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Bestimmung von Untergruppen
durch Permutationsdarstellungen

1. Einleitung

Bekanntlich kann es in einer Gruppe ® = (G, -) mehrere Untergruppen $ = (H, )
geben, zu denen dieselbe disjunkte Restklassenzerlegung

L4

G=UyxH

i=0
gehort.

Ist beispielsweise ® die von ¢,: (x, y) = (¥ + @, y) und 4,: (%, y) — (x, y + b) er-
zeugte Gruppe von Translationen der x-y-Ebene, so gehort zu der von £ und ¢, er-
zeugten Untergruppe $, = (H;, -) die Restklassenzerlegung G = H; U #;H; und zu der
von # und ¢, erzeugten Untergruppe §, = (H,, -) die Zerlegung G = H, U {,H,. Die
Restklassen von G nach H; bzw. H, werden also in beiden Fillen durch das neutrale
Element von ® und durch ¢, reprisentiert.

Es erhebt sich daher die Frage, wie die Untergruppen §) von ®, die zu einer vor-
gegebenen Restklassenzerlegung gehoren, charakterisiert werden kénnen. Antwort
hierauf gibt Satz 1, der umgekehrt auch zur Konstruktion von Untergruppen dienen
kann. Es handelt sich dabei um die Verwendung von Eigenschaften einer gewissen
Permutationsdarstellung von .

Bemerkung : Satz 1 verallgemeinert ein von Wohlfahrt [4], Millington [1] und
neuerdings von Newman [2] verwendetes Prinzip zur Konstruktion von Untergrup-
pen in der rationalen Modulgruppe.

2.

Im folgenden bezeichnet &, die Permutationsgruppe der Zahlen 0, 1, ..., m — 1.

Es seien x,, %,, ..., %,,— beliebige Elemente der Gruppe ® = (G, ), x, sei gleich
dem neutralen Element ¢ von (.

Wir wollen einen Uberblick iiber die Gesamtheit der Untergruppen § = (H, ) von
® mit der zugehorigen disjunkten Restklassenzerlegung

m-1

G=UxH

=0

gewinnen.
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Ist § eine solche Untergruppe, so werden die Restklassen xoH, x; H, ..., %, H
durch Linksmultiplikation mit einem beliebigen Element a der Gruppe ® permutiert.
Jedem Element @ von ® entspricht also eine Permutation ¢(a) € &,,, die durch die
Bedingungen

ax; H=x¢(a)(,) H fir 2=0,1,...,m—1

festgelegt ist.
Wir erhalten somit einen Homomorphismus ¢ : ® — &,,. Fiir diesen gilt insbe-
sondere:

o) (0)=+¢ fir +=0,1,...,m—1.

Dass umgekehrt zu jedem Homomorphismus ¢ : & — &, mit dieser Eigenschaft eine
Untergruppe §, = (H,, -) der angegebenen Art gehort, besagt der folgende

Satz 1: Die Untergruppen $ = (H, -) von & = (G, -) mit der zugehoérigen disjunk-
ten Restklassenzerlegung
m-—1
G = U xi H
i=0
entsprechen umkehrbar eindeutig den Homomorphismen¢ :  — &, die die Bedin-
gungen g(x,) (0) =+ fiir+=0, 1, ..., m — 1 erfiillen. Fiir die einem solchen Homomor-
phismus zugeordnete Untergruppe 9, = (H,, -) gilt:

H,={geG|gpg) (0)=0}.

Korollar: Es gilt:

m—1
Kern (p) = N x, H %71 .
- i=0
Beweis: Sei ¢: & — G,, ein Homomorphismus, der die im Satz angegebenen Eigen-
schaften hat. Wir zeigen, dass dann fiir die Gruppe §, = (H,, -) mit

H,=H={geG g (0) =0}
die disjunkte Restklassenzerlegung

m-1
G=uUxH
i=0
gilt.
Hierzu sei A ein beliebiges Erzeugendensystem von & und §' = (H’, -) die von
allen Elementen

Ypan a% (@€4,i=0,1,...,m—1)

erzeugte Gruppe.
Man sieht sofort, dass G in U x, H’ enthalten ist. Denn fiir allea € A ist ax; H’

= %, H'. i=0
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Nach Voraussetzung gilt ferner fiir 4 =0, 1, ..., m — 1, dass ¢(x;) (0) = 7 ist, also
ist p(ax;) (0) = @(a) (i) und somit p(x,2 ;) ax;) (0) =0 (2 € A). Daher gilt p(g) (0) =0
fiir alle g € H'.

Ist g € x; H', so ist ¢(g) (0) = g(x;) (0) = 7. Aus @(g) (0) = O folgt also, dass g e H'
ist. Somit ist H = H.

Hieraus folgen nun sofort die Disjunktheit der angegebenen Restklassenzer-
legung und das Korollar:

Ist ndmlich x; ' x; € H, so folgt: g(x; ! x;) (0) = 0, also ¢(x;) (0) = ¢(x;) (0), d.h.
1 = j. Die angegebene Restklassenzerlegung ist also disjunkt.

Weiter: Ist g € Kern (p), also ¢(g) (¢) =¢ fir¢=0,1, ..., m — 1, so folgt wegen
i = g(x) (0):

?(g) p(x:) 0) = (%) (0), also @ (x7'gx)(0)=0, also x7'gx,eH fir

m—1
1=0,1,...,m — 1. Somit ist Kern (p) C N xH x*.
i-0 :

Ist umgekehrt g € x; H %71, also g = x;4 %71 mit & € H, so ist

P(g) (6) = @(x,;) (k) p(x ") (4) = p(x;) (k) (0) = @(x;) 0) =1.

Daher ist N x;H x;! = Kern (¢) .
i=0

Im Beweis von Satz 1 hat sich zusdtzlich ergeben:
Bemerkung: Ist A ein Erzeugendensystem von ®, so ist

{Xomyi) @ %:} ae A
1=0,1,...,m—1

ein Erzeugendensystem von §). Seine Bestimmung ist als Reidemeisterverfahren in
die Literatur eingegangen. (Siehe etwa [3]).

3. Beispiel

Es sei ® = (G, -) die Gruppe von Translationen der x-y-Ebene, die erzeugt wird
vont : (x,y) > (¥ + a,y) und £, : (x,y) — (x, ¥ + b). ® ist offenbar eine freie abelsche
Gruppe von zwel Erzeugenden.

Wir bestimmen alle Untergruppen § = (H, -) von ®, zu denen die disjunkte Rest-

m—1
klassenzerlegung G = N ¢} H gehort.
i=0

In der Bezeichnung von Satz 1 ist also x; = #;. Nach diesem Satz entsprechen die
betrachteten Untergruppen umkehrbar eindeutig den Homomorphismen ¢ :  — S,
mit der Eigenschaft g(#}) (0) = ¢, d.h. (p(#))* (0) = 1.

Jeder Homomorphismus ¢ : ® — &,, ist durch die Permutationen ¢(f;) = 7; und
@(t5) = 7, bereits eindeutig bestimmt. Da @ freie abelsche Gruppe ist, existiert um-
gekehrt zu je zwei vertauschbaren Permutationen 1,, 7, € &, genau ein Homomor-
phismus ¢ : & — S, mit ¢(£,) = 74, @(fs) = 75 Wir kdnnen daher in diesem Fall den
Satz wie folgt formulieren:
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Die Untergruppen § von ®, zu denen die disjunkte Restklassenzerlegung

m—1

G = U t{ H gehort, entsprechen umkehrbar eindeutig den Paaren (z;, 7,) von Per-
i=0

mutationen aus &, mit der Eigenschaft 7, 7,= 7,7, und 7{(0) = ¢ fiir i = 0,1, ..., m—1.
Welche Permutationen kommen fiir 7, und 7, in Frage ?
Wegen 71(0) = ¢ fiir £ =0, 1, ..., m — 1 ist 7, eindeutig bestimmt, und zwar ist

7,=0,1,...,m —1).
Es sei 7,(0) = k. Dann ergibt sich wegen der Vertauschbarkeit von t; und 7, not-
wendig:

75(i) = 7271(0) = 7i7,(0) = 71(R) = 7{74(0) = 7{7{(0) = 7}(s) .

Also ist 7, = 7%, 7, ist daher durch die Zahl £ bereits eindeutig bestimmt. Es ist klar,
dass umgekehrt % beliebig vorgeschrieben werden kann.

Die Paare (74, 7,) von Permutationen aus &, mit den Eigenschaften 7,7, = 7,7,
und 7}(0) =4 fiir =0, 1, ..., m — 1 entsprechen also umkehrbar eindeutig den Zahlen
Emit0 <k <m-— 1

Zusammengefasst erhalten wir also folgendes Ergebnis:

Satz 2: Es gibt genau m Untergruppen $, = (H,, -) von ®, zu denen die disjunkte
m—1
Restklassenzerlegung G = U #; H, gehort (k= 1, ..., m).
i=0
Ein Erzeugendensystem fiir §, kann leicht mit Hilfe des Korollars angegeben
werden: . .
$; wird erzeugt von den Elementen ¢, %@ ¢, ¢; und ¢, 7@ 4,4 (¢=0,1,...,m — 1).
Wegen7,(1) =4+ 1fir 0 <¢ < m — 2, 7; (m — 1) = 0 und 7,(¢) = ¢ + £ mod m folgt:

Korollar: §, wird erzeugt von £ und ¢7%4,.
Eugen Peter Bauhoff,
Universitit Mannheim, BRD
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Zwei Abzihlprobleme iiber Sequenzen
mit Zeichen aus einem gegebenen Alphabet

1. Problemstellung

Es sei ein Alphabet von m Zeichen (Buchstaben) 4,, 4,, ..., 4,, gegeben. Bildet
man nach geeigneten Vorschriften aus diesem Alphabet #-stellige Sequenzen (Worter
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