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ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

El. Math. Band 31 Heft 2 Seiten 25-48 10. Midrz 1976

Uber die geometrische Darstellung von Selektionsprozessen

«Jedes mathematische Resultat wird im allgemeinen
klarer oder wird unmittelbar anschaulich, wenn man es
auf geeignete Weise geometrisch darstellt.»

Bruno de Finetti [6]

Es diirfte allgemein bekannt sein, dass Fragen der Genetik manchmal zu interes-
santen Aufgaben der Wahrscheinlichkeitsrechnung und Statistik fithren kénnen.
Weniger bekannt scheint hingegen zu sein, dass gewisse dieser Probleme zusitzlich
auch zu geometrischen Uberlegungen — im Rahmen der elementaren projektiven
Geometrie — anregen konnen. Einige dieser Uberlegungen wollen wir hier darstellen
(vgl. auch [9]). Als wesentliches Hilfsmittel werden uns dabei Dreieckskoordinaten
dienen, wie sie de Finetti [5] in die Genetik eingefiithrt hat. Man kann diese Unter-
suchungen auch mit Hilfsmitteln der Analysis durchfiihren; das haben Cannings und
Edwards getan [3]. Vielleicht gelingt es uns aber, mit unseren nur auf einfachen geo-
metrischen Sachverhalten beruhenden Uberlegungen das als Motto vorangestellte
Wort von Bruno de Finetti zu illustrieren, das wir seinem Buch «Il <saper vedere) in
matematica» entnommen haben?).

1. Gene, Genotypen. Wir beschranken uns auf die Betrachtung von Genen als Ver-
mittler der genetischen Information; diese Gene sind in den Chromosomen gelagert.
Die Chromosomen treten in den Korperzellen der Individuen, die wir hier betrachten
wollen, doppelt auf, wie dies im allgemeinen bei hoheren Pflanzen und Tieren und beim
Menschen der Fall ist. Damit treten auch die Gene paarweise auf; gepaarte Gene be-
setzen in der Regel dieselben Plitze in den Chromosomen ihres Paares. Wir be-
trachten nun nur einen einzigen Genort, der sich zudem nicht auf einem Geschlechts-
chromosom befinden soll, also einen sogenannten autosomalen Locus. Und schliess-
lich setzen wir zur Vereinfachung noch voraus, dass an diesem Locus jeweils eines
von insgesamt nur zwe: allelen Genen vorhanden sei; wir bezeichnen diese allelen
Gene mit 4 und a. — Unter diesen Einschrinkungen fithrt die in der Zelle vorhandene
genetische Information auf die Unterscheidung von drei Genotypen: A4, Aa und aa.
Es soll nun untersucht werden, wie sich bei gewissen Selektionsprozessen die Wahr-
scheinlichkeiten dieser Genotypen von Generation zu Gemeration dndern. Unsere Be-

1)  Diese Arbeit ist wihrend eines Aufenthaltes des Verfassers an der Biomathematischen Ab-
teilung des Math. Inst. der Universitdt Ziirich entstanden. Der Verfasser méchte auch hier
dem Leiter des Instituts, Herrn Prof. Dr. E. Batschelet, fiir seine Anregungen bestens danken.
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trachtungen gehoren also jenem Teil der Genetik an, der auf der Ebene der «Bevél-
kerungen», der Populationen, und ihrer einzelnen Generationen arbeitet; das ist die
Populationsgenetik.

2. Das Hardy-W einberg-Gleichgewicht. Wir gehen aus von einer Elterngeneration
G von mannlichen und weiblichen Individuen, die durch Paarung Nachkommen er-
zeugen. Alle Individuen von G sollen entweder vom Genotyp 44 oder Aa oder aa
sein. Die Elterngeneration G und allfillige Tochtergenerationen G,, G,, ... bilden die
Population, deren Entwicklung wir studieren wollen.

Weiter setzen wir — z.T. nach Jacquard [10] — voraus: Es finden keine Einwanderungen
(Migrationen) von Individuen statt, die ausserhalb der Population geboren sind. Es sollen keine
Gen-Mutationen, d.h. keine Verdnderungen der oben genannten allelen Gene 4 und a in andere
stattfinden. Auch die Selektion soll (vorldufig) ausgeschlossen werden; dies bedeutet vor allem,
dass die Zahl der Nachkommen eines Individuums nicht von seinem Genotyp abhiangt. Paarun-
gen finden statt, diirfen aber nur innerhalb derselben Generation vorkommen.

Schliesslich seien fiir G die Wahrscheinlichkeiten gegeben, dass ein zufillig aus
G herausgegriffenes Individuum einen bestimmten Genotyp aufweist; sie sollen

nicht vom Geschlecht des Individuums abhéngen:2)
P(AA) =D, P(Aa)=H und P(aa)=R, wobei D+ H+ R=1. (1)

Der Umfang jeder Generation G, G,, G, ... sei gendigend gross: So gross, dass unsere
Wabhrscheinlichkeitsbetrachtungen mit ziemlicher Sicherheit auch iiber die wirk-
lichen Verhiltnisse in den Generationen Aufschluss geben (Gesetz der grossen Zahl).

Aus diesen Voraussetzungen sollen nun erste Folgerungen gezogen werden:
(1) gestattet sofort die Berechnung der Wahrscheinlichkeiten, dass ein aus G zufillig
herausgegriffenes Chromosom ein bestimmtes Gen tragt?):

P(A)==p=D-1+H-—;— und P(a)=q=R-1+H-—2—, wobei p + ¢ =1 (2)
Die Individuen von G produzieren nun Geschlechtszellen (Gameten). Sie stellen das
stoffliche Bindeglied zur Tochtergeneration G, dar: Aus der Vereinigung einer mann-
lichen Geschlechtszelle mit einer weiblichen entsteht ein Individuum von G,. Wel-
ches ist die Wahrscheinlichkeit, dass eine dieser «erfolgreichen» Geschlechtszellen
das Gen A tragt?

Da nach unseren Voraussetzungen keine Mutationen stattfinden, handelt es
sich hier zunichst um die bedingten Wahrscheinlichkeiten 1 oder !/, oder 0, je nach-
dem der «erfolgreiche» Gamet von einem Individuum mit dem Genotyp 4AA4, Aa
bzw. aa stammt; Analoges gilt fiir das allele Gen a.

Da wir ferner ausdriicklich vorausgesetzt haben, dass (vorldufig) keine Selektion
auftritt, so konnen wir nun sofort die Wahrscheinlichkeiten dafiir berechnen, dass
ein aus der Tochtergeneration G, zufillig herausgegriffenes Chromosom das Gen 4
bzw. a trigt. Sie sind als totale Wahrscheinlichkeiten gegeben durch

1 - N 1

Pyd)=p=D-1+H.-5 und Pa)=q=R-1+H-5. (3)

2)  Wir bezeichnen hier und im folgenden das I*;,reignis «ein zufillig herausgegriffenes Individuum
hat den Genotyp 44 » kurz mit A4 ; analog verwenden wir 4a und aa. — Das Ereignis ¢ein
zufillig herausgegriffenes Chromosom trigt das Gen A4» bezeichnen wir mit 4; analog ver-
wenden wir a.
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Der Vergleich von (2) und (3) zeigt: p, = $ und ¢, = ¢. Daraus folgt aber fiir alle
Generationen G, G,, G,, ..., die sich geméss den genannten Voraussetzungen ent-

wickeln: p,=pund g, =g firi=1,2, ... @)

Die Genwahrscheinlichkeiten p; und ¢; sind konstant.

Welches sind aber die Genotypenwahrscheinlichkeiten D,, H, und R, in G,?
Wihrend sich die Genwahrscheinlichkeiten fiir eine Generation aus den Genotypen-
wahrscheinlichkeiten dieser Generation berechnen lassen (vgl. (2)), ist das Umge-
kehrte nur unter zusédtzlichen Voraussetzungen moglich. Wir stellen hier die zusitz-
liche Forderung: Die Paarung der Gameten erfolgt als Zufallspaarung (random
mating, Panmixie). Das heisst, dass jeder Nachkomme als Ergebnis der Vereinigung
zweier Gameten aufgefasst wird, die aus folgenden vier zufilligen Auswahlen her-
vorgegangen sind: Auswahl eines Vaters und Auswahl jener ménnlichen Geschlechts-
zelle, die sich dann vereinigen wird; die Wahrscheinlichkeit, dass diese z. B. das Gen
A trégt, ist dann wieder D - 1 4 H - 1/,. Unabhingig davon Auswahl einer Mutter und
Auswahl jener weiblichen Geschlechtszelle, die sich dann vereinigen wird; die Wahr-
scheinlichkeit, dass diese z. B. das Gen a trigt, ist dann R- 1+ H -1/,. Damit erhalten
wir fiir die Genotypenwahrscheinlichkeiten in G; nach der Multiplikationsregel bei
unabhingigen Ereignissen:

1 1 1
Py(44) = D= (D + 5 HY, PyAa)=H,=2(D+;H) (R+H)

1
und P,(aa) = Ry = (R + EH)2 oder D, =42 H,=2p¢q und R, = ¢%. (5)

Mit (4) folgt aber daraus fiir alle Tochtergenerationen, die sich geméss unsern Vor-
aussetzungen entwickeln: Die Genotypenwahrscheinlichkeiten sind von der ersten
Tochtergeneration an konstant.

Die beiden Aussagen iiber die Konstanz der Genwahrscheinlichkeiten (von der
Elterngeneration an) und iiber die Konstanz der Genotypenwahrscheinlichkeiten
(von der ersten Tochtergeneration an) beschreiben eine Art Gleichgewichtszustand
der Population. Man nennt diesen Zustand das Hardy-Weinberg-Gewicht (nach dem
Mathematiker G.H. Hardy und dem Genetiker W. Weinberg, 1908).

Besser wiirde man wohl von einer «angendherten Konstanz» sprechen: Zufillige Schwankun-
gen der Genwahrscheinlichkeiten und damit verbundene Schwankungen der Genotypenwahr-
scheinlichkeiten sind natiirlich trotz des vorausgesetzten grossen Umfanges der Generationen
nicht ausgeschlossen; «restaurierende Krafte» sind jedoch nicht vorhanden. Auf diesen Umstand
macht namentlich auch Feller {4] aufmerksam. — Beispiele fiir Zufallspaarung: Windbestdubung
der Pflanzen eines Getriedefeldes, wenn man iiber dem Feld eine eigentliche Pollenwolke beob-
achten kann; Befruchtung der Eier der Seeigel (Echinoidea), wobei Spermien und Eizellen frei

ins Wasser ausgestossen werden; Partnerwahl der Menschen, wenn als genotypisch festgelegtes
Merkmal etwa die Blutgruppe betrachtet wird.

3. Dreieckskoordinaten. Wir fithren nach de Finetti [5] spezielle Dreieckskoordi-
naten ein. Wir wihlen ein gleichseitiges Dreieck der Hohe 1 als Fundamentaldreieck.
Offensichtlich gilt dann fiir jeden Punkt im Innern oder auf dem Rande des Dreiecks:
Die Summe seiner drei Abstdnde von den drei Seiten ist 1. Damit kann nun wegen
D + H + R =1 jedem Tripel (D, H, R) von Genotypenwahrscheinlichkeiten einein-
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deutig ein solcher Punkt zugeordnet werden, indem die drei Wahrscheinlichkeiten
als Abstdnde von den drei Seiten dargestellt werden (Fig. 1). Lage des Dreiecks, Be-
zeichnungen und Art der Eintragung der drei Genotypenwahrscheinlichkeiten sollen
im folgenden beibehalten werden3).

y

)

Y

» X Fig. 1

U ' v
Fiithren wir noch ein rechtwinkliges Koordinatensystem gemiss Figur 1 ein, so
finden wir
1 1 1 1

_ 1 1
D=r—ly—> H—y und R=>—-y+-13x. 6
777 5f3% H=y m 7777 Tl3" ©)

Aber auch die Genwahrscheinlichkeiten konnen einfach am Fundamentaldreieck ab-
gelesen werden. Man beachte (2) und Figur 2: Es ist

JL = JK+ R = /s H + R = g; analog findet man .

Fig. 2

Aus Figur 2 ist auch sofort ersichtlich, dass Punkte, die dieselben Genwahrschein-
lichkeiten ergeben, auf einer Normalen zur Basis des Fundamentaldreiecks liegen.
Ferner sieht man noch, dass zwei Punkte (D, H, R) und (D’, H’, R’) genau dann auf
einer Geraden durch die Ecke U bzw. V Fundamentaldreiecks liegen, wenn

R:H=R:H, : . (7)
bzw. D:H=D': H'. « (8)

8)  Derartige spezielle Dreieckskoordinaten werden in den Naturwissenschaften recht oft ver-
wendet; vgl. z.B. Batschelet [2]. Uber allgemeinere Dreieckskoordinaten orientiert z.B.

Fladt in [7].
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4. Ein Selektionsprozess. Jetzt soll eine der in Abschnitt 2 angefiihrten Voraus-
setzungen gedndert werden: Bevor die Individuen einer Generation zur Reproduk-
tion gelangen, soll eine Selektion stattfinden. Die iibrigen Voraussetzungen sollen
weiterhin gelten. (Uber die Auswirkungen von Anderungen weiterer Voraussetzungen
orientieren die Darstellungen der Populationsgenetik, vgl. z.B. Jacquard [10], Le
Roy [11].) Die Population soll unter «konstantem Selektionsdruck» stehen: Es sei S
das Ereignis, das darin besteht, dass ein Individuum ins reproduktionsfihige Alter
gelangt. Wir betrachten die folgenden bedingten Wahrschemhchkelten die soge-
nannten Uberlebenswahrscheinlichkeiten, als gegeben:

P(S|AA)=06* P(S|Ad)=n* und P(S|aa)=o*. (9)

Mit Hilfe des Theorems von Bayes lassen sich nun aus den Genotypenwahr-
scheinlichkeiten einer Generation vor der Selektion die Genotypenwahrscheinlich-
keiten fiir dieselbe Generation nach der Selektion berechnen: Es ist z. B.

P(AA) 8* D &

f—— A = -
P15 = pd4ys* + Plda) n* + Plaa)o*  Do* + Hn* + Ro*

analoge Gleichungen lassen sich fiir H’ und R’ angeben.

Der Fall n* = 0 ist im allgemeinen in der Genetik nicht von besonderem Inter-
esse. Wir lassen ihn weg und erweitern die Terme auf den rechten Seiten der eben
genannten Gleichungen mit einer Zahl £ > 0, so dass & n* = 1 wird; fiir 2 6* setzen
wir d und fiir 2 g* schreiben wir 9. Man bezeichnet jedes Tripel von nicht-negativen
Zahlen, die zu den Uberlebenswahrscheinlichkeiten proportional sind, als Fitness-
Parameter. Kiirzen wir schliesslich noch den Nenner mit F ab,

F=Dé+H+ Rp, (10)
so erhalten wir
D H R
D’=—Fé,H’=-ﬁ und R’:—-——g,wobeiwiederD’+H’+R’=1. (11)

Fiir die zugehorigen Genwahrscheinlichkeiten dieser Generation nack der Selektion
ist natiirlich wieder

1 1
{J’==D’+~2~H’ und q’=R’+§H’. (12)
Zu einem gegebenen Tripel (D, H, R) von Genotypenwahrscheinlichkeiten, welches
einen Punkt 7 im Fundamentaldreieck festlegt, lasst der durch die Gleichungen (11)
gegebene Punkt 7', der die Genotypenwahrscheinlichkeiten nach der Selektion
liefert, auch konstruieren. Nach der Herleitung von D’, H' und R’ mit Hilfe des
Theorems von Bayes liegt es nahe, zur Konstruktion von T’ ein Verfahren heranzu-
ziehen und etwas zu modifizieren, das Aitchison in [1] angegeben hat (Fig. 3):
Man bestimmt die Punkte 4, B und C so, dass
D H vy Ro

TB = — und TC =

TA= , :
d+1+p 0+ 1+p 0+1+p
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w

Fig. 3

v

Die durch 4, B und C gezogenen Parallelen zu den Seiten des Fundamentaldreiecks
liefern das Dreieck U, V; W,; nun konstruiert man das Zentrum Z jener zentrischen
Streckung, die dieses Dreieck auf das Dreieck UVW abbildet. Durch dieselbe zen-
trische Streckung bildet man den Punkt T ab; der Bildpunkt ist der gesuchte Punkt
T, dessen Abstinde von den Seiten des Fundamentaldreiecks wieder D’, H’ und R’
ergeben4).

Bewers: Die Hohe des gleichseitigen Dreiecks U,V,W, ist gegeben durch

TA+TB+TC=F:(0+1+o0).

Da die Hohe des Fundamentaldreiecks 1 ist, ist der Streckungsfaktor unserer zen-

trischen Streckung (6 + 1 + p): F. Bilden wir nun die Strecken TA, TB und TC
ab, so stellen wir fest, dass sich als Bildpunkt gerade der durch (11) gegebene Punkt
T’ ergibt.

5. Die zugehorige projektive Abbildung. Durch die Gleichungen (11) kann jeder
Punkt T des Fundamentaldreiecks auf einen Punkt 7 dieses Dreiecks abgebildet
werden. Diese Abbildung des Fundamentaldreiecks auf sich ist eine projektive Ab-
bildung. Man sieht dies z. B., wenn man mit Hilfe von (6) und D+ H+ R=D'+ H'+ R’
= 1 zu rechtwinkligen Koordinaten iibergeht. Die Ecken U, V und W sind Fix-
punkte dieser Abbildung. Es sei nun noch esn Punkt T und sein etwa nach dem Ver-
fahren in Abschnitt 4 konstruierter Bildpunkt 7" vorgegeben; T und 7" sollen dabei
nicht auf einer Seite des Fundamentaldreiecks liegen. Durch die vier Punkte U, V,
W, T und ihre Bildpunkte U, V, W, T" ist diese projektive Abbildung eindeutig be-
stimmt. Sie kann wie folgt als Produkt von zwei perspektiven Kollineationen @, und
@, dargestellt werden; T* ist dabei der Schnittpunkt der Geraden UT und VT
(Fig. 4). .

@D, ist die perspektive Kollineation mit dem Zentrum U und der Geraden VW
als Achse, die den gegebenen Punkt T in T* abbildet. @, ist jene perspektive Kol-

4)  Die effektive Durchfithrung der Konstruktion gestaltet sich besonders einfach, wenn das im
Handel erhiltliche Dreieckspapier verwendet wird, das bereits eine feine Unterteilung be-
sitzt.
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w

Fig. 4

u

lineation, die V als Zentrum und UW als Achse hat und T* in den gegebenen Punkt
T’ abbildet. Da nun @, - @, eine projektive Abbildung ist, die U, V und W zu Fix-
punkten hat und zudem 7 in 7" abbildet, ist sie gerade die eindeutig bestimmte Ab-
bildung ®:

¢=¢2‘®1.

Die Abbildungsgleichungen dieser beiden perspektiven Kollineationen sind, wenn
@ durch das Tripel (§, 1, ) von Fitnessparameter gegeben ist:
Dé

D, D¥ = — H*=£ und R*:E wobei N=Ddé+H+ R. 13
1 N » N N: + + ( )

Dieser Abbildung liegt also das Tripel (4, 1, 1) von Fitness-Parametern zu Grunde.

D* H* R*o
: e H’:———-, ’=——————,

Py D'=7r o W R=p

wobei M = D* + H* + R*g. (14)

Diese Abbildung ist durch das Tripel (1, 1, ) von Fitness-Parametern gekennzeichnet.
Der Beweis von (13) und (14) beruht auf (7) und (8).

6. Die Konstruktion der Trajektorie eines Selektionsprozesses. Wir charakterisieren
nun eine Generation unserer Population durch einen Punkt des Fundamentaldreiecks
und geben weiter ein Tripel von Fitness-Parametern (4, 1, g) vor, d > O und o > 0.
Nach unseren Ausfithrungen im Abschnitt 2 stellt es keine Einschrinkung dar, wenn
wir gerade von einer Generation ausgehen, die sich im Hardy-Weinberg-Gleichge-
wicht befindet. Wir starten also etwa mit der Tochtergeneration G,, dargestellt durch
einen Punkt T',. Fiir einen solchen Punkt T, festgelegt durch die Genotypenwahr-
scheinlichkeiten D;, H, und R,, folgt nun aus (5) die Relation

H?=4D,R,, (15)
die mit Hilfe von (6) als Gleichung der Parabel
3 1
=——x2 4 16
y=—3%+; (16)

erkannt werden kann. Umgekehrt kann man mit Hilfe von (15) und (2) zeigen, dass
jeder Punkt dieser Parabel eine Population darstellt, die sich bereits im Hardy-
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Hardy - Weinberg - Parabel

Fig. 5

U Vv

Weinberg-Gleichgewicht befindet. Man nennt diese Parabel die Hardy-Weinberg-
Parabel (Fig. 5).

Nun erfolgt die Selektion. Sie fiihrt G, in G}, also in die erste Tochtergeneration
nach der Selektion, iiber. Der zugehérige Punkt 7'; wird im allgemeinen nicht auf der
Hardy-Weinberg-Parabel liegen. Durch Zufallspaarung geht nun aus G, die zweite
Tochtergeneration G, hervor. Sie muss nach den Ausfithrungen im Abschnitt 2
wieder im Hardy-Weinberg-Gleichgewicht sein; 7', liegt also wieder auf der Hardy-
Weinberg-Parabel. So fahren wir weiter: Selektion, Zufallspaarung, wieder Selektion,
wieder Zufallspaarung usw. Das Schicksal unserer Population wird dann durch die
Punktfolge

Ty, T), Ty, Tty Ts, Ty ...

dargestellt. Wir bezeichnen diese Punktefolge als Trajektorie des Selektionsprozesses;
der zugehtrige Streckenzug liefert im allgemeinen eine Ségezahnkurve (Fig. 5). Die
Fitness-Parameter (4, 1, o) halten wir dabei konstant.

Wie kann diese Trajektorie konstruiert werden ?

1.) Konstruktion der Hardy-Weinberg-Parabel, z. B. aus den Punkten U und V,
in denen sie die Dreieckseiten beriihrt, und dem Scheitelpunkt (1/,, /5, 1/4).

2.) Konstruktion des Bildes k* dieser Parabel bei der Abbildung @,. £* ist ein
Kegelschnitt, der ebenfalls in U und V die Dreieckseiten bertihrt. £* ist also bestimmt
durch die beiden (doppelt zu zdhlenden) Punkte U und V, in denen man auch die
Tangenten hat, und durch den Bildpunkt irgend eines geeignet gewihlten Punktes
auf der Parabel. Man kann diesen noch notwendigen Bildpunkt entweder durch Be-
rechnung seiner Koordinaten nach (13) oder durch die in der Figur 3 dargestellte
Konstruktion (fiir das Tripel (4, 1, 1)) erhalten.

3.) Ganz analog konstruiert man jetzt ' = @, (k*).

4.) Liegen die Parabel und die beiden Bildkurven vor, so kénnen alle weiteren
Punkte durch blosses Ziehen von Geraden erhalten werden (Fig. 6): T, muss auf der
Parabel liegen. Die Gerade UT, wird mit 2* geschnitten. Die Gerade durch diesen
Schnittpunkt und durch V liefert T als Schnittpunkt mit &'. T, liegt wieder auf der
Parabel und ausserdem auf der Nofmalen durch T, zur Basis, da die Genwahrschein-
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U \
lichkeiten bei Zufallspaarung nicht dndern. Mit T, verfahren wir analog und erhalten
T,, T, und schliesslich T; usw.

Wihrend also die Punkte Ty, T, T3, ..., die die Generation vor der Slektion charakterisieren,
auf der Hardy-Weinberg-Parabel liegen, ist &’ der Ort der entsprechenden Punkte nach der Selek-
tion. Von welcher Art ist dieser Kegelschnitt 2”? Aus den Abbildungsgleichungen (11) und aus
(6) folgt, dass

DS+H+Rp=0 17)

die Gleichung jener Geraden darstellt, deren Bild die Ferngerade der Ebene ist. Schneidet also die
Gerade (17) die Hardy-Weinberg-Parabel in genau zwei Punkten, so ist 2’ eine Hyperbel; die
Rechnung zeigt, dass dies der Fall ist, wenn &’ oberhalb der Parabel liegt. Sind keine Schnitt-
punkte vorhanden, so ist 2’ eine Ellipse; dies trifft ein, wenn A’ unterhalb der Parabel liegt.

Sollen zur genaueren Zeichnung von & noch weitere Punkte konstruiert werden, so bietet
sich folgendes Verfahren an (Fig. 7): Durch W eine beliebige Gerade g. Durch 1" € &’ die Ge-
raden U7’ und V7T’. Diese liefern mit g die Schnittpunkte X bzw. Y; der Schnittpunkt P von
VX und UY ist ein weiterer Punkt von %’. Eine analoge Konstruktion kann fiir die Gewinnung
weiterer Punkte von A* durchgefithrt werden.

Beweis: Satz von Pascal! U und V, je mit ihrer Tangente, zihlen doppelt; g ist eine Pascal-
Gerade. (Man bezeichne etwa U mit (6, 1), V mit (3, 4), T’ mit 2 und den neuen Punkt P mit 5.)

U Sy Fig.7

7. Beispiele. Figur 8 zeigt den Fall0 <4 <1, =1, 0 <p < 1. Die Genotypen
Aa haben also die grosste Fitness, 44 und aa haben kleinere Uberlebenschancen.
Es sind die Trajektorien von zwei derartigen Selektionsprozessen eingezeichnet; der
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Hardy - Weinberg
Parabel

U | Vv

Fig. 8

eine startet links, der andere rechts. Die Figur zeigt recht anschaulich die Existenz
eines asymptotischen Gleichgewichtszustandes, der stabil ist: Die Population fillt
wieder in ihn hinein, von links und von rechts, wenn sie durch besondere Einwir-
kungen von ihm weggebracht worden ist. Bemerkenswert ist, dass in diesem Zu-
stand — man spricht vom heterozygoten Gleichgewichtszustand — alle drer Genotypen
vorhanden sind. Man kann berechnen (siehe z. B. Hadeler [8]), dass er durch die Gen-
wahrscheinlichkeiten

p=(1-9:(2-0—¢) und ¢§=(1-9):(2-6~9

festgelegt ist.
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Hardy - Weinberg - Parabel

Fig. 10

Figur 9 zeigt den Fall § > 1, = 1, ¢ > 1. Jetzt haben die Genotypen Aa die
kleinsten Uberlebenschancen. Die angestrebten stabilen Gleichgewichtszustinde
werden durch die Punkte U und V dargestellt, je nach der Lage des ersten Punktes
T;. In der Figur wird U angestrebt: Die 44 nehmen immer mehr zu, 4a und aa
sterben aus.

Figur 10 zeigt den Fall 0 < <1, =1, p > 1. Jetzt haben die aa die gréssten
Uberlebenschancen; der angestrebte stabile Gleichgewichtszustand ist durch V ge-
geben: Hier wird die Population nur noch den Genotyp aa aufweisen.

R. Ineichen, Luzern, Fribourg
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