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ELEMENTE DER MATHEMATIK
Revue de mathematiques el6mentaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Förderung des mathematisch-physikalischen Unterrichts

El. Math. Band 31 Heft 2 Seiten 25-48 10. März 1976

Über die geometrische Darstellung von Selektionsprozessen

«Jedes mathematische Resultat wird im allgemeinen
klarer oder wird unmittelbar anschaulich, wenn man es
auf geeignete Weise geometrisch darstellt »

Bruno de Finetti [6]

Es dürfte allgemein bekannt sein, dass Fragen der Genetik manchmal zu interessanten

Aufgaben der Wahrscheinlichkeitsrechnung und Statistik führen können.
Weniger bekannt scheint hingegen zu sein, dass gewisse dieser Probleme zusätzlich
auch zu geometrischen Überlegungen - im Rahmen der elementaren projektiven
Geometrie - anregen können. Einige dieser Überlegungen wollen wir hier darstellen
(vgl. auch [9]). Als wesentliches Hilfsmittel werden uns dabei Dreieckskoordinaten
dienen, wie sie de Finetti [5] in die Genetik eingeführt hat. Man kann diese

Untersuchungen auch mit Hilfsmitteln der Analysis durchführen; das haben Cannings und
Edwards getan [3]. Vielleicht gelingt es uns aber, mit unseren nur auf einfachen
geometrischen Sachverhalten beruhenden Überlegungen das als Motto vorangestellte
Wort von Bruno de Finetti zu illustrieren, das wir seinem Buch «II < saper vedere> in
matematica» entnommen haben1).

1. Gene, Genotypen. Wir beschränken uns auf die Betrachtung von Genen als
Vermittler der genetischen Information; diese Gene sind in den Chromosomen gelagert.
Die Chromosomen treten in den Körperzellen der Individuen, die wir hier betrachten
wollen, doppelt auf, wie dies im allgemeinen bei höheren Pflanzen und Tieren und beim
Menschen der Fall ist. Damit treten auch die Gene paarweise auf; gepaarte Gene
besetzen in der Regel dieselben Plätze in den Chromosomen ihres Paares. Wir
betrachten nun nur einen einzigen Genort, der sich zudem nicht auf einem Geschlechtschromosom

befinden soll, also einen sogenannten autosomalen Locus. Und schliesslich

setzen wir zur Vereinfachung noch voraus, dass an diesem Locus jeweils eines

von insgesamt nur zwei allelen Genen vorhanden sei; wir bezeichnen diese allelen
Gene mit A und a. - Unter diesen Einschränkungen führt die in der Zelle vorhandene
genetische Information auf die Unterscheidung von drei Genotypen: AA, Aa und aa.
Es soll nun untersucht werden, wie sich bei gewissen Selektionsprozessen die
Wahrscheinlichkeiten dieser Genotypen von Generation zu Generation ändern. Unsere Be-

x) Diese Arbeit ist während eines Aufenthaltes des Verfassers an der Biomathematischen Ab¬
teilung des Math. Inst, der Universität Zürich entstanden. Der Verfasser möchte auch hier
dem Leiter des Instituts, Herrn Prof. Dr. E. Batschelet, für seine Anregungen bestens danken.
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trachtungen gehören also jenem Teil der Genetik an, der auf der Ebene der
«Bevölkerungen», der Populationen, und ihrer einzelnen Generationen arbeitet; das ist die

Populationsgenetik.
2. Das Hardy-Weinherg-Gleichgewicht. Wir gehen aus von einer Elterngeneration

G von männlichen und weiblichen Individuen, die durch Paarung Nachkommen
erzeugen. Alle Individuen von G sollen entweder vom Genotyp AA oder Aa oder aa
sein. Die Elterngeneration G und allfällige Tochtergenerationen Gx, G2, bilden die

Population, deren Entwicklung wir studieren wollen.
Weiter setzen wir - z.T. nach Jacquard [10] — voraus: Es finden keine Einwanderungen

(Migrationen) von Individuen statt, die ausserhalb der Population geboren sind. Es sollen keine
Gen-Mutationen, d.h. keine Veränderungen der oben genannten allelen Gene A und a in andere
stattfinden. Auch die Selektion soll (vorläufig) ausgeschlossen werden; dies bedeutet vor allem,
dass die Zahl der Nachkommen eines Individuums nicht von seinem Genotyp abhängt. Paarungen

finden statt, dürfen aber nur innerhalb derselben Generation vorkommen.

Schliesslich seien für G die Wahrscheinlichkeiten gegeben, dass ein zufällig aus
G herausgegriffenes Individuum einen bestimmten Genotyp aufweist; sie sollen
nicht vom Geschlecht des Individuums abhängen:2)

P[AA) D, P{Aa) H und P(aa) R, wobei D + H + R 1. (1)

Der Umfang jeder Generation G, Gx, G2,... sei genügend gross: So gross, dass unsere
Wahrscheinlichkeitsbetrachtungen mit ziemlicher Sicherheit auch über die
wirklichen Verhältnisse in den Generationen Aufschluss geben (Gesetz der grossen Zahl).

Aus diesen Voraussetzungen sollen nun erste Folgerungen gezogen werden:
(1) gestattet sofort die Berechnung der Wahrscheinlichkeiten, dass ein aus G zufällig
herausgegriffenes Chromosom ein bestimmtes Gen trägt2):

1 1

P[A) p D 1 + H •- und P(a) q=R'l + H-~, wobei p + q=l (2)
__ -C

Die Individuen von G produzieren nun Geschlechtszellen (Gameten). Sie stellen das

stoffliche Bindeglied zur Tochtergeneration Gx dar: Aus der Vereinigung einer männlichen

Geschlechtszelle mit einer weiblichen entsteht ein Individuum von Gx. Welches

ist die Wahrscheinlichkeit, dass eine dieser «erfolgreichen» Geschlechtszellen
das Gen A trägt

Da nach unseren Voraussetzungen keine Mutationen stattfinden, handelt es

sich hier zunächst um die bedingten Wahrscheinlichkeiten 1 oder x/2 oder 0, je nachdem

der «erfolgreiche» Gamet von einem Individuum mit dem Genotyp AA, Aa
bzw. aa stammt; Analoges gilt für das allele Gen a.

Da wir ferner ausdrücklich vorausgesetzt haben, dass (vorläufig) keine Selektion
auftritt, so können wir nun sofort die Wahrscheinlichkeiten dafür berechnen, dass
ein aus der Tochtergeneration Gx zufällig herausgegriffenes Chromosom das Gen A
bzw. a trägt. Sie sind als totale Wahrscheinlichkeiten gegeben durch

P1(_t) ^ ö-l + //.i ündP1(«) ?1 _..l + __.i. (3)

2) Wir bezeichnen hier und im folgenden das Ereignis « ein zufällig herausgegriffenes Individuum
hat den Genotyp AA » kurz mit AA ; analog verwenden wir Aa und aa. - Das Ereignis «ein
zufällig herausgegriffenes Chromosom tragt das Gen A » bezeichnen wir mit A; analog
verwenden wir a.
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Der Vergleich von (2) und (3) zeigt: px — p und qx q. Daraus folgt aber für alle
Generationen G, Gx, G2, die sich gemäss den genannten Voraussetzungen

entwickeln: p{ p und q{ q für i=l,2,... (4)

Die Genwahrscheinlichkeiten pf und q{ sind konstant.
Welches sind aber die Genotypenwahrscheinlichkeiten Dx, Hx und Rx in Gx

Während sich die Genwahrscheinlichkeiten für eine Generation aus den
Genotypenwahrscheinlichkeiten dieser Generation berechnen lassen (vgl. (2)), ist das Umgekehrte

nur unter zusätzlichen Voraussetzungen möglich. Wir stellen hier die zusätzliche

Forderung: Die Paarung der Gameten erfolgt als Zufallspaarung (random
mating, Panmixie). Das heisst, dass jeder Nachkomme als Ergebnis der Vereinigung
zwreier Gameten aufgefasst wird, die aus folgenden vier zufälligen Auswahlen
hervorgegangen sind: Auswahl eines Vaters und Auswahl jener männlichen Geschlechtszelle,

die sich dann vereinigen wird; die Wahrscheinlichkeit, dass diese z.B. das Gen
A trägt, ist dann wieder D • 1 + H • 1/2. Unabhängig davon Auswahl einer Mutter und
Auswahl jener weiblichen Geschlechtszelle, die sich dann vereinigen wird; die
Wahrscheinlichkeit, dass diese z. B. das Gen a trägt, ist dann R • 1 + H • 1/2. Damit erhalten
wir für die Genotypenwahrscheinlichkeiten in Gx nach der Multiplikationsregel bei
unabhängigen Ereignissen:

PX(AA) DX=(D + ~H)2, Px(Aa) =HX 2(D + ~H) (R + \h)
1

und Px{aa) R± (R + -H)2 oder Dx p2,Hx 2pq und Rx q2. (5)

Mit (4) folgt aber daraus für alle Tochtergenerationen, die sich gemäss unsern
Voraussetzungen entwickeln: Die Genotypenwahrscheinlichkeiten sind von der ersten
Tochtergeneration an konstant.

Die beiden Aussagen über die Konstanz der Genwahrscheinlichkeiten (von der
Elterngeneration an) und über die Konstanz der Genotypenwahrscheinlichkeiten
(von der ersten Tochtergeneration an) beschreiben eine Art Gleichgewichtszustand
der Population. Man nennt diesen Zustand das Hardy-Weinberg-Gewicht (nach dem
Mathematiker G.H. Hardy und dem Genetiker W. Weinberg, 1908).

Besser würde man wohl von einer «.angenäherten Konstanz» sprechen: Zufällige Schwankungen

der Genwahrscheinlichkeiten und damit verbundene Schwankungen der Genotypenwahrscheinlichkeiten

sind natürlich trotz des vorausgesetzten grossen Umfanges der Generationen
nicht ausgeschlossen; «restaurierende Kräfte» sind jedoch nicht vorhanden. Auf diesen Umstand
macht namentlich auch Feller [4] aufmerksam. - Beispiele für Zufallspaarung: Windbestäubung
der Pflanzen eines Getriedefeldes, wenn man über dem Feld eine eigentliche Pollenwolke
beobachten kann; Befruchtung der Eier der Seeigel (Echinoidea), wobei Spermien und Eizellen frei
ins Wasser ausgestossen werden; Partnerwahl der Menschen, wenn als genotypisch festgelegtes
Merkmal etwa die Blutgruppe betrachtet wird.

3. Dreieckskoordinaten, Wir führen nach de Finetti [5] spezielle Dreieckskoordinaten

ein. Wir wählen ein gleichseitiges Dreieck der Höhe 1 als Fundamentaldreieck.
Offensichtlich gilt dann für jeden Punkt im Innern oder auf dem Rande des Dreiecks:
Die Summe seiner drei Abstände von den drei Seiten ist 1. Damit kann nun wegen
D + H 4- R — 1 jedem Tripel (D, H, R) von Genotypenwahrscheinlichkeiten einein-
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deutig ein solcher Punkt zugeordnet werden, indem die drei Wahrscheinlichkeiten
als Abstände von den drei Seiten dargestellt werden (Fig. 1). Lage des Dreiecks,
Bezeichnungen und Art der Eintragung der drei Genotypenwahrscheinlichkeiten sollen
im folgenden beibehalten werden3).
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Führen wir noch ein rechtwinkliges Koordinatensystem gemäss Figur 1 ein, so

finden wir

D===2~2y~~2V3X ,H=y Und R ö~2y + 2V3X ' (6)
2 2J 2* ~ ' " J " " 2 2y 2

Aber auch die Genwahrscheinlichkeiten können einfach am Fundamentaldreieck
abgelesen werden. Man beachte (2) und Figur 2: Es ist

fL JK+R 1/2H+R q; analog findet man p.

W

Fig. 2

Aus Figur 2 ist auch sofort ersichtlich, dass Punkte, die dieselben Genwahrscheinlichkeiten

ergeben, auf einer Normalen zur Basis des Fundamentaldreiecks liegen.
Ferner sieht man noch, dass zwei Punkte (D, H, R) und (D', H', R') genau dann auf
einer Geraden durch die Ecke U bzw. V Fundamentaldreiecks liegen, wenn

R:H=R':H',
bzw. D:H^D':H'.

(7)

(8)

3) Derartige spezielle Dreieckskoordinaten werden in den Naturwissenschaften recht oft ver¬
wendet; vgl. z.B. Batschelet [2]. Über allgemeinere Dreieckskoordinaten orientiert z.B.
Fladt in [7].
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4. Ein Selektionsprozess. Jetzt soll eine der in Abschnitt 2 angeführten
Voraussetzungen geändert werden: Bevor die Individuen einer Generation zur Reproduktion

gelangen, soll eine Selektion stattfinden. Die übrigen Voraussetzungen sollen
weiterhin gelten. (Über die Auswirkungen von Änderungen weiterer Voraussetzungen
orientieren die Darstellungen der Populationsgenetik, vgl. z.B. Jacquard [10], Le
Roy [11].) Die Population soll unter «konstantem Selektionsdruck» stehen: Es sei 5
das Ereignis, das darin besteht, dass ein Individuum ins reproduktionsfähige Alter
gelangt. Wir betrachten die folgenden bedingten Wahrscheinlichkeiten, die
sogenannten Überlebenswahrscheinlichkeiten, als gegeben:

P (S | AA) d*, P (S | Aa) 7]* und P (S \ aa) o* (9)

Mit Hilfe des Theorems von Bayes lassen sich nun aus den Genotypenwahrscheinlichkeiten

einer Generation vor der Selektion die Genotypenwahrscheinlichkeiten

für dieselbe Generation nach der Selektion berechnen: Es ist z.B.

D^P(AA\S)=. P^6* Dd*

F Dd + H+ Rq >

SO erhalten wir

D'
DÖ

H>
H

~~F
und R'

P{AA) d* -f- P(Aa) rj* -f P(aa) q* Dd* + Hrj*+ Rq*

analoge Gleichungen lassen sich für H' und R' angeben.
Der Fall r}* 0 ist im allgemeinen in der Genetik nicht von besonderem Interesse.

Wir lassen ihn weg und erweitern die Terme auf den rechten Seiten der eben

genannten Gleichungen mit einer Zahl k > 0, so dass k r\* 1 wird; für k d* setzen
wir d und für k q* schreiben wir q. Man bezeichnet jedes Tripel von nicht-negativen
Zahlen, die zu den Überlebenswahrscheinlichkeiten proportional sind, als Fitness-
Parameter. Kürzen wir schliesslich noch den Nenner mit F ab,

(10)

—^ wobei wieder D' + H' + R' 1. (11)
F

Für die zugehörigen Genwahrscheinlichkeiten dieser Generation nach der Selektion
ist natürlich wieder

P' =D' + \h' und q' R' + ~H'. (12)
_c _*

Zu einem gegebenen Tripel (D, H, R) von Genotypenwahrscheinlichkeiten, welches
einen Punkt T im Fundamentaldreieck festlegt, lässt der durch die Gleichungen (11)

gegebene Punkt T, der die Genotypenwahrscheinlichkeiten nach der Selektion
liefert, auch konstruieren. Nach der Herleitung von D', H' und R' mit Hilfe des

Theorems von Bayes liegt es nahe, zur Konstruktion von T' ein Verfahren heranzuziehen

und etwas zu modifizieren, das Aitchison in [1] angegeben hat (Fig. 3):
Man bestimmt die Punkte A, B und C so, dass

—- Dd — H — Rq
TA -— TB -r— und TC -—-^—

ö+ 1 + q (3+ 1 + e d + 1 + q
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w

Fig. 3

Die durch A, B und C gezogenen Parallelen zu den Seiten des Fundamentaldreiecks
liefern das Dreieck Ux Vx Wx; nun konstruiert man das Zentrum Z jener zentrischen
Streckung, die dieses Dreieck auf das Dreieck UVW abbildet. Durch dieselbe
zentrische Streckung bildet man den Punkt T ab; der Bildpunkt ist der gesuchte Punkt
T\ dessen Abstände von den Seiten des Fundamentaldreiecks wieder D', H' und R'
ergeben4).

Beweis: Die Höhe des gleichseitigen Dreiecks UXVXWX ist gegeben durch

TA + TB + TC F: (ö + 1 4- q)

Da die Höhe des Fundamentaldreiecks 1 ist, ist der Streckungsfaktor unserer
zentrischen Streckung (6 + 1 + q) : F. Bilden wir nun die Strecken TA, TB und TC
ab, so stellen wir fest, dass sich als Bildpunkt gerade der durch (11) gegebene Punkt
T' ergibt.

5. Die zugehörige projektive Abbildung. Durch die Gleichungen (11) kann jeder
Punkt T des Fundamentaldreiecks auf einen Punkt T' dieses Dreiecks abgebildet
werden. Diese Abbildung des Fundamentaldreiecks auf sich ist eine projektive
Abbildung. Man sieht dies z. B., wenn man mit Hilfe von (6) und D + H' -f R D' + H' + R'

1 zu rechtwinkligen Koordinaten übergeht. Die Ecken U, V und W sind
Fixpunkte dieser Abbildung. Es sei nun noch ein Punkt T und sein etwa nach dem
Verfahren in Abschnitt 4 konstruierter Bildpunkt T' vorgegeben; T und T' sollen dabei
nicht auf einer Seite des Fundamentaldreiecks liegen. Durch die vier Punkte U, V,
Wt T und ihre Bildpunkte U, V, W, T' ist diese projektive Abbildung eindeutig
bestimmt. Sie kann wie folgt als Produkt von zwei Perspektiven Kolhneationen 0X und
3>2 dargestellt werden; T* ist dabei der Schnittpunkt der Geraden UT und VT
(Fig. 4).

0X ist die Perspektive Kollineation mit dem Zentrum U und der Geraden VW
als Achse, die den gegebenen Punkt T in T* abbildet. 02 ist jene Perspektive Kol-

4) Die effektive Durchführung der Konstruktion gestaltet sich besonders einfach, wenn das im
Handel erhältliche Dreieckspapier verwendet wird, das bereits eine feine Unterteilung
besitzt.
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w

Fig. 4

lineation, die V als Zentrum und UW als Achse hat und T* in den gegebenen Punkt
V abbildet. Da nun &2 • 0X eine projektive Abbildung ist, die U, V und W zu
Fixpunkten hat und zudem T in T' abbildet, ist sie gerade die eindeutig bestimmte
Abbildung 0:

0 02 • 0X

Die Abbildungsgleichungen dieser beiden Perspektiven Kolhneationen sind, wenn
0 durch das Tripel (d, 1, q) von Fitnessparameter gegeben ist:

D rS H R
0 :£>*_= ,#*___ und i?* -r, wobei _V Dd + # + # (13)

_V iV AT

Dieser Abbildung liegt also das Tripel (d, 1, 1) von Fitness-Parametern zu Grunde.

02: D' ¦

D* H* R*Q
> H -T7 > und R'

~M M ~~M~

wobei M D* + H* + R*q (14)

Diese Abbildung ist durch das Tripel (1,1, von Fitness-Parametern gekennzeichnet.
Der Beweis von (13) und (14) beruht auf (7) und (8).

6. Die Konstruktion der Trajektorie eines Selektionsprozesses. Wir charakterisieren
nun eine Generation unserer Population durch einen Punkt des Fundamentaldreiecks
und geben weiter ein Tripel von Fitness-Parametern (S, 1, q) vor, ö > 0 und q > 0.

Nach unseren Ausführungen im Abschnitt 2 stellt es keine Einschränkung dar, wenn
wir gerade von einer Generation ausgehen, die sich im Hardy-Weinberg-Gleichgewicht

befindet. Wir starten also etwa mit der Tochtergeneration Gx, dargestellt durch
einen Punkt Tx. Für einen solchen Punkt Tx, festgelegt durch die Genotypenwahrscheinlichkeiten

Dx, Hx und Rx, folgt nun aus (5) die Relation

H\~4DXRX, (15)

die mit Hilfe von (6) als Gleichung der Parabel

y=~_~*2+_~ (16)

erkannt werden kann. Umgekehrt kann man mit Hilfe von (15) und (2) zeigen, dass

jeder Punkt dieser Parabel eine Population darstellt, die sich bereits im Hardy-
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k'

Hardy - Weinberg - Parabel

Fig. 5

Weinberg-Gleichgewicht befindet. Man nennt diese Parabel die Hardy-Weinberg-
Paräbel (Fig. 5).

Nun erfolgt die Selektion. Sie führt Gx in G'x, also in die erste Tochtergeneration
nach der Selektion, über. Der zugehörige Punkt Tx wird im allgemeinen nicht auf der

Hardy-Weinberg-Parabel liegen. Durch Zufallspaarung geht nun aus G[ die zweite
Tochtergeneration G2 hervor. Sie muss nach den Ausführungen im Abschnitt 2

wieder im Hardy-Weinberg-Gleichgewicht sein; T2 liegt also wieder auf der Hardy-
Weinberg-Parabel. So fahren wir weiter: Selektion, Zufallspaarung, wieder Selektion,
wieder Zufallspaarung usw. Das Schicksal unserer Population wird dann durch die

Punktfolge

1» I i> I 2> ¦* 2» ^3» ¦*¦ 3» *' *

dargestellt. Wir bezeichnen diese Punktefolge als Trajektorie des Selektionsprozesses;
der zugehörige Streckenzug liefert im allgemeinen eine Sägezahnkurve (Fig. 5). Die
Fitness-Parameter (d, 1, q) halten wir dabei konstant.

Wie kann diese Trajektorie konstruiert werden
1.) Konstruktion der Hardy-Weinberg-Parabel, z.B. aus den Punkten U und V,

in denen sie die Dreieckseiten berührt, und dem Scheitelpunkt (*/4, 1/2, 1/4).

2.) Konstruktion des Bildes k* dieser Parabel bei der Abbildung 0X. k* ist ein

Kegelschnitt, der ebenfalls in U und V die Dreieckseiten berührt. &* ist also bestimmt
durch die beiden (doppelt zu zählenden) Punkte U und V, in denen man auch die

Tangenten hat, und durch den Bildpunkt irgend eines geeignet gewählten Punktes
auf der Parabel. Man kann diesen noch notwendigen Bildpunkt entweder durch
Berechnung seiner Koordinaten nach (13) oder durch die in der Figur 3 dargestellte
Konstruktion (für das Tripel (d, 1,1)) erhalten.

3.) Ganz analog konstruiert man jetzt k! 02 (k*).
4.) Liegen die Parabel und die beiden Bildkurven vor, so können alle weiteren

Punkte durch blosses Ziehen von Geraden erhalten werden (Fig. 6): Tx muss auf der
Parabel liegen. Die Gerade UTX wird mit k* geschnitten. Die Gerade durch diesen

Schnittpunkt und durch V liefert T[ als Schnittpunkt mit k'. T2 liegt wieder auf der
Parabel und ausserdem auf der Normalen durch Tx zur Basis, da die Genwahrschein-
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Hardy - Weinberg ~ Parabel

Fig 6

hchkeiten bei Zufallspaarung nicht andern. Mit T2 verfahren wir analog und erhalten
T2, T2 und schliesslich T3 usw.

Wahrend also die Punkte Tx, T2, T3, die die Generation vor der Slektion charakterisieren,
auf der Hardy-Weinberg-Parabel liegen, ist k' der Ort der entsprechenden Punkte nach der Selektion

Von welcher Art ist dieser Kegelschnitt k' Aus den Abbildungsgleichungen (11) und aus
(6) folgt, dass

Dd+H + Rq-0 (17)

die Gleichung jener Geraden darstellt, deren Bild die Ferngerade der Ebene ist Schneidet also die
Gerade (17) die Hardy-Wemberg-Parabel in genau zwei Punkten, so ist k' eine Hyperbel, die
Rechnung zeigt, dass dies der Fall ist, wenn k' oberhalb der Parabel liegt Smd keine Schnittpunkte

vorhanden, so ist k' eine Ellipse, dies trifft em, wenn k' unterhalb der Parabel hegt.
Sollen zur genaueren Zeichnung von k' noch weitere Punkte konstruiert werden, so bietet

sich folgendes Verfahren an (Fig 7) Durch W eine beliebige Gerade g Durch T' e k' die
Geraden UT' und VT' Diese liefern mit g die Schnittpunkte X bzw Y, der Schnittpunkt P von
VX und UY ist em weiterer Punkt von kr Eme analoge Konstruktion kann fur die Gewinnung
weiterer Punkte von k* durchgeführt werden

Beweis Satz von Pascal' U und V, je mit ihrer Tangente, zahlen doppelt, g ist eine Pascal-
Gerade (Man bezeichne etwa U mit (6, 1), V mit (3, 4), T' mit 2 und den neuen Punkt P mit 5

w

Fig 7

7. Beispiele. Figur 8 zeigt den Fall 0 < d < 1,17 1, 0 < g < 1. Die Genotypen
Aa haben also die grosste Fitness, AA und aa haben kleinere Überlebenschancen.
Es smd die Trajektorien von zwei derartigen Selektionsprozessen eingezeichnet; der
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Hardy - Weinberg
Parabel

\\

u
Fig. 8

eine startet links, der andere rechts. Die Figur zeigt recht anschaulich die Existenz
eines asymptotischen Gleichgewichtszustandes, der stabil ist: Die Population fällt
wieder in ihn hinein, von links und von rechts, wenn sie durch besondere Einwirkungen

von ihm weggebracht worden ist. Bemerkenswert ist, dass in diesem
Zustand - man spricht vom heterozygoten Gleichgewichtszustand - alle drei Genotypen
vorhanden sind. Man kann berechnen (siehe z.B. Hadeler [8]), dass er durch die
Genwahrscheinlichkeiten

$ (1 - q) : (2 - d - q) und q

festgelegt ist.

1

(l-ö):(2-d-Q)

Y, k*

u

Hardy - Weinberg - Parabel

Fig. 9
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Hardy - Weinberg - Parabel

Fig. 10

Figur 9 zeigt den Fall 6 > 1, rj 1, q > 1. Jetzt haben die Genotypen Aa die
kleinsten Uberlebenschancen. Die angestrebten stabilen Gleichgewichtszustände
werden durch die Punkte U und V dargestellt, je nach der Lage des ersten Punktes
Tx. In der Figur wird U angestrebt: Die AA nehmen immer mehr zu, Aa und aa
sterben aus.

Figur 10 zeigt den Fall 0 <<$<l,ij l,g> 1. Jetzt haben die aa die grossten
Überlebenschancen; der angestrebte stabile Gleichgewichtszustand ist durch V
gegeben: Hier wird die Population nur noch den Genotyp aa aufweisen.

R. Ineichen, Luzern, Fribourg
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