-perfect,
if o (n)=2 in, where o (n) denotes the sum of all positive divisors of n. Prove the
following results for odd A-perfect numbers:

(i) If Ais odd, then any odd A-perfect number is of the Form p®k? where p is a
prime =1 (mod4),a=1 (mod4) and (p,k)=1.
(i) If A is odd and # 0 (mod3), then any odd A-perfect number is of the form
12t+1o0r36¢+9.
(iii) If n is of the form 127+ 1, then n=p®k? with p prime and =1 (mod 12) and
a=1or9 (mod12).
D. Suryanarayana, Waltair, India

Aufgabe 771. Es seien a; (i=1, 2, 3) die Seitenlingen eines beliebigen ebenen
Dreiecks. Man beweise die Ungleichung

121 (a;/a;4 1)>;_ (é;lai) (.f:ll/a%)l/z (as=ay).

J. Brejcha, Brno, CSSR

Aufgabe 772. Sei a>1 ganzzahlig und die Folge (Ry)i-o 1, .. rekursiv definiert
durch

R0=O, Rl‘—'l, Rk=aRk_1+Rk_2ﬁ'1rk§2.
Man beweise

© 1 a 2 1
——m ] e 2 4 1/2
jgoRzi 2 + a 2 (a + )

und damit die Irrationalitit dieser Reihe. P. Bundschuh, K6ln, BRD
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