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On Inscribed Circumscribed Conics

There is a well known geometric theorem due to Euler which states the following:

Theorem 1 (Euler). Given a triangle inscribed in a circle of radius R and circum-
scribed about a circle of radius v, then

R:—@2=2rR, (1)

where d is the distance between the circumcenter and the incenter of the triangle.
In this note first we generalize Euler’s Theorem as follows:

Theorem 2. Let € be a circle about O with radius R and let € be an ellipse contained
in € with semi-minor axis b and foci F,, F,. Set d; = OF,, dy = OF,. Then there exists
a triangle inscribed in € and circumscribed about €, if and only if

(R? — d%) (R? — d2) = 4 b2R?2, / (2)

Proof. Let & and & be two conics in the projective plane, given in homogeneous
coordinates by

X'AX =0 and X'BX =0 (3)

respectively, so that & contains L. It is known (cf. [1] p. 279) that a necessary
and sufficient condition for the existence of a triangle inscribed in ! and circumscribed
about g is

2=440", (4)
where 4, 6, §’, (and 4’), are determined by

det(A+AB)=A4+0A+ 6 2+4"23. ‘ (5)
It can be shown that

A=detAd, 0=tr[(adj A)B], 0 =tr{(adj B)4], (4’=detB), ©6)

where tr denotes the trace and adj the matrix of cofactors. Thus, the condition in (4)
takes the form

tr¥[(adj 4)B] = 4 det 4 - tr[(adj B)A]. (7)
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In our case let the ellipse and the circle be

x2 y2

pry + = 1 8)
and
=22+ (v —9? =R, ©)
respectively. Then the non-singular symmetric matrices in (7) are
a2 0 0 1 0 —p
A:(O b2 0), B=( 0 1 —q ) (10)
0 0 -1 —p —q P+ ¢ — R?
Therefore, in this particular case, (7) reads
(RP4+ a2+ 02— 2 —¢*)2 =4 (a20% — a2q® — b2 P2 + a?R% 4 b2R?). (11)
Setting a? = b% + ¢?, (11) yields
(R2—g*—p2—c®)2—4 (B2 R2+ $%c?) = 0. (12)
This is equivalent to the equation
{RP— [+ @+l {R—[*+ (p — o)’} = 40> B2, (13)
and since
di=g+ (p+e? dy=¢+(p—0), (14)

formula (2) holds.

We note that Theorem 2 can also be proved by means of analytic geometry,
using Poncelet’s porism.

Theorem 2 leads to the following result.

Theorem3. Let € be a circle about O with radius R and let € be an ellipse contained
n € with semi-minor axis b and foci Fy, Fy. Then, a necessary and sufficient condition
for the existence of a triangle which includes € and is included in € is

(R? — d%) (R? — d2) > 4 B®R?, (15)
where d; = OF,, dy = OF,.

Proof. Consider the one-parameter family of confocal ellipses

{€@); t=0} (16)

with semi-minor axis ¢ and fixed foci F}, F,. Our ellipse belongs to this family and
we have € = € (b).

Assume now the existence of a triangle P,P,P; which contains () and is
contained in §. Then, by a perturbation argument, there exists a triangle with
vertices Q,, Qs = Q,(b) and Qs = Q4(b), which is inscribed in € and contains E(d)
such that two of its sides, Q,Q,(b) and Q,Q4(b), touch E(b), as shown in Figure 1.
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Figure 1

Now, keep Q, fixed. Starting with ¢ = b, let ¢ increase and let the points Q, = Q,(?)
and Q3 = Q4(f) move on the circle such that the sides Q;Q,(¢) and Q,Q5(¢) touch the
ellipse E(¢). In this continuous process, the side Q,(¢)Q,(f) approaches €(¢), and for
some ¢t =05b" with &' > b, Q,(b)Q4(d') touches E(b). Hence, we have obtained a
triangle inscribed in € and circumscribed about €(4’); the ellipse E(’) being confocal
with §(b). By Theorem 2

(R? — d%) (R? — d2) = 4 b2 R?, (17)

and since &' > b, inequality (15) holds.

Conversely, assume that (15) holds and that there is no triangle which is included
in € and includes E(b). Then, by a similar argument as above, we decrease ¢ to obtain
a confocal ellipse E(?’) inscribed in a triangle which in turn is inscribed in §. There-
fore, (17) is satisfied, and &’ < b implies

(R? — d%) (R? — d2) < 4 B2R2. (18)
This contradicts (15) and the theorem follows.
It seems interesting to derive metric relations analogous to those in Theorems 2

and 3, in the more general case of an ellipse within an ellipse.
Thanks are due to Harley Flanders for many helpful discussions.

Moshe Goldberg, Univ. of California, Los Angeles, and
Gideon Zwas, Tel-Aviv Univ., Israel
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