Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 31 (1976)

Heft: 3

Artikel: Eine zahlentheoretische Konstruktion der Galois-Felder GF(p2)
Autor: Hohler, P.

DOl: https://doi.org/10.5169/seals-31397

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-31397
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

64 Elementarmathematik und Didaktik

Fig. 9
a=12
e= 8
f5=2

Fiir gerades » wird eine Kantenfolge als geoddtisch definiert, wenn zu jedem
Zwischenknoten B; gilt s; = /2, also

1 s
—_3_ (18)

ist. Da eine geoditische Kantenfolge jeden Knoten héchstens #/2 mal treffen kann,
ist in einem endlichen ebenen Netz jede geoditische Kantenfolge (i.a. nicht einfach)

geschlossen.
Hans Walser, Ziirich
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Eine zahlentheoretische Konstruktion der Galois-Felder GF(p?)

In jiingster Zeit interessiert man sich vermehrt fiir die explizite Konstruktion
von Galois-Feldern (siehe etwa [1]). In der Literatur wird gewohnlich auf das Ver-
fahren mit Hilfe eines irreduziblen Polynoms verwiesen. Hier soll gezeigt werden,
wie sich die Galois-Felder von der Ordnung 2, # > 3, auf zahlentheoretischem Weg
herstellen lassen.

Fiir eine Primzahl p > 3 sei

Z3={(r,4) |r,iganz N 0 < 7,4 < p — 1}.

In dieser Menge definieren wir nach dem Vorbild der komplexen Zahlen eine Addi-
tion @ und eine Multiplikation O:

(71, ?1) D (9, 9) = (71 + 75, 81 + 79), (1)

(71, 91) O (79, %9) = (7173 — 21%2, Y103 + 72%y) . (2)



Elementarmathematik und Didaktik 65

Die Operationen +, —, - bedeuten dabei die Addition, Subtraktion und Multiplika-
tion modulo p. Die Elemente bilden mit der in (1) definierten Addition, wie leicht
ersichtlich, eine Abelsche Gruppe mit dem Nullelement (0,0). Das Einselement ist
das Element (1,0), und da sowohl die Restklassen modulo # als auch die komplexen
Zahlen einen Koérper bilden, sind das Kommutativgesetz der Multiplikation, das
Assoziativgesetz der Multiplikation und die Distributivgesetze erfiillt. Diese Moti-
vierung versagt aber im Fall des inversen Elementes.
Die Auflésung von (ry, 4;) O (7, %) = (7, 4,) fithrt auf

’("% + 7'%) = 1173 + 1375 A ’(’% = 7'%) = 110y — 117y .

Damit die Existenz eines Inversen gewihrleistet ist, muss der Term #2 4 42 fiir alle
Elemente von null verschieden sein. Dies ist gleichbedeutend mit der Unlésbarkeit
der Kongruenz

224 y2 =0 (mod p) , (x,9) + (0,0) (3)

Beh.: Die Kongruenz (3) ist genau dann unlésbar, wenn p = 3 (mod 4) ist.
Bew.: Daausx = 0auch y =0 folgt,ist x £ 0 A y =£ 0.
Dividiert man (3) durch 42, so ergibt sich, dass die Kongruenz (3) zur Kongruenz

(xy)? = — 1 (mod p)

dquivalent ist. Diese Kongruenz ist genau dann unlésbar, wenn —1 quadratischer
Nichtrest von ¢ ist, und wie man aus der Zahlentheorie entnimmt (z.B. [2],
S. 16), ist das genau dann der Fall, wenn p = 3 (mod 4) ist.

Schliesslich ist 12 + 12 = 0 fiir p = 2, und wir erhalten somit den

Satz 1

[Z%; @, O] ist genau fiir p = 3 (mod 4) ein Galois-Feld GF(p?).

Offenbar ist fiir das Vorliegen eines Galois-Feldes wesentlich, dass —1 quadra-
tischer Nichtrest von p = 3 (mod 4) ist. Um fiir beliebige p ein Galois-Feld zu erhal-
ten, kann man versuchen, die durch (2) definierte Multiplikation so abzudndern,
dass man an Stelle von —1 einen beliebigen quadratischen Nichtrest von p einsetzt.

Wir definieren also eine neue Multiplikation ©, durch

(71, 11) Oy (72, 93) = (1172 + qiaty, 7oty + 7103) , (2)

worin ¢ einen quadratischen Nichtrest von p bedeutet.

Das Einselement bleibt (1,0), und ebenso ist das Kommutativgesetz erfiillt.
Ebenfalls giiltig bleiben das Distributiv- und das Assoziativgesetz. Der Nachweis
dafiir ist eine routinemissige Angelegenheit und darf dem Leser iiberlassen werden.

Die Ausrechnung von (7y, 3;) O, (7, ©) = (v, 15) fithrt auf das Gleichungssystem

7+ qigt =7y N\ G 190 =1,

Die Frage, wann dessen Determinante 12 — g4} = 0 ist, kann wieder formuliert
werden als: Wann ist die Kongruenz '

2%+ (— q)y* = 0 (mod p) , (xy) * (0,0)

unlésbar ?
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Analog zur Herleitung des Satzes 1 ist diese Kongruenz dquivalent zur Kon-
gruenz (xy~1)2 = g(mod $), und diese ist genau dann unlésbar, wenn g quadratischer
Nichtrest von p ist.

Als Verallgemeinerung des Satzes 1 erhalten wir also den

Satz 2
Ist ¢ quadratischer Nichtrest von p, so ist [Z,%; @, O,] ein Galois-Feld GF(p?).

P. Hohler, Olten
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Aufgaben

Aufgabe 741. In einem Dreieck 4 BC seien A’, B’,C’ und A,, B,,C, die Mittel-
punkte bzw. die Hohenfusspunkte der Seiten BC, CA, AB. In der Dreiecksebene
seien noch ein Punkt P und die zu P symmetrischen Punkte P,, P,, P, in bezug auf
B'C', C'A’, A’ B’ gegeben. Man zeige, dass die Kreise mit den Durchmesserstrecken
A,P,, B,P,, C,P, und der Feuerbachsche Neunpunktekreis des Dreiecks 4 BC sich
in cinem Punkt schneiden. G. Bercea, Miinchen, BRD

Losung: Es sei d der durch P gehende Durchmesser des Umkreises w (Mittel-
punkt M) von AABC und A* der Fusspunkt des Lotes durch A auf 4. Der Kreis mit
der Durchmesserstrecke AM geht durch A*. Das Spiegelbild dieses Kreises in bezug
auf B’C’ist der Neunpunktekreisv des Dreiecks A BC, d.h. der Umkreis von 44’ B’ C".
Deshalb liegt das Spiegelbild D von A* an B'C’ auf ». Daraus folgt, dass die Spiegel-
bilder B* und C* von D an A'C’ bzw. A’ B’ in einer Geraden liegen mit A*. Diese
Gerade geht bekanntlich durch den Héhenschnittpunkt von 44’ B’ C’, d.h. also durch
M. Es liegen B* und C* deshalb auf d. Man hat offenbar: C' A* = C’'D = C’' B*. Wird
die Mitte der Strecke 4*B* mit E bezeichnet, so ist folglich C'E | A*B*; deshalb:
C'E [| AA*. Dann ist auch BB*||AA*, also BB* | d. Ebenso gilt: CC* | d. Weil
A*D | BC, B*D | CA und C*D | AB, folgert man aus dem Obigen, dass D der
Orthopol der Geraden d ist in bezug auf 44 BC. Der Kreis mit der Durchmesser-
strecke 4,P, ist offenbar das Spiegelbild an B’'C’ des durch A* hindurchgehenden
Kreises mit der Durchmesserstrecke 4 P. Der zuerst genannte Kreis geht deshalb
durch D. Dasselbe gilt fiir die Kreise mit den Durchmesserstrecken B, P, bzw. C,P,.

Bemerkungen: 1. Die obige Losung enthilt zugleich einen Beweis fiir den be-
kannten Satz: Der geometrische Ort der Orthopole der Durchmesser des Umkreises
ist der Neunpunktekreis. '

2. Man zeigt unschwer, dass auch der Fusspunktekreis von P beziiglich 44 BC
durch P geht.

O. P. Lossers, Eindhoven, Niederlande
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