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On Yff’s Inequality for the Brocard Angle of a Triangle

1. Let a,, oy, o3 be the angles of a triangle and let w be its Brocard angle. In 1963
Y{f [1] conjectured that e satisfies the inequality

8(03 Salmzmau (1)

This is a remarkable relation because it contains the angles proper and not, as is
usually the case, in geometrical inequalities, their trigonometric representatives. (1)
could be called a transcendental relation, while the usual ones are algebraic. There
are not many statements of type (1) in elementary geometry.

Many mathematicians have tried in vain to prove (1); the present author knows
about it because he was one of them. But now, quite recently, a short, elegant and
ingenious proof was published in this journal by Faruk Abi-Khuzam [2]. It depends
on the following lemma

sina, sina, sinag < Roy oy 05, (2)

k being the constant (3 V§/2n)3 ; for oy = &y = a3 = /3 equality holds in (2).
In our opinion the proof, given for (2) is not completely satisfactory. Use is
made of the infinite product

sinx=xH(1——- ) (3)
n=1

2 n?

After substitution and re-ordering infinitely many factors the lefthand side of (2)
is written as ome infinite product. For further reduction the factors are written as
the product of two linear expressions. All this seems rather light-hearted, the more
so as it is well-known that the infinite product

E %
1— )1+ = 4
1(1-2) (1+35) ®
is not absolutely convergent (see e.g. Whittaker-Watson, Modern Analysis, p. 33-34).
Here follows a more elementary proof of (2).

2. For 0 <a; <m, oy + a3 + o3 = 7 we consider the function

sinay sino sinog

(5)

F (0‘1: O, Olg) =

xy Ko g

F is defined on the region G in the (a;, ay, a3)-space consisting of the points tnside
the triangle with the vertices P, (x, 0, 0), P, (0,7, 0), P, (0, 0, 7). We define F on the
perimeter of the triangle by

sine Sifag
F(O,az,a3)=“‘“‘—‘-——“, [ &) %+ 0,“3 == O,“z‘}"“azﬂ
g X3

and analogously F («,, 0, a3) and F (a,, g, 0); furthermore F (, 0,0) = F (0,7, 0)
= F (0, 0, ) = 0. F is now defined on a closed region G; it is continuous and derivable
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on G; moreover as 0 < F < 1 there is (at least) one point in G where F has its max-
imum value. By the usual procedure, in view of &; + a5 + a; = 7, a maximum satisfies

OF OF OF

0oy Oay - 0oy

In G we have

(=4 . | (6)

OF  sina, sinog oy cosoy — sinoy

F (cot oty — oY)
2 1 1 ’
0oy oLy Olg o

and, as F =+ 0, (6) implies

cota; — a; ' = cotayg — oyt = cotog — a5t . (7)
For f = cota — a~! we obtain f' = — sin—2a + a2 < 0; f is therefore a decreasing func-
tion of « (we have 0 > f > — o0); hence (7) implies

oy = ay = og (= 7[3) . (8)

in this point we have F = k. _
We must verify whether larger values appear on the boundary of G. Between
P, and P; yields

sina, sinog

F=

y Ko + oy == T

%g X3
and by an argumentation analogous to the former, but now with two factors instead
of three, it follows that for the maximum on P,P; we have a, = a3 =7/2 and F = 4/n?,

that is less than k.. Hence F < k on G, which concludes the proof.
O. Bottema, Delft
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Aufgaben

Aufgabe 733. Let # be a positive integer > 2. Let L be a line which intersects
the (n — 1)-dimensional hyperplanes containing the (» — 1)-dimensional faces of a
given n-dimensional simplex of vertices 4; (i=1, ..., n+ 1) in the uniquely deter-
mined points B,. Prove that the n-dimensional volume of the convex hull of the
midpoints of 4,B; is zero. This extends the known results for # =2, 3 for which the

midpoints are collinear and coplanar, respectively.
M.S. Klamkin, Dearborn, Michigan, USA
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