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Konjugierte Stiitzhyperebenen von konvexen Korpern im R”

1. Einleitung

Bekanntlich sind bei einer Ellipse die Tangenten an zwei beziiglich des Ellip-
senmittelpunktes symmetrisch liegenden Randpunkten x und y parallel zum zur
Strecke x,y konjugierten Ellipsendurchmesser. Es gibt also zu jedem zentralsym-
metrisch liegenden Randpunktepaar immer zwei parallele Stiitzgeraden an die
Ellipsenfldche. Dabei verstehen wir unter einer Stiitzhyperebene einer Menge X im
reellen euklidischen Raum R”(n>2) eine Hyperebene H, welche X so schneidet,
dass die Punkte von X\ H alle auf derselben Seite von H liegen. Es ist klar, dass man
eine Stiitzhyperebene in R? oder R3 eine Stiitzgerade bzw. eine Stiitzebene nennt.
Eine Stiitzhyperebene H ist offenbar durch einen Punkt x in X, Stitzpunkt genannt,
und ein Normalenvektor p zu H bestimmt, wobei x und p die Bedingung

max {(x,p):x" € X}=(x,p)

erfiillen und (.,.) das iibliche Skalarprodukt in R” bedeutet.

Wir nennen hier eine abgeschlossene beschrinkte (d.h. kompakte) konvexe
Menge X mit innerem Punkt in R” einen konvexen Korper. Es wird als bekannt
vorausgesetzt, dass jeder Randpunkt eines konvexen Koérpers X ein Stiitzpunkt von
X ist; dies ist eine unmittelbare Konsequenz des folgenden Trennungssatzes (siche
z.B. F.A. VALENTINE [9], S. 34, oder H. G. EGGLESTON [3], S.20) fiir konvexe Men-
gen: Sind X und Y nichtleere disjunkte konvexe Mengen in R” und enthilt X einen
inneren Punkt, so gibt es eine X und Y trennende Hyperebene, d. h. eine Hyperebene
H so, dass X\H und Y\H auf verschiedenen Seiten von H liegen. Es ist nun leicht
einzusehen, dass folgende Verallgemeinerung iiber das anfinglich erwdhnte Resul-
tat gilt: Jeder kreisformige (also zentralsymmetrische) konvexe Korper in R” besitzt
zwei verschiedene parallele Stiitzhyperebenen und zwei entsprechende Stiitzpunkte,
deren Verbindungsgerade eine vorgegebene Richtung aufweist.

Ist s ein Einheitsvektor und X ein konvexer Kérper in R”, so nennen wir zwei
verschiedene parallele Stiitzhyperebenen G und H von X Kkonjugiert beziiglich s,
falls es Stiitzpunkte x und y auf G bzw. H gibt so, dass die Gerade durch x und y
die Richtung s besitzt. Es erhebt sich nun die Frage, ob das folgende, noch allge-
meinere, und als Proposition formulierte Resultat gilt:
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Proposition. Fiir jeden Einheitsvektor s und jeden konvexen Korper X in R"
existieren zwei beziiglich s konjugierte Stiitzhyperebenen an X.

In dieser Arbeit werden fir die obige Proposition verschiedene Beweise ge-
liefert. Es ist noch zu erwdhnen, dass die Existenz von konjugierten Stiitzhyper-
ebenen schon in den Publikationen von T. BANG [1, 2] iiber die Losung des von
A. TarskI [8] gestellten sog. Plankenproblems (die Beschreibung dieses Problems
wird etwas weiter unten gegeben) implizite verwendet, jedoch weder bewiesen noch
mit einer Referenz belegt wurde. Es ist zu vermuten, dass Bang die obige Proposi-
tion einfach heuristisch als richtig angenommen hat. Es stellt sich aber heraus, dass
einige der Beweise der Proposition, wie viele Beweise aus der Theorie der konvexen
Mengen, zwar elementar, aber nicht ganz trivial sind. Ferner ist noch festzustellen,
dass das (iibrigens 18 Jahre lang ungelost gebliebene) Plankenproblem spéter auch
ohne Verwendung der vorangehenden Proposition gelost werden konnte (man
vgl. W. FENCHEL [4]).

Es sei hier noch kurz das sog. Plankenproblem beschrieben. Die Menge der
Punkte in R”, die auf oder zwischen zwei parallelen Hyperebenen liegen, nennt
man eine Scheibe, wobei der Abstand der die Scheiben begrenzenden Hyperebenen
als die Dicke der Scheibe bezeichnet wird. Ist X ein konvexer Korper in R”, so nennt
man das Minimum dJd der Dicken aller Scheiben, die X enthalten, die Dicke
von X; d.h.

d:= min max (x—x',s),
seSx,xeX

wobei S die Menge aller Einheitsvektoren von R” ist. Die Behauptung des Planken-
problems lautet nun: Wird X von endlich vielen Scheiben der Dicke d;, bzw.
d,, ..., d,, uberdeckt, so gilt d<d,+ - - - +d,,.

Die Ideen fiir einen Teil der Beweise sind in einem Seminar iiber die Theorie
der konvexen Mengen an der ETH Ziirich entstanden. Dabei haben viele der Teil-
nehmer, insbesondere J. Hersch, R. Bloch und ein paar Studenten mit ihren Bemer-
kungen zum Gelingen dieses Artikels einiges beigetragen.

2. Ein Approximationslemma

Fiir einige der hier gelieferten Beweise mussten noch weitere Voraussetzungen
an den konvexen Korper X gemacht werden. Dass diese zusétzlichen Voraussetzun-
gen fir die Proposition ohne Beschrinkung der Allgemeinheit gemacht werden
konnen, zeigt das hier folgende Approximationslemma. Die Voraussetzungen sind:

(i) X sei glatt, d.h. zu jedem Stiitzpunkt von X gebe es genau eine X stiitzende
Hyperebene und

(ii) X sei strikt konvex, d.h. fir alle Punkte x und y in X mit x#y, und alle
Zahlen ¢ in (0,1) sei tx+ (1—1¢)y ein innerer Punkt von X. Es ist bekannt (sieche z. B.
F.A. VALENTINE [9], Satz 7.7) und auch leicht zu verifizieren, dass mit (ii) jede
Stiitzhyperebene von X mit X genau einen Punkt gemeinsam hat. Erfullt X beide
Eigenschaften (i) und (ii), so nennt man X regulir. Es ist bekannt (siche z.B.
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H.G. EGGLESTON [3], Theorem 34), dass jeder konvexe Korper X in R” sich beziig-
lich der Hausdorffschen Metrik beliebig genau durch regulidre konvexe Korper
approximieren lidsst; wobei die Hausdorffsche Metrik eine auf der Menge K der
konvexen Korper von R” durch

dX,Y):=inf{t>0: X< Y+tU,Yc X+tU},X,Ye K

definierte Distanzfunktion ist und U, der Einheitsball von R”, die Menge der Vek-
toren der Linge <1 in R” bezeichnet. Das oben erwidhnte Approximationslemma
basiert auf diesem letzten Resultat:

Approximationslemma. Falls fiir jeden reguldren konvexen Korper in R" und
jeden Vektor s in S beziiglich s konjugierte Stiitzhyperebenen existieren, so gibt es
auch fiir jeden konvexen Korper in R" und jedes s in S konjugierte Stiitzhyperebenen
beziiglich s.

Beweis. Es sei X ein konvexer Korper in R” und s in S. Dann gibt es eine Folge
{X,} von reguliren konvexen Korpern in R” so, dass lim ,d (X, X;)=0. Mit G, und
H, bezeichnen wir zwei beziiglich s konjugierte Stiitzhyperebenen an X und
pi € S sei eine Normale zu Gy (und H;). Da X regulir ist, bestehen X;NG; und
X NHj aus je einem Punkt x;, bzw. y,. Offenbar gibt es eine Zahl >0 so, dass die
Mengen X, X, X, ... im Ball U enthalten sind. Da die Mengen S und U kompakt
sind, gibt es eine Teilfolge {X;)} von {X,} und Elemente p in § sowie x,y in X so,
dass im gp;y=p, lim x4y =x und lim zy;,=y. Damit gilt fiir alle Punkte x" in X

s p)=1m g (¥; ey Pjk))
<lim (X', p; )
=(x',p)
< lim ; (Xj k) Pj k)
=(x,p),

d.h. die durch x und y gehenden und zu p normalen Hyperebenen sind konjugierte
Stiitzhyperebenen an X, ebenfalls beziiglich s, falls wir zeigen konnen, dass x#y:
Wire x =y, so wire wegen den obigen Ungleichungen

x,p)=(x,p),x e X.

X, als konvexer Kérper, enthilt aber einen inneren Punkt. Es gibt deshalb ein
&¢>0und ein x’ in X so, dass X'+ ¢p € X. Damit erhielte man

(x,p)=(x'+¢ep,p)
=,p)+e(p,p)
= (x9p) + € ’

im Widerspruch zu ¢ >0. O
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3. Analytischer Beweis fiir n=2
Es sei

a:=min{(x,s): x € X},
b:=max{(x,s):x € X},

und ohne Beschrinkung der Allgemeinheit sei s der erste Standardbasisvektor von
R2. Ferner seien x, und x, Randpunkte von X mit (x,,s)=a und (x,, s)=b. Die zwei
Randkurven von X zwischen x, und x, bilden den Graphen von je einer konvexen
Funktion f; und einer konkaven Funktion f, auf dem Intervall [a,b] der s-Achse.
Aus der Analysis (siche z.B. R.T. ROCKAFELLAR [6], Theorem 25.3) ist bekannt,
dass f; und f, mit Ausnahme von hochstens abzahlbar vielen Punkten (entsprechend
den hochstens abzédhlbar vielen Ecken von X) auf (a,b) differenzierbar sind und,
dass es monoton wachsende (aber nicht unbedingt stetige) Funktionen g, und g, auf
[a,b] gibt so, dass g, (a)=g,(a)= — 0, g, (b)=g,(b)=00 und g,, bzw. —g, in den
Existenzpunkten mit den Ableitungen von f; bzw. f, iibereinstimmen. Nun erwei-
tern wir die Graphen von g; und g, durch Strecken auf Parallelen senkrecht zur
s-Achse zu je einer zusammenhidngenden Menge. Wegen der Monotonie von g,
und g, gibt es offenbar einen beiden Mengen gemeinsamen Punkt (c,d), mit
¢ € [a,b]. Nehmen wir jetzt die Randpunkte x:= (c,f5(c)) und y:=(c,fi(c)) von
X, so sind schliesslich wegen der Konvexitdt von X die Gerade x+{i(1,d):t € R}
und die dazu parallele Gerade durch y konjugierte Stiitzgeraden an X beziiglich s. [J

4. Topologischer Beweis fiir n=2

Es sei zuerst angenommen, dass X reguldr ist, wobei allerdings von der Regu-
laritdtsvoraussetzung nur die strikte Konvexitdt verwendet werden muss. s sei ein
beliebiger Einheitsvektor in R2. Aus Kompaktheitsgriinden gibt es zu jedem Vektor
u in S zwei verschiedene Stiitzgeraden G (#) und H (1) mit von X wegweisenden
Normalen u bzw. —u. Mit f(u) bezeichnen wir einen Einheitsvektor, der in Richtung
vom (einzigen) Stiitzpunkt y von H nach dem (einzigen) Stiitzpunkt x von G zeigt
(vgl. Fig.1). Durch die Zuordnung u— f(u) wird eine Funktion f von S in sich defi-

Gu)

Figur 1



J.T. MarTI: Konjugierte Stiitzhyperebenen von konvexen Korpern im R” 85

niert. Offenbar gilt f(—u)= —f(u), u € S, d.h. f bildet Antipodenpaare in Antipo-
denpaare ab. Ausserdem ist f'stetig: Es soll eine Folge {u;} von Vektoren in S gegen
ein u in S konvergieren. Wiirde die Folge {x,} der entsprechenden Stiitzpunkte von
G (u;) nicht gegen den Stiitzpunkt x von G (1) konvergieren, so gibe es wegen der
Kompaktheit von X und der Stetigkeit des Skalarproduktes einen von x verschie-
denen Punkt in XNG(u). Dies wiirde der Voraussetzung der strikten Konvexitit
von X widersprechen. Die Punkte x und, mit demselben Argument, die Punkte y
hingen also stetig von u ab. Offenbar hiangt dann auch f(u) stetig von u ab.

Es sei schliesslich S, irgend ein Bogenintervall in S mit Linge >z (das also
zwei Antipodenpunkte enthilt). Wegen der Stetigkeit von fist das Bild f(Sy) von S,
wieder zusammenhidngend. Weil f(Sy) auch zwei Antipodenpunkte enthilt, enthilt
dann f(S,) ein Bogenintervall der Linge >, also einen der Vektoren s oder —s.
Es gibt deshalb einen Vektor # in S mit f(u)=s, d.h. es existieren zwei konjugierte
Stiitzgeraden (ndmlich G («) und H (u)) an X beziiglich s. O

5. Funktionalanalytische Lésung im R”

Wir nehmen an, dass X ein reguldrer konvexer Korper und dass s ein Einheits-
vektor in R” sei. Ferner sei H(s) eine zu s orthogonale Hyperebene in R”. Wir
setzen hier als bekannt voraus, dass jede konvexe Funktion stetig ist (siche z.B.
A.W. ROBERTS, D.E. VARBERG [5], Theorem 41.C). Da die orthogonale Projektion
X (s) von X auf H (s) kompakt ist und die reellwertige Funktion f, definiert durch

f@=max{|[t—=1|:t, e R,z+1ts,z+ Vs e X},z€ X(s),

offenbar konkav, also stetig ist, gibt es einen Punkt z; in X(s), wo f ein absolutes
Maximum besitzt. Da X reguldr (und konvex) ist, muss z, ausserdem der einzige
derartige Punkt in X (s) sein. Nun sei

t:=max{t e R:izp+¥¢se X},
x:=20+ts
und y:=zy+ (t—f(z0)) s.

In den Punkten x und y existieren genau je eine Stiitzhyperebene G und H
von X.

Wir machen jetzt die Annahme, dass G nicht parallel zu H sei. Dann gibt es
einen Punkt w in GNH. Die Ebene durch w, x und y bezeichnen wir mit E (vgl.
Fig.2). Durch den Punkt x ziehen wir nun eine Parallele zur Geraden, die durch w
und (x+y) /2 lduft. Offenbar liegt diese Parallele, wir bezeichnen sie mit P, in E.

Falls PNX={x} gibt es, da (x+y)/2 ja wegen der strikten Konvexitit von X
ein innerer Punkt von X ist, in E zwei verschiedene Stiitzgeraden fir XNE im
Punkt x. Die nach aussen zeigenden Normalen in E an diese Stiitzgeraden seien
p; und p,. Fiir i=1 und 2 gilt dann fiir p; (wobei wir ohne Beschrinkung der Allge-
meinheit annehmen diirfen, dass (x + y)/2=0; 0 ist damit ein innerer Punkt von X)

(x,’pi)S (xapi)>0ax’ € XnEa
also (', p)<(x,p)inf{t>0:r"'x¥ e X}, x¥ € E.
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Figur 2

Nach dem Satz von Hahn-Banach (siche z.B. F. A. VALENTINE [9], Satz 2.18;
oder in jedem Lehrbuch iiber Funktionalanalysis) gibt es deshalb einen von Null
verschiedenen Vektor g; in R” so, dass

*\p)=(,q),x' € E (1)
und (x',q,)<(x,p)inf{t>0:r"1x" € X},x' € R*,

q; erfiillt dann wegen inf{t>0:¢"1x’ € X} < 1,x’ € X die Gleichung

', gD < (x,p;)
=(x,q,),x € X.

Es gdbe also im Punkt x zwei verschiedene Stiitzhyperebenen an X (man
beachte, dass mit p,# p, wegen Gleichung (1) auch g,# ¢, gelten muss), was im
Gegensatz zur Regularitit von X stehen wiirde.

Falls anderseits die Parallele P den Rand von X in einem weiteren, von x ver-
schiedenen Punkt x, schneidet, so ist wegen der strikten Konvexitit von X jeder
Punkt im Inneren der Strecke x,x; auch ein innerer Punkt von X. Das gleiche
Argument auf den Punkt y angewandt ergibt damit, dass es in E eine das Innere
dieser beiden Strecken schneidende Parallele zur Geraden durch x und y gibt. Da
die Lange des Durchschnitts dieser Parallelen mit X offenbar grosser wire als
f(zg), ist die oben gemachte Annahme falsch, d.h. G und H sind parallele, also
konjugierte Stiitzhyperebenen fiir X beziiglich s.

Fir nichtregulidre X folgt der Beweis schliesslich aus dem Approximations-
lemma von Abschnitt 2. O

6. Topologischer Beweis im R”

Es sei s in S gegeben und S (s) sei die Hemisphire S* (s): = {s’e S: (s’,5) = 0}.
Wieder nehmen wir zuerst an, dass X ein reguldrer konvexer Kérper in R” sei. Da
X kompakt und regulér ist, gibt es, wie leicht einzusehen ist, zu jedem p in S* (s)
genau ein (Stiitzpunkt) x in X mit max {(x’,p): x’ € X}=(x,p). Nunsei?:=max {>0:
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x—rts e X}. Wieder weil X reguldr ist und weil y:= x—ts ein Randpunkt (also ein
Stiitzpunkt) von X ist, gibt es genau einen (von p abhingigen) Einheitsvektor f(p)

in S* (s) so, dass max {(x',— f(p): X' € X}=(y,—f(p)) (vgl. Fig.3).

S

f(p)

— Figur 3

Man kann jetzt verifizieren, dass die durch f(p) definierte Abbildung f von
St (s) in sich stetig ist: Es sei angenommen, dass in S*(s) ein Vektor p’ gegen p
konvergiere. Wiirde der entsprechende Stiitzpunkt x’ nicht gegen den Stiitzpunkt x
konvergieren, so gibe es aus Kompaktheitsgriinden einen von x verschiedenen
Stiitzpunkt x, von X mit einer zu x gemeinsamen Stiitzhyperebene. Da dies der
Regularitidt von X widerspricht, muss x’ gegen x konvergieren. Wiirde nun wieder-
um f(p’) nicht gegen f(p) konvergieren, so gibe es wegen der Stetigkeit des Randes
von X, nochmals mit demselben Argument wie vorhin, im Randpunkt y zwei ver-
schiedene Stiitzhyperebenen von X, im Widerspruch zur Regularitit von X.

Es ist nicht schwierig einzusehen, dass S*(s) zum Einheitsball B:= {x’ € U:
(x',s)=0} eines n— 1-dimensionalen Teilvektorraumes von R” homoéomorph ist
(z.B. ist die Restriktion auf S* (s) der Orthogonalprojektion von R”*! lings s auf die
Hyperebene {x’ € R": (x’,s)=0} ein solcher Homéomorphismus). Weil jede stetige
Funktion von B in sich nach dem Brouwerschen Fixpunktsatz einen Fixpunkt be-
sitzt (siehe z.B. D.R. SMART [7], Theorem 2.1.11) und weil die Eigenschaft einer
stetigen Abbildung einen Fixpunkt zu besitzen eine topologische Eigenschaft ist,
gibt es einen Vektor g in S* (5) so, dass f(q)=g. Fiir diesen Vektor ¢ sind dann offen-
bar die durch x und y gehenden und zu g orthogonalen Hyperebenen konjugierte
Stiitzhyperebenen von X beziiglich s. Wiederum folgt das Resultat fiir nichtregulédre
X mit dem Approximationslemma von Abschnitt 2. [

J.T. Marti, ETH Ziirich
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Elementare Betrachtungen iiber arithmetische Folgen
Herrn Professor Dr. E. Trost zum 65. Geburtstage

Im folgenden bezeichnen kleine lateinische Buchstaben natiirliche Zahlen. Wir
betrachten Mengen der Gestalt

A={a,a+d,a+2d,...}. (1)
Den g.g.T. der Zahlen a, d, n bezeichnen wir durch
(a,d,n)=h. )

Aus h> 1 folgt, dass alle Elemente von A durch 4 teilbar sind und damit auch,
dass kein Element von A zu n teilerfremd ist. Wir setzen von nun an voraus:

h=1,n>1. (3)

"Wir fithren jetzt die Funktion g (n) von E. Jacobsthal ein als Maximalabstand
zweier aufeinanderfolgender zu n teilerfremder natiirlicher Zahlen [1]. Damit
konnen wir den folgenden Satz formulieren:

Satz. Jede Sequenz von A der Linge g ( ) enthdlt mindestens eine zu n teiler-

n
(d,n)

fremde Zahl; es gibt Sequenzen von A der Linge g( e )—— 1, welche keine zu n
teilerfremde Zahl enthalten. (d,n)

Beweis. Wir fithren zunéchst einige Bezeichnungen ein.

(a,d)y=hy; a=hda; d=hd’;

(a,m)=h,; a=hya”; n=hyn; 4)
d,n)=h;; d=h;d”; n=hsn”;

Wegen (3) sind h,, h,, h; paarweise teilerfremd, ausserdem gilt

(n,h)=1. )
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