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Konjugierte Stützhyperebenen von konvexen Körpern im Rn

1. Einleitung
Bekanntlich sind bei einer Ellipse die Tangenten an zwei bezüglich des

Ellipsenmittelpunktes symmetrisch hegenden Randpunkten x und y parallel zum zur
Strecke x,y konjugierten Ellipsendurchmesser. Es gibt also zu jedem zentralsymmetrisch

hegenden Randpunktepaar immer zwei parallele Stützgeraden an die
Ellipsenfläche. Dabei verstehen wir unter einer Stützhyperebene einer Menge X im
reellen eukhdischen Raum Rw(«_>2) eine Hyperebene H, welche X so schneidet,
dass die Punkte von X\H alle auf derselben Seite von H liegen. Es ist klar, dass man
eine Stützhyperebene in R2 oder R3 eine Stützgerade bzw. eine Stützebene nennt.
Eine Stützhyperebene H ist offenbar durch einen Punkt x in X, Stützpunkt genannt,
und ein Normalenvektor/? zu H bestimmt, wobei x und/? die Bedingung

max{(x',p):xf e X) (x,p)

erfüllen und das übliche Skalarprodukt in Rn bedeutet.
Wir nennen hier eine abgeschlossene beschränkte (d.h. kompakte) konvexe

Menge X mit innerem Punkt in Rn einen konvexen Körper. Es wird als bekannt
vorausgesetzt, dass jeder Randpunkt eines konvexen Körpers X ein Stützpunkt von
X ist; dies ist eine unmittelbare Konsequenz des folgenden Trennungssatzes (siehe
z.B. F.A. Valentine [9], S.34, oder H.G. Eggleston [3], S.20) für konvexe Mengen:

Sind X und Y nichtleere disjunkte konvexe Mengen in Rw und enthält X einen
inneren Punkt, so gibt es eine X und Y trennende Hyperebene, d. h. eine Hyperebene
H so, dass X\H und Y\H auf verschiedenen Seiten von H hegen. Es ist nun leicht
einzusehen, dass folgende Verallgemeinerung über das anfänglich erwähnte Resultat

gilt: Jeder kreisförmige (also zentralsymmetrische) konvexe Körper in R" besitzt
zwei verschiedene parallele Stützhyperebenen und zwei entsprechende Stützpunkte,
deren Verbindungsgerade eine vorgegebene Richtung aufweist.

Ist s ein Einheitsvektor und X ein konvexer Körper in R", so nennen wir zwei
verschiedene parallele Stützhyperebenen G und H von X konjugiert bezüglich sy

falls es Stützpunkte x und y auf G bzw. H gibt so, dass die Gerade durch x und y
die Richtung s besitzt. Es erhebt sich nun die Frage, ob das folgende, noch
allgemeinere, und als Proposition formulierte Resultat gilt:
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Proposition. Für jeden Einheitsvektor s und jeden konvexen Körper X in Rn

existieren zwei bezüglich s konjugierte Stützhyperebenen an X.

In dieser Arbeit werden für die obige Proposition verschiedene Beweise
geliefert. Es ist noch zu erwähnen, dass die Existenz von konjugierten Stützhyperebenen

schon in den Publikationen von T. Bang [1, 2] über die Lösung des von
A. Tarski [8] gestellten sog. Plankenproblems (die Beschreibung dieses Problems
wird etwas weiter unten gegeben) implizite verwendet, jedoch weder bewiesen noch
mit einer Referenz belegt wurde. Es ist zu vermuten, dass Bang die obige Proposition

einfach heuristisch als richtig angenommen hat. Es stellt sich aber heraus, dass

einige der Beweise der Proposition, wie viele Beweise aus der Theorie der konvexen
Mengen, zwar elementar, aber nicht ganz trivial sind. Ferner ist noch festzustellen,
dass das (übrigens 18 Jahre lang ungelöst gebliebene) Plankenproblem später auch
ohne Verwendung der vorangehenden Proposition gelöst werden konnte (man
vgl. W. Fenchel [4]).

Es sei hier noch kurz das sog. Plankenproblem beschrieben. Die Menge der
Punkte in Rn, die auf oder zwischen zwei parallelen Hyperebenen hegen, nennt
man eine Scheibe, wobei der Abstand der die Scheiben begrenzenden Hyperebenen
als die Dicke der Scheibe bezeichnet wird. Ist X ein konvexer Körper in Rn, so nennt
man das Minimum d der Dicken aller Scheiben, die X enthalten, die Dicke
vonX; d.h.

d: min max (x — x', s),
s e S x,x' e X

wobei S die Menge aller Einheitsvektoren von Rn ist. Die Behauptung des
Plankenproblems lautet nun: Wird X von endlich vielen Scheiben der Dicke dh bzw.
d2, ...,dm überdeckt, so gilt d<,dx + • • • + dm.

Die Ideen für einen Teil der Beweise sind in einem Seminar über die Theorie
der konvexen Mengen an der ETH Zürich entstanden. Dabei haben viele der
Teilnehmer, insbesondere J. Hersch, R. Bloch und ein paar Studenten mit ihren
Bemerkungen zum Gelingen dieses Artikels einiges beigetragen.

2. Ein Approximationslemma
Für einige der hier gelieferten Beweise mussten noch weitere Voraussetzungen

an den konvexen Körper X gemacht werden. Dass diese zusätzlichen Voraussetzungen

für die Proposition ohne Beschränkung der Allgemeinheit gemacht werden
können, zeigt das hier folgende Approximationslemma. Die Voraussetzungen sind:

(i) X sei glatt, d. h. zu jedem Stützpunkt von X gebe es genau eine X stützende
Hyperebene und

(ii) X sei strikt konvex, d.h. für alle Punkte x und v in X mit x^y, und alle
Zahlen t in (0,1) sei tx + (1 — i)y ein innerer Punkt von X. Es ist bekannt (siehe z. B.

F.A. Valentine [9], Satz 7.7) und auch leicht zu verifizieren, dass mit (ii) jede
Stützhyperebene von X mit X genau einen Punkt gemeinsam hat. Erfüllt X beide
Eigenschaften (i) und (ii), so nennt man X regulär. Es ist bekannt (siehe z.B.
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H.G. Eggleston [3], Theorem 34), dass jeder konvexe Körper X in Rn sich bezüglich

der Hausdorffschen Metrik behebig genau durch reguläre konvexe Körper
approximieren lässt; wobei die Hausdorffsche Metrik eine auf der Menge K der
konvexen Körper von Rn durch

d(X,Y):= inf{t>0:XczY+tU,YaX+tU},X,YeK

definierte Distanzfunktion ist und U, der Einheitsball von Rn, die Menge der
Vektoren der Länge < 1 in Rn bezeichnet. Das oben erwähnte Approximationslemma
basiert auf diesem letzten Resultat:

Approximationslemma. Falls für jeden regulären konvexen Körper in Rn und
jeden Vektor s in S bezüglich s konjugierte Stützhyperebenen existieren, so gibt es

auch für jeden konvexen Körper in Rn und jedes s in S konjugierte Stützhyperebenen
bezüglich s.

Beweis. Es sei X ein konvexer Körper in Rn und s in S. Dann gibt es eine Folge
{Xk} von regulären konvexen Körpern in R" so, dass limkd(X,Xk) 0. Mit Gk und
Hk bezeichnen wir zwei bezüglich s konjugierte Stützhyperebenen an Xk und

pke S sei eine Normale zu Gk (und Hk). Da Xk regulär ist, bestehen Xkf]Gk und
Xk(\Hk aus je einem Punkt xk, bzw. yk. Offenbar gibt es eine Zahl t>0 so, dass die

Mengen X, XhX2, im Ball tU enthalten sind. Da die Mengen S und tU kompakt
sind, gibt es eine Teilfolge {Xj(^k)} von {Xk} und Elemente p in S sowie x,y in X so,
dass hmkPj(k)=P> ^mkxJ(k)==x und H111^^)^- Damit gilt für alle Punkte x' in X

(y,p) limk(yj{k),pjik))
<L\imk(x',pj{k))

(*',/>)
<,limk(xj{k),pj(k))

(*>/>)>

d.h. die durch x und y gehenden und zu/? normalen Hyperebenen sind konjugierte
Stützhyperebenen an X, ebenfalls bezüglich s, falls wir zeigen können, dass x+y:
Wäre x =y, so wäre wegen den obigen Ungleichungen

(x',p) (x,p),x'eX.

X, als konvexer Körper, enthält aber einen inneren Punkt. Es gibt deshalb ein
e > 0 und ein x' in X so, dass x'+ep e X. Damit erhielte man

(x,p)=(x' + ep,p)
(x',p) + e(p,p)
(*,/?) + £,

im Widerspruch zu e > 0. D
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3. Analytischer Beweis für n=2
Es sei

a: min{(x,s):x e X},
b: max{(x,s):x e X),

und ohne Beschränkung der Allgemeinheit sei s der erste Standardbasisvektor von
R2. Ferner seien xa und xb Randpunkte von X mit (xa,s) a und (xb,s) b. Die zwei
Randkurven von X zwischen xa und xb bilden den Graphen von je einer konvexen
Funktion fx und einer konkaven Funktion f2 auf dem Intervall [a, b] der s-Achse.
Aus der Analysis (siehe z.B. R.T. Rockafellar [6], Theorem 25.3) ist bekannt,
dass/! und/2 mit Ausnahme von höchstens abzählbar vielen Punkten (entsprechend
den höchstens abzählbar vielen Ecken von X) auf (a, b) differenzierbar sind und,
dass es monoton wachsende (aber nicht unbedingt stetige) Funktionen gx und g2 auf
[a,b] gibt so, dass g\(a)=g2(a) -oo, g\(b) g2(b)= cc und gh bzw. -g2 in den
Existenzpunkten mit den Ableitungen von fx bzw. f2 übereinstimmen. Nun erweitern

wir die Graphen von gx und g2 durch Strecken auf Parallelen senkrecht zur
s-Achse zu je einer zusammenhängenden Menge. Wegen der Monotonie von gx
und g2 gibt es offenbar einen beiden Mengen gemeinsamen Punkt (c,d), mit
c e [a,b]. Nehmen wir jetzt die Randpunkte x:= (c,f2(c)) und v:= (c,fx{c)) von
X, so sind schliesslich wegen der Konvexität von X die Gerade x+{i(l,d):t eR}
und die dazu parallele Gerade durch y konjugierte Stützgeraden an X bezüglich s. D

4. Topologischer Beweis für n=2
Es sei zuerst angenommen, dass X regulär ist, wobei allerdings von der Regu-

laritätsvoraussetzung nur die strikte Konvexität verwendet werden muss. s sei ein
behebiger Einheitsvektor in R2. Aus Kompaktheitsgründen gibt es zu jedem Vektor
u in S zwei verschiedene Stützgeraden G(u) und H (u) mit von X wegweisenden
Normalen u bzw. — u. Mit/(w) bezeichnen wir einen Einheitsvektor, der in Richtung
vom (einzigen) Stützpunkt y von H nach dem (einzigen) Stützpunkt x von G zeigt
(vgl. Fig. 1). Durch die Zuordnung w->/(w) wird eine Funktion/von S in sich defi-

G(u)

H(u)

Figur 1
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niert. Offenbar gilt/(-w)= -f(u), ue S, d.h./bildet Antipodenpaare in
Antipodenpaare ab. Ausserdem ist/stetig: Es soll eine Folge {uk} von Vektoren in S gegen
ein u in S konvergieren. Würde die Folge {xk} der entsprechenden Stützpunkte von
G(uk) nicht gegen den Stützpunkt x von G(ü) konvergieren, so gäbe es wegen der
Kompaktheit von X und der Stetigkeit des Skalarproduktes einen von x verschiedenen

Punkt in XHG(u). Dies würde der Voraussetzung der strikten Konvexität
von X widersprechen. Die Punkte x und, mit demselben Argument, die Punkte y
hängen also stetig von u ab. Offenbar hängt dann auch/(w) stetig von u ab.

Es sei schliesshch S0 irgend ein Bogenintervall in S mit Länge > n (das also
zwei Antipodenpunkte enthält). Wegen der Stetigkeit von/ist das Bild/(S0) von S0

wieder zusammenhängend. Weil f(S0) auch zwei Antipodenpunkte enthält, enthält
dann/(So) ein Bogenintervall der Länge >n, also einen der Vektoren s oder —s.
Es gibt deshalb einen Vektor u in S mit f(u) s, d.h. es existieren zwei konjugierte
Stützgeraden (namhch G(u) und H(u)) an X bezüglich s. D

5. Funktionalanalytische Lösung im Rn

Wir nehmen an, dass X ein regulärer konvexer Körper und dass s ein Einheitsvektor

in Rn sei. Ferner sei H(s) eine zu s orthogonale Hyperebene in Rrt. Wir
setzen hier als bekannt voraus, dass jede konvexe Funktion stetig ist (siehe z. B.
A.W. Roberts, D.E. Varberg [5], Theorem 41.C). Da die orthogonale Projektion
X(s) von X auf H(s) kompakt ist und die reellwertige Funktion/ definiert durch

f(z) maix{\t-f\:t,f eR,z+ts,z+fseX},zeX(s),

offenbar konkav, also stetig ist, gibt es einen Punkt z0 in X(s), wo/ein absolutes
Maximum besitzt. Da X regulär (und konvex) ist, muss z0 ausserdem der einzige
derartige Punkt in X(s) sein. Nun sei

t: max {f eR:zQ+fs e X},
x: z0+ts

und y: z0+(t-f(z0))s.

In den Punkten x und y existieren genau je eine Stützhyperebene G und FL

vonX
Wir machen jetzt die Annahme, dass G nicht parallel zu H sei. Dann gibt es

einen Punkt w in GC\H. Die Ebene durch w, x und v bezeichnen wir mit E (vgl.
Fig. 2). Durch den Punkt x ziehen wir nun eine Parallele zur Geraden, die durch w
und (x+y)/2 läuft. Offenbar liegt diese Parallele, wir bezeichnen sie mit P, in E.

Falls PClX={x} gibt es, da (x+y)/2 ja wegen der strikten Konvexität von X
ein innerer Punkt von X ist, in E zwei verschiedene Stützgeraden für XC\E im
Punkt x. Die nach aussen zeigenden Normalen in E an diese Stützgeraden seien

/?! und/?2. Für /= 1 und 2 gilt dann für/?, (wobei wir ohne Beschränkung der
Allgemeinheit annehmen dürfen, dass (x + v)/2 0; 0 ist damit ein innerer Punkt von X)

(x',pt) <_ (*,/?,) > 0, xf e XHE,
also (x',Pi)<,(*,/?,)inf{t>0: rxx! e X},x' e E.
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Figur 2

Nach dem Satz von Hahn-Banach (siehe z.B. F.A. Valentine [9], Satz 2.18;
oder in jedem Lehrbuch über Funktionalanalysis) gibt es deshalb einen von Null
verschiedenen Vektor qt in Rn so, dass

(x/,pl)=-(x/,ql),x' eE
und (x',ql)^(x,pl)inf{t>0:rlx' e X},x' e Rn.

(1)

qt erfüllt dann wegen inf{t> 0: t l x' e X] <> 1,x' e X die Gleichung

(*',?,) <_(*,/?,)

(x,q^,x'eX.

Es gäbe also im Punkt x zwei verschiedene Stützhyperebenen an X (man
beachte, dass mit P\+p2 wegen Gleichung (1) auch q\^q2 gelten muss), was im
Gegensatz zur Regularität von X stehen würde.

Falls anderseits die Parallele P den Rand von X in einem weiteren, von x
verschiedenen Punkt x0 schneidet, so ist wegen der strikten Konvexität von X jeder
Punkt im Inneren der Strecke x,x0 auch ein innerer Punkt von X. Das gleiche
Argument auf den Punkt y angewandt ergibt damit, dass es in E eine das Innere
dieser beiden Strecken schneidende Parallele zur Geraden durch x und y gibt. Da
die Länge des Durchschnitts dieser Parallelen mit X offenbar grösser wäre als

/(z0), ist die oben gemachte Annahme falsch, d.h. G und H sind parallele, also

konjugierte Stützhyperebenen für X bezüglich s.

Für nichtreguläre X folgt der Beweis schliesslich aus dem Approximationslemma

von Abschnitt 2. D

6. Topologischer Beweis im R"
Es sei s in S gegeben und S+ (s) sei die Hemisphäre S+ (s): {_/ e S: (s', s) _> 0}.

Wieder nehmen wir zuerst an, dass X ein regulärer konvexer Körper in Rn sei. Da
X kompakt und regulär ist, gibt es, wie leicht einzusehen ist, zu jedem p in S+ (s)

genau ein (Stützpunkt) x in X mit max {(x',p): x' e X) (x,p). Nun sei t: max {f> 0:
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x — fseX}. Wieder weil X regulär ist und weil v: x — ts ein Randpunkt (also ein
Stützpunkt) von X ist, gibt es genau einen (von/? abhängigen) Einheitsvektor/(/?)
in S+ (s) so, dass max {(*', -f(p): x'eJ) (y, -/(/?)) (vgl. Fig. 3).

s

Cp)

Figur 3

Man kann jetzt verifizieren, dass die durch f(p) definierte Abbildung / von
S+(s) in sich stetig ist: Es sei angenommen, dass in S+(s) ein Vektor /?' gegen p
konvergiere. Würde der entsprechende Stützpunkt x' nicht gegen den Stützpunkt x
konvergieren, so gäbe es aus Kompaktheitsgründen einen von x verschiedenen
Stützpunkt x0 von X mit einer zu x gemeinsamen Stützhyperebene. Da dies der
Regularität von X widerspricht, muss x' gegen x konvergieren. Würde nun
wiederum/^') nicht gegen/(/?) konvergieren, so gäbe es wegen der Stetigkeit des Randes
von X, nochmals mit demselben Argument wie vorhin, im Randpunkt y zwei
verschiedene Stützhyperebenen von X, im Widerspruch zur Regularität von X.

Es ist nicht schwierig einzusehen, dass S+ (s) zum Einheitsball B: {*' e U:

(x',s) 0} eines n- 1-dimensionalen Teilvektorraumes von Rn homöomorph ist
(z. B. ist die Restriktion auf S+ (s) der Orthogonalprojektion von Rn+1 längs s auf die

Hyperebene {x' e Rn:(x',s) 0} ein solcher Homöomorphismus). Weil jede stetige
Funktion von B in sich nach dem Brouwerschen Fixpunktsatz einen Fixpunkt
besitzt (siehe z.B. D.R. Smart [7], Theorem 2.1.11) und weil die Eigenschaft einer
stetigen Abbildung einen Fixpunkt zu besitzen eine topologische Eigenschaft ist,

gibt es einen Vektor q in S+ (s) so, dass/(#) q. Für diesen Vektor q sind dann offenbar

die durch x und v gehenden und zu q orthogonalen Hyperebenen konjugierte
Stützhyperebenen von X bezüglich s. Wiederum folgt das Resultat für nichtreguläre
Xmit dem Approximationslemma von Abschnitt 2. D

J.T. Marti, ETH Zürich
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Elementare Betrachtungen über arithmetische Folgen

Herrn Professor Dr. E. Trost zum 65. Geburtstage

Im folgenden bezeichnen kleine lateinische Buchstaben natürliche Zahlen. Wir
betrachten Mengen der Gestalt

A={a,a + d,a + 2d,...}. (1)

Den g. g. T. der Zahlen a, d, n bezeichnen wir durch

(a,d,n)=h. (2)

Aus h > 1 folgt, dass alle Elemente von A durch h teilbar sind und damit auch,
dass kein Element von Azuw teilerfremd ist. Wir setzen von nun an voraus:

h=l,n>l. (3)

Wir führen jetzt die Funktion g(n) von E. Jacobsthal ein als Maximalabstand
zweier aufeinanderfolgender zu n teilerfremder natürlicher Zahlen [1]. Damit
können wir den folgenden Satz formulieren:

Satz. Jede Sequenz von A der Länge g (——-) enthält mindestens eine zu n teiler-
\(d,n)J

fremde Zahl; es gibt Sequenzen von A der Länge g I——-) — 1, welche keine zu n

teilerfremde Zahl enthalten. ^"> n>'

Beweis. Wir fuhren zunächst einige Bezeichnungen ein.

(a,d) hx\ a hla/; d=hxd'\
(ä,n) h2; a h2d'\ n h2n'; (4)
(d,n) h3; d=h3d"; n h^n" \

Wegen (3) sind hh h2, h3 paarweise teilerfremd, ausserdem gilt

(*,*i)=l. (5)
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