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(6), and the resulting expression can be evaluated by exactly the same procedure
used for I,. The proof is complete.

Richard S. Ellis*,

University of Massachusetts, Amherst, USA

*)  Supported in part by National Science Foundation Grant GP-28576.
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Elementarmathematik und Didaktik

Eine Ubertragung der Formel von Gauss-Bonnet auf ebene Netze

Bei geeigneter Ubertragung der Begriffe Gausssche Kriimmung und geoddtische
Kriimmung auf ebene Netze kann man zu einer kombinatorischen Formel gelangen,
die eine gewisse Analogie zur Formel von Gauss-Bonnet aufweist; bei dieser Uber-
tragung handelt es sich um eine Diskretisierung der innergeometrischen Kriimmungs-
begriffe.

Fiir den Umfang S eines in einem 2dimensionalen Flichenstiick enthaltenen
Entfernungskreises mit geoditischem Radius 7 und Zentrum P erhilt man ([3], S. 204)

K
S=2mr— ;”r3+---, (1)
wobei K, die Gausssche Kriimmung in P ist; K, ist also ein Mass fiir die Abweichung
dritter Ordnung von S gegeniiber dem Umfang eines Kreises mit demselben Radius »
in der euklidischen Ebene.

Fig. 1

Auf der Kugel mit Radius R ist die Gausssche Kriimmung K = const. = (1/R)%,
ein Entfernungskreis mit geoditischem Radius 7 (r < R 7/2) ist ein Kleinkreis mit
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euklidischem Radius ' = R sin #/R. Fiir seinen Umfang S errechnet man

LT 73 5
S=2nRsm7€—=2nr—-2Kaz~+2K2n—~

31 s e (2)

womit die Formel (1) fiir diesen Spezialfall bestitigt ist.

Wir betrachten nun ein Polyeder, dessen Seitenflichen gleichseitige Dreiecke
sind. Fiir Entfernungskreise auf der Polyederoberfliche, welche einen innern Punkt
einer Seitenfliche oder einer Kante als Zentrum haben und deren (auf der Polyeder-
oberfliche gemessene) Radius nicht grésser ist als der Abstand des Zentrums vom
nichstgelegenen Eckpunkt, erhdlt man den Umfang S = 2x7 (Fig. 2); fiir Entfer-

nungskreise, welche einen Eckpunkt 4 der Ordnung #(4) als Zentrum haben und
deren Radius nicht grosser als die Kantenlidnge ist (Fig. 3), erhdlt man den Umfang

S=j%92nr:2nr—-(l——i(‘64))2nr. (3)

i(A) = 5

Es ist also naheliegend, dem Eckpunkt 4 der Ordnung i(4) die diskrete Kriim-
mung

k()12

(4)

zuzuordnen. Dieser Kriimmungsbegriff ist rein kombinatorisch; er kann deshalb
iibertragen werden auf ein ebenes Netz, welches ausschliesslich 3-Seit-Zellen enthilt
(zum Begriff des ebenen Netzes siehe [2], S. 55).

Man kann (mit derselben Motivation) diesen Kriimmungsbegriff noch verall-
gemeinern: jedem Knoten 4 der Ordnung #(4) eines ebenen Netzes N, welches aus-
schliesslich #-Seit-Zellen enthilt, wird die rationale Zahl

K(4) ¥ 1 44) (—;— — ;1;) (3)

~

zugeordnet.
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Es sei nun b eine orientierte geschlossene Jordan-Kurve, fiir welche gilt:

a) b enthilt keinen Knoten von N,
b) b schneidet jede Kante von N hochstens einmal,
c) b schneidet jede #-Seit-Zelle von N hochstens einmal.

b zerlegt die Ebene in zwei Gebiete; G sei dasjenige dieser beiden Gebiete, welches
links von b liegt (Fig. 4). Ferner seien Z,, Z,, ..., Z,, diejenigen n-Seit-Zellen von N,
welche von b geschnitten werden; 7; sei die Anzahl der Randknoten von Z i welche
links von & liegen (Fig. 5). Schliesslich sei

¢; die Anzahl der Knoten der Ordnung #, welche in G enthalten sind,
kg die Anzahl der Kanten, welche in G enthalten sind und
fa die Anzahl der n-Seit-Zellen, welche in G enthalten sind.

n =25

f. =
n=23 J 3
Fig. 4 Fig. 5

[o,0]
Da jeder Knoten der Ordnung ¢ mit ¢+ Kanten inzidiert, wird durch }'7¢; jede Kante,
i=1
die in G enthalten ist, zweimal und jede der » Kanten, welche mit einem Knoten in
G und einem Knoten ausserhalb G inzidieren, einmal gezdhlt; es ist also

f’iei~f1=2kg. (6)
j=1

i=1
Jeder Knoten der Ordnung ¢ ist Randknoten von 7 »n-Seit-Zellen; durch E‘ e,
i=1
wird also jede #-Seit-Zelle, welche in G enthalten ist, » mal und jede Zelle Z;, welche
von b geschnitten wird, »; mal gezdhlt. Es ist also

fiei—z’?rj=nfg. (7)
i=1 i=1

Wir dndern nun das gegebene Netz ab, indem wir simtliche Knoten und Kanten,
welche ausserhalb von G liegen, entfernen und die 7 Kanten, welche von b geschnitten
werden, mit einem einzigen neuen Knoten ausserhalb G inzidieren lassen (Abdnde-
rung von Fig. 4 zu Fig. 6). Das abgednderte Netz N’ enthilt i,a, nicht mehr aus-
schliesslich #-Seit-Zellen, Es sei nun
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¢’ die Anzahl der Knoten von N’,
k' die Anzahl der Kanten von N’ und
f die Anzahl der Zellen von N'.

Fig. 6

Mit diesen Bezeichnungen gilt

= 3e+1, (8)

i=1

K =ke+m, )

fo=fotm. (10)
Fiir das Netz N’ gilt nach der Eulerschen Formel (vgl. [2], S. 56)

¢ K =2, (11)
wegen (8), (9) und (10) also

o0
Dei—ka+fe=1. (12)
-1

Setzt man (6) und (7) in (12) ein, erhilt man

3, (1 + )+f’(l ') 1. (13)
t=1 s\ 2 n

Nach (5) ist der erste Summand von (13) die Summe der diskreten Kriimmungen
der in G enthaltenen Knoten. Interpretiert man den zweiten Summanden von (13)
als totale geoddtische Kriimmung der Randkurve b, so wird die Analogie von (13) zur
Formel von Gauss-Bonnet

//Kd0+9§xgds=2n (14)
G oG

evident.

Bemerkung: Die Formel (13) gilt auch ohne die Einschrinkungen (b) und (c)
fir die Kurve b.

Das zu N duale Netz (zum Begriff des dualen Netzes siehe [4], S. 31) ist ein
regulires Netz n-ter Ordnung, d.h. jeder Knoten inzidiert mit » Kanten.

In einem solchen reguliren Netz n-ter Ordnung sei ein Kreis ¢, d.h. eine ge-
schlossene Kantenfolge, die lauter verschiedene Kanten und lauter verschiedene
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Zwischenknoten B,, B,, ..., B,, aufweist, ausgezeichnet; ¢ teilt die Trdgerebene des
Netzes in zwei Gebiete, von denen dasjenige, welches beziiglich des durch die Nume-
rierung der Randknoten B; orientierten Kreises ¢ links liegt, mit H bezeichnet wird.
Zu jedem Randknoten B ; sei s; die Anzahl der in H enthaltenen Zellen, welche B;
als Randknoten haben (Fig. 7). Schliesslich sei f; die Anzahl der ¢-Seit-Zellen, welche
in H enthalten sind. Mit diesen Bezeichnungen gilt die zu (13) duale Formel

Zf (1—-+‘)+f(%~——%)= : (15)

i=1

welche dual zum Beweis von (13) bewiesen wird.

Fig. 7

5
s.= 3

o
]

Ein reguldres Netz dritter Ordnung, welches nur 5- und 6-Seit-Zellen enthilt,
muss auf Grund der Eulerschen Formel genau 12 5-Seit-Zellen enthalten, wihrend
die Anzahl der 6-Seit-Zellen beliebig (= 1) ist (vgl. [4], S. 57 und [1]). Fiir ein Gebiet
H eines solchen Netzes erhdlt man aus (15)

g+62( *—) 6. (16)

Bezeichnet man nun einen Randknoten B; mit s; = 1 als ausspringende Ecke
(Fig. 8a) und einen Randknoten B, mit s; = 2 als einspringende Ecke von H (Fig. 8b)
und schliesslich mit a die Anzahl der ausspringenden und mit ¢ die Anzahl der ein-
springenden Ecken von H, so erhilt man aus (16)

fs+ (@a—e)=6. 17)

H /H
Fig. 8

a b

Diese Formel ist ein Hilfsmittel, um die 5-Seit-Zellen eines solchen Netzes auf-
zusuchen (Fig. 9).
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Fig. 9
a=12
e= 8
f5=2

Fiir gerades » wird eine Kantenfolge als geoddtisch definiert, wenn zu jedem
Zwischenknoten B; gilt s; = /2, also

1 s
—_3_ (18)

ist. Da eine geoditische Kantenfolge jeden Knoten héchstens #/2 mal treffen kann,
ist in einem endlichen ebenen Netz jede geoditische Kantenfolge (i.a. nicht einfach)

geschlossen.
Hans Walser, Ziirich
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Eine zahlentheoretische Konstruktion der Galois-Felder GF(p?)

In jiingster Zeit interessiert man sich vermehrt fiir die explizite Konstruktion
von Galois-Feldern (siehe etwa [1]). In der Literatur wird gewohnlich auf das Ver-
fahren mit Hilfe eines irreduziblen Polynoms verwiesen. Hier soll gezeigt werden,
wie sich die Galois-Felder von der Ordnung 2, # > 3, auf zahlentheoretischem Weg
herstellen lassen.

Fiir eine Primzahl p > 3 sei

Z3={(r,4) |r,iganz N 0 < 7,4 < p — 1}.

In dieser Menge definieren wir nach dem Vorbild der komplexen Zahlen eine Addi-
tion @ und eine Multiplikation O:

(71, ?1) D (9, 9) = (71 + 75, 81 + 79), (1)

(71, 91) O (79, %9) = (7173 — 21%2, Y103 + 72%y) . (2)
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