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Bestimmung von Untergruppen
durch Permutationsdarstellungen

1. Einleitung

Bekanntlich kann es in einer Gruppe © (G, •) mehrere Untergruppen § (H, •)

geben, zu denen dieselbe disjunkte Restklassenzerlegung

G u x{ H
1 0

gehört.
Ist beispielsweise © die von tx: (x, y) -> (x + a, y) und t2: (x, y) -> (x, y + b)

erzeugte Gruppe von Translationen der %-y-Ebene, so gehört zu der von t\ und t2

erzeugten Untergruppe §x (Hx, •) die Restklassenzerlegung G Hx U txHx und zu der
von t\ und txt2 erzeugten Untergruppe $2 (H2, •) die Zerlegung G H2 U txH2. Die
Restklassen von G nach Hx bzw. H2 werden also in beiden Fällen durch das neutrale
Element von © und durch tx repräsentiert.

Es erhebt sich daher die Frage, wie die Untergruppen jr> von ©, die zu einer
vorgegebenen Restklassenzerlegung gehören, charakterisiert werden können. Antwort
hierauf gibt Satz 1, der umgekehrt auch zur Konstruktion von Untergruppen dienen
kann. Es handelt sich dabei um die Verwendung von Eigenschaften einer gewissen
Permutationsdarstellung von ©.

Bemerkung: Satz 1 verallgemeinert ein von Wohlfahrt [4], Millington [1] und
neuerdings von Newman [2] verwendetes Prinzip zur Konstruktion von Untergruppen

in der rationalen Modulgruppe.

Im folgenden bezeichnet ®m die Permutationsgruppe der Zahlen 0,1,..., m — 1.

Es seien xx, x2, xm~x beliebige Elemente der Gruppe © (G, •), x0 sei gleich
dem neutralen Element e von ©.

Wir wollen einen Überblick über die Gesamtheit der Untergruppen § (H, •) von
© mit der zugehörigen disjunkten Restklassenzerlegung

«i-i
G U x{ H

t-0
gewinnen.
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Ist jr> eine solche Untergruppe, so werden die Restklassen x0 H, xx H,..., xm-x H
durch Linksmultiplikation mit einem beliebigen Element a der Gruppe © permutiert.
Jedem Element a von © entspricht also eine Permutation <p(a) e ®m, die durch die

Bedingungen

ax{ H x9wt) H für i 0,1,..., m - 1

festgelegt ist.
Wir erhalten somit einen Homomorphismus cp: © -> Sm. Für diesen gilt

insbesondere:

q)(x{) (0) i für i 0,1, m — 1

Dass umgekehrt zu jedem Homomorphismus cp: © -> Sm mit dieser Eigenschaft eine

Untergruppe jr>9 (H^, •) der angegebenen Art gehört, besagt der folgende

Satz 1: Die Untergruppen$ (H, •) von © (G, •) mit der zugehörigen disj unkten

Restklassenzerlegung

w-1

t-0

entsprechen umkehrbar eindeutig den Homomorphismen ap: © -> Sm, die die

Bedingungen (p(xt) (0) i für i — 0,1,..., m — 1 erfüllen. Für die einem solchen Homomorphismus

zugeordnete Untergruppe <r><p (**,,, •) gilt:

H*={geGMg)(0) 0}.

Korollar: Es gilt:
m-1

Kern (<p) n x{ Hy xf1.
*-o

Beweis: Sei q>: © -> Sm ein Homomorphismus, der die im Satz angegebenen
Eigenschaften hat. Wir zeigen, dass dann für die Gruppe ^ (H^, •) mit

H9=H={g6G|^(g)(0) 0}

die disjunkte Restklassenzerlegung

tH — 1

G U x4 H
»-0

gut.
Hierzu sei A ein beliebiges Erzeugendensystem von © und $' (H', •) die von

allen Elementen

X9&M axi (* e 4, * 0,1,..., w - 1)

erzeugte Gruppe. m __ x

Man sieht sofort, dass G in U x{ H' enthalten ist. Denn für alle a e A ist ax{ H'
-**>_> H'.
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Nach Voraussetzung gilt ferner für i 0,1,..., m — 1, dass <p(x{) (0) i ist, also
ist q?(axt) (0) <p(a) (i) und somit <p(x~{l){t) axt) (0) 0 (ae A). Daher gilt <p(g) (0) 0
für alle g e H'.

Ist gexj H', so ist q>(g) (0) cp(xJ) (0) /. Aus <p(g) (Oj 0 folgt also, dass geW
ist. Somit ist H' H.

Hieraus folgen nun sofort die Disjunktheit der angegebenen Restklassenzerlegung

und das Korollar:
Ist nämlich x'1 x3 e H, so folgt: (p(x~x x}) (0) 0, also <p(xt) (0) (p(xj) (0), d.h.

i j. Die angegebene Restklassenzerlegung ist also disj unkt.
Weiter: Ist g e Kern (cp), also <p(g) (i) i für i 0,1, m — 1, so folgt wegen

i cp(xt)(0):

<p{g) <Pixt) (°) <f(xt) (°)> a*so 9 (*f *
£ #t) (°) °> also V1 £ xt G H für

w-1
i 0,1, ...,m — 1. Somit ist Kern (99) C n #tH a;"1

*=o

Ist umgekehrt ge^H^-1, also g #ZÄ ac"1 mit Ä 6H, so ist

Vfe) (0 9>(*,) ?(*) ^(V1) W VW ?>(*) (0) ?(*,) (0) *

w-1
Daher ist n #tH #"* Kern (cp),

t 0

Im Beweis von Satz 1 hat sich zusätzlich ergeben:

Bemerkung: Ist A ein Erzeugendensystem von ©, so ist

{*v(i)W a **} a E A
* 0, 1, m — 1

ein Erzeugendensystem von §. Seine Bestimmung ist als Reidemeisterverfahren in
die Literatur eingegangen. (Siehe etwa [3]).

3. Beispiel

Es sei © (G, die Gruppe von Translationen der ^-y-Ebene, die erzeugt wird
von tx: (x, y) -> (x + a, y) und t2: (x, y) -> (x, y + b). © ist offenbar eine freie abelsche

Gruppe von zwei Erzeugenden.
Wir bestimmen alle Untergruppen § (H, •) von ©, zu denen die disjunkte Rest-

w-l
klassenzerlegung G n t[ H gehört.

*-o
In der Bezeichnung von Satz 1 ist also xt t\. Nach diesem Satz entsprechen die

betrachteten Untergruppen umkehrbar eindeutig den Homomorphismen cp: © -> Qm

mit der Eigenschaft <p(t{) (0) d.h. (<p(*i))* (0) *.

Jeder Homomorphismus cp: © -> Sm ist durch die Permutationen <p(tx) rx und
<p(t2) r2 bereits eindeutig bestimmt. Da © freie abelsche Gruppe ist, existiert
umgekehrt zu je zwei vertauschbaren Permutationen rx, r2 e Sm genau ein Homomorphismus

(p: © -> Sm mit tp(tx) tx, <p(t2) t2. Wir können daher in diesem Fall den
Satz wie folgt formulieren:
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Die Untergruppen § von ©, zu denen die disjunkte Restklassenzerlegung
w-1

G U t[ H gehört, entsprechen umkehrbar eindeutig den Paaren (rx, r2) von Per-
t 0

mutationen aus £m mit der Eigenschaft rx r2 t2 tx und t{(0) i für ^' 0,1,..., w— 1.

Welche Permutationen kommen für rx und r2 in Frage
Wegen r[(0) i für ^' 0, 1, m — 1 ist rx eindeutig bestimmt, und zwar ist

rx=(0,l,...,m~l).
Es sei t2(0) k. Dann ergibt sich wegen der Vertauschbarkeit von rx und r2

notwendig:

t.W T2rl(0) tJt, (0) ri(*) tM(0) rfrf(0) t*(*)

Also ist r2 tJ. t2 ist daher durch die Zahl k bereits eindeutig bestimmt. Es ist klar,
dass umgekehrt k beliebig vorgeschrieben werden kann.

Die Paare (rx, r2) von Permutationen aus Sm mit den Eigenschaften xxx2 r2xx
und t£(0) i für i 0,1,..., m — 1 entsprechen also umkehrbar eindeutig den Zahlen
k mit 0 < k < m — 1.

Zusammengefasst erhalten wir also folgendes Ergebnis:

Satz 2: Es gibt genau m Untergruppen .§* (HÄ, •) von ©, zu denen die disjunkte
w-1

Restklassenzerlegung G U t[ Hk gehört (k 1, m).
t 0

Ein Erzeugendensystem für %k kann leicht mit Hilfe des Korollars angegeben
werden:

§Ä wird erzeugt von den Elementen t~TiM tx t{ und t~rM t21\ (i 0,1,..., m — 1).

Wegen rx(i) — i-\-l für 0 < i < m — 2, rx (m — 1) 0 und r2(i) =i-\- k mod m folgt:

Korollar: <r>Ä wird erzeugt von tf und t~kt2.
Eugen Peter Bauhoff,

Universität Mannheim, BRD
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Zwei Abzählprobleme über Sequenzen
mit Zeichen aus einem gegebenen Alphabet

1. Problemstellung

Es sei ein Alphabet von m Zeichen (Buchstaben) Ax,A2,...,Am gegeben. Bildet
man nach geeigneten Vorschriften aus diesem Alphabet w-stellige Sequenzen (Wörter
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