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(6), and the resulting expression can be evaluated by exactly the same procedure
used for Ix. The proof is complete.

Richard S. Ellis*,
University of Massachusetts, Amherst, USA

*) Supported in part by National Science Foundation Grant GP-28576.
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Elementarmathematik und Didaktik

Eine Übertragung der Formel von Gauss-Bonnet auf ebene Netze

Bei geeigneter Übertragung der Begriffe Gausssche Krümmung und geodätische

Krümmung auf ebene Netze kann man zu einer kombinatorischen Formel gelangen,
die eine gewisse Analogie zur Formel von Gauss-Bonnet aufweist; bei dieser

Übertragung handelt es sich um eine Diskretisierung der innergeometrischen Krümmungsbegriffe.

Für den Umfang S eines in einem 2dimensionalen Flächenstück enthaltenen
Entfernungskreises mit geodätischem Radius r und Zentrum P erhält man ([3], S. 204)

2nr K07i
r3~f- (1)

wobei K0 die Gausssche Krümmung in P ist; K0 ist also ein Mass für die Abweichung
dritter Ordnung von S gegenüber dem Umfang eines Kreises mit demselben Radius r
in der euklidischen Ebene.

Fig. 1

Auf der Kugel mit Radius R ist die Gausssche Krümmung K const. (1/R)2;
ein Entfernungskreis mit geodätischem Radius r (r < R nj2) ist ein Kleinkreis mit
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euklidischem Radius r' R sin r/R. Für seinen Umfang 5 errechnet man

S 2nRs\n^^2nr-2Knr~- + 2K2nY~ =F •••
iv 3! 5!

(2)

womit die Formel (1) für diesen Spezialfall bestätigt ist.
Wir betrachten nun ein Polyeder, dessen Seitenflächen gleichseitige Dreiecke

sind. Für Entfernungskreise auf der Polyederoberfläche, welche einen innern Punkt
einer Seitenfläche oder einer Kante als Zentrum haben und deren (auf der
Polyederoberfläche gemessene) Radius nicht grösser ist als der Abstand des Zentrums vom
nächstgelegenen Eckpunkt, erhält man den Umfang S 2nr (Fig. 2); für Entfer-

Fig. 2

nungskreise, welche einen Eckpunkt A der Ordnung i(A) als Zentrum haben und
deren Radius nicht grösser als die Kantenlänge ist (Fig. 3), erhält man den Umfang

i(A) 2nr 2nr (i-^) 2nr. (3)

i(A) 5

Fig. 3

Es ist also naheliegend, dem Eckpunkt A der Ordnung i(A) die diskrete Krümmung

__(_t)='l. i(A)
(4)

zuzuordnen. Dieser Krümmungsbegriff ist rein kombinatorisch; er kann deshalb
übertragen werden auf ein ebenes Netz, welches ausschliesslich 3-Seit-Zellen enthält
(zum Begriff des ebenen Netzes siehe [2], S. 55).

Man kann (mit derselben Motivation) diesen Krümmungsbegriff noch
verallgemeinern: jedem Knoten A der Ordnung i(A) eines ebenen Netzes N, welches
ausschliesslich w-Seit-Zellen enthält, wird die rationale Zahl

K(A) S 1 i(A) \2 n) (5)

zugeordnet.
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Es sei nun b eme orientierte geschlossene Jordan-Kurve, fur welche gilt:
a) b enthalt keinen Knoten von N,
b) b schneidet jede Kante von N höchstens einmal,
c) b schneidet jede n-Seit-Zelle von N höchstens einmal
b zerlegt die Ebene m zwei Gebiete, G sei dasjenige dieser beiden Gebiete, welches
links von b hegt (Fig 4) Ferner seien Zx, Z2, Zm diejenigen n-Seit-Zellen von N,
welche von b geschnitten werden, r3 sei die Anzahl der Randknoten von Z3, welche
links von b liegen (Fig 5) Schliesslich sei

et die Anzahl der Knoten der Ordnung i, welche m G enthalten sind,

kg die Anzahl der Kanten, welche in G enthalten smd und

fo die Anzahl der n-Seit-Zellen, welche m G enthalten sind

/
_X

n 3

Fig 4

r: 3

Fig. 5

Da jeder Knoten der Ordnung i mit i Kanten mzidiert, wird durch £tet Je^e Kante,
?-i

die in G enthalten ist, zweimal und jede der m Kanten, welche mit einem Knoten in
G und einem Knoten ausserhalb G mzidieren, einmal gezahlt, es ist also

% 1 7 1

(6)

Jeder Knoten der Ordnung i ist Randknoten von i w-Seit-Zellen, durch £tei*-i
wird also jede n-Seit-Zelle, welche in G enthalten ist, n mal und jede Zelle ZJf welche

von b geschnitten wird, r3 mal gezahlt Es ist also

E%^~- 2Jrj==nfG (7)

Wir andern nun das gegebene Netz ab, indem wir sämtliche Knoten und Kanten,
welche ausserhalb von G liegen, entfernen und die m Kanten, welche von b geschnitten
werden, mit einem einzigen neuen Knoten ausserhalb G mzidieren lassen (Abänderung

von Fig 4 zu Fig. 6). Das abgeänderte Netz N' enthalt i.a, nicht mehr
ausschliesslich ^-Seit-Zellen, Es sei nun
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e' die Anzahl der Knoten von JV',

k' die Anzahl der Kanten von JV' und

/' die Anzahl der"Zellen von JV'.

•

S
Fig 6

Mit diesen Bezeichnungen gilt

«'=i>+l> (8)
*-l

k' kG + ni, (9)

r=fa + m. (10)

Für das Netz JV' gilt nach der Eulerschen Formel (vgl. [2], S. 56)

ef - k' + /' 2 (11)

wegen (8), (9) und (10) also

j>,-*0 + /o=l. (12)
*-i

Setzt man (6) und (7) in (12) ein, erhält man

£(.-4+i)+£G-i)-i.
Nach (5) ist der erste Summand von (13) die Summe der diskreten Krümmungen

der in G enthaltenen Knoten. Interpretiert man den zweiten Summanden von (13)
als totale geodätische Krümmung der Randkurve b, so wird die Analogie von (13) zur
Formel von Gauss-Bonnet

pK dO + (f xg ds 2 n (14)
G dG

evident.
* Bemerkung: Die Formel (13) gilt auch ohne die Einschränkungen (b) und (c)

für die Kurve b.

Das zu JV duale Netz (zum Begriff des dualen Netzes siehe [4], S. 31) ist ein
reguläres Netz n-ter Ordnung, d.h. jeder Knoten inzidiert mit n Kanten.

In einem solchen regulären Netz n-ter Ordnung sei ein Kreis c, d.h. eine
geschlossene Kantenfolge, die lauter verschiedene Kanten und lauter verschiedene
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Zwischenknoten Bx, B2, Bm aufweist, ausgezeichnet; c teilt die Trägerebene des

Netzes in zwei Gebiete, von denen dasjenige, welches bezüglich des durch die
Numerierung der Randknoten Bj orientierten Kreises c links liegt, mit H bezeichnet wird.
Zu jedem Randknoten Bj sei s3- die Anzahl der in H enthaltenen Zellen, welche Bj
als Randknoten haben (Fig. 7). Schliesslich sei /, die Anzahl der ^'-Seit-Zellen, welche
in H enthalten sind. Mit diesen Bezeichnungen gilt die zu (13) duale Formel

welche dual zum Beweis von (13) bewiesen wird.

(15)

> H

Fig. 7

n 5

s- s 3

Ein reguläres Netz dritter Ordnung, welches nur 5- und 6-Seit-Zellen enthält,
muss auf Grund der Eulerschen Formel genau 12 5-Seit-Zellen enthalten, während
die Anzahl der 6-Seit-Zellen beliebig (4= 1) ist (vgl. [4], S. 57 und [1]). Für ein Gebiet

H eines solchen Netzes erhält man aus (15)

/5 + 6 £(*-*) (16)

Bezeichnet man nun einen Randknoten B} mit s} 1 als ausspringende Ecke

(Fig. 8 a) und einen Randknoten B} mit Sj 2 als einspringende Ecke von H (Fig. 8 b)
und schliesslich mit a die Anzahl der ausspringenden und mit e die Anzahl der
einspringenden Ecken von H, so erhält man aus (16)

/.+ («-«) 6. (17)

H' ^% Fig. 8

Diese Formel ist ein Hilfsmittel, um die 5-Seit-Zellen eines solchen Netzes
aufzusuchen (Fig. 9).
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a 12

e= 8

t= 2

Fig. 9

Für gerades « wird eine Kantenfolge als geodätisch definiert, wenn zu jedem
Zwischenknoten Bj gilt Sj nj2, also

i-£-0 (18)

ist. Da eine geodätische Kantenfolge jeden Knoten höchstens n/2 mal treffen kann,
ist in einem endlichen ebenen Netz jede geodätische Kantenfolge (i. a. nicht einfach)
geschlossen.

Hans Walser, Zürich
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Eine zahlentheoretische Konstruktion der Galois-Felder GF(p2)

In jüngster Zeit interessiert man sich vermehrt für die explizite Konstruktion
von Galois-Feldern (siehe etwa [1]). In der Literatur wird gewöhnlich auf das
Verfahren mit Hilfe eines irreduziblen Polynoms verwiesen. Hier soll gezeigt werden,
wie sich die Galois-Felder von der Ordnung p2, p > 3, auf zahlentheoretischem Weg
herstellen lassen.

Für eine Primzahl p > 3 sei

ZP {{r. i) I Z>i ganz A 0 < r, i < p - 1}.
In dieser Menge definieren wir nach dem Vorbild der komplexen Zahlen eine Addition

© und eine Multiplikation O:

{'v h) © ('» *t) (ri + r*> h + H) * (1)

(rv h) O (r2, i2) (rx r2 - ix i2t rx i2 + r2 ix) (2)
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