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Elementare Betrachtungen über arithmetische Folgen

Herrn Professor Dr. E. Trost zum 65. Geburtstage

Im folgenden bezeichnen kleine lateinische Buchstaben natürliche Zahlen. Wir
betrachten Mengen der Gestalt

A={a,a + d,a + 2d,...}. (1)

Den g. g. T. der Zahlen a, d, n bezeichnen wir durch

(a,d,n)=h. (2)

Aus h > 1 folgt, dass alle Elemente von A durch h teilbar sind und damit auch,
dass kein Element von Azuw teilerfremd ist. Wir setzen von nun an voraus:

h=l,n>l. (3)

Wir führen jetzt die Funktion g(n) von E. Jacobsthal ein als Maximalabstand
zweier aufeinanderfolgender zu n teilerfremder natürlicher Zahlen [1]. Damit
können wir den folgenden Satz formulieren:

Satz. Jede Sequenz von A der Länge g (——-) enthält mindestens eine zu n teiler-
\(d,n)J

fremde Zahl; es gibt Sequenzen von A der Länge g I——-) — 1, welche keine zu n

teilerfremde Zahl enthalten. ^"> n>'

Beweis. Wir fuhren zunächst einige Bezeichnungen ein.

(a,d) hx\ a hla/; d=hxd'\
(ä,n) h2; a h2d'\ n h2n'; (4)
(d,n) h3; d=h3d"; n h^n" \

Wegen (3) sind hh h2, h3 paarweise teilerfremd, ausserdem gilt

(*,*i)=l. (5)
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Jedes Element von A hat die Gestalt a + vd(v 0,1,2, und ist durch hx
teilbar. Wegen (5) dürfen wir statt A die Menge

{ a a d a d 1 f 1M^^v/^v-H^'^'^'---} (6)

untersuchen. Wir können o.B.d.A. annehmen, dass n quadratfrei ist; nach (4) ist
n d

—- n ; —= Grund

(*",<?)= 1. (7)

Die Zahlen 0 • n", 1 • n", ...,(d'—l)n" durchlaufen ein vollständiges Restsystem
(mod d'). Wir können daher v so wählen, dass

a'+vn" 0(moddf)\

d + vn" /d+vn" \ „ xd+ vd ss —-—d + vd l—-— + v\d (mod n") (8)

wird. Die Elemente von kh (bzw. von A) verhalten sich in bezug auf den g. g. T. mit
n" so wie die Elemente von

d+vn"
" »=0,1,2,

Wir beachten noch

(h3,a + vd) (h3,a)=l (9)

und erhalten die Aussage: Jede Sequenz von A der Länge g(n") enthält mindestens
eine zu n teilerfremde Zahl. Nach der Definition von g (n") existiert nun andererseits

eine Sequenz

A+l9A + 2,...,A+g(rt')-l, (10)

so dass keine dieser Zahlen zu n" (also auch zu n) teilerfremd ist. Wir können nach

(7) w so wählen, dass

wn"+(A+l)d d(modd) (11)

erfüllt ist. Damit wird aber

wn"+{A + l)d=d+vd
wn"(A + 2)d d + (y+X)d'

wn"+(A + g(n")-l)d'=a+(v+ g(n")-2)d' (12)
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eine Sequenz von AÄJ der Lange g(n")— 1, bei welcher keine Zahl zu rt' teilerfremd
ist Mit Berücksichtigung von (9) ist der Satz bewiesen Als emfache Folgerung
ergibt sich

Sei (a,d)=lf n= 11 p Dann enthalt die Sequenz a,a + d, a+(g(n)—l) d

p}d
mindestens eine Zahl, welche nur Primteiler > N besitzt Diese Zahl der Gestalt a + vd
ist selbst Primzahl, wenn a<a\ g(n) */___ (N+l)2 erfüllt ist

Hans-Joachim Kanold, Braunschweig
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Kleine Mitteilungen
Bemerkungen zum Kontraktionsprinzip

1. Einleitung. Es ist der Zweck dieser Note, einen neuen Zugang zum Kon-
traktionsprmzip und zu anderen Sätzen uber kontrahierende Abbildungen
aufzuzeigen Bei diesem Zugang ist eme «Grundformel» grundlegend, aus welcher alle
anderen Aussagen leicht hergeleitet werden können

2. Grundformel. (X,p) ist immer ein vollständiger metrischer Raum, T ist
eine Abbildung von X m sich selbst Die Abbildung T ist eine Kontraktion (oder
kontrahierend), wenn

p (Tx, Ty) < ap (x,y) fur x,y e X (1)

gilt, wobei 0^ a < 1 ist Durch Induktion folgt fur n 1,2,

p(Tnx,Tny)^anp(x,y)furx,yeX (2)

Es sei x,y e X Aus der Dreiecksungleichung und aus (1) erhalten wir

p (x, v) <_ p (x, Tx) + p (Tx, Ty) + p (Ty,y)
< p (x,Tx) + ap (x,y) + p (y,Ty)

Wenn der zweite Term auf der rechten Seite auf die linke Seite gebracht und
die entstehende Ungleichung durch 1 - a dividiert wird, ergibt sich unsere Grundformel

p (x,y)^- {/? (x, Tx) + p(y, Ty)} fur x,y e X (GF)l — a
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