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On YfTs Inequality for the Brocard Angle of a Triangle

1 Let olv a2, a3 be the angles of a triangle and let co be its Brocard angle In 1963

Yff [1] conjectured that co satisfies the inequality

8 coB < ax a2 oc3 (1)

This is a remarkable relation because it contains the angles proper and not, as is
usually the case, m geometncal inequahties, their tngonometric representatives (1)
could be called a transcendental relation, while the usual ones are algebraic There
are not many Statements of type (1) m elementary geometry

Many mathematicians have tned in vain to prove (1), the present author knows
about it because he was one of them But now, quite recently, a short, elegant and

mgemous proof was published m this journal by Faruk Abi-Khuzam [2] It depends
on the following lemma

smai slna2 sma3 < ka± a2 a3 (2)

k bemg the constant (3 \/3/2n)B, for ol1 a2 a3 n/3 equality holds m (2)
In our opmion the proof, given for (2) is not completely satisfactory Use is

made of the infinite product

'* *_7(i- -?_)

After Substitution and re-ordermg infinitely many factors the lefthand side of (2)

is written as one infinite product For further reduction the factors are written as
the product of two linear expressions All this seems rather hght-hearted, the more
so as it is well-known that the infinite product

/7(i--)(i + -) (4)
\ nn] \ nn/

is not absolutely convergent (see e g Whittaker-Watson, Modern Analysis, p 33-34)
Here follows a more elementary proof of (2)

2 For 0 < 0Lt < n, ax -f a2 + a3 n we consider the function

-_, sina! sina2 sma3 ,c\P (ck,v a2, a3) (5)
ax a2 a3

F is defined on the region G m the (alf a2, a3)-space consistmg of the points mside
the tnangle with the vertices P1 (n, 0,0), P2 (0, n, 0), P, (0, 0, n) We define F on the
perimeter of the triangle by

l? tn \ Sm<X2 SlAa3 r, ^* (0, a2, a3) a2 4= 0, a3 4= 0, a2 + a3 n
a2a3

and analogously F (ax, 0, a3) and F (ax, a2,0), furthermore F {n, 0,0) F (0, n, 0)

^ F (0, 0, n) 0 F is now defmed on a closed region G, it is continuous and denvable
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on G] moreover as 0 < F < 1 there is (at least) one point in G where F has its
maximum value. By the usual procedure, in view of ax -f a2 -f a3 n, a maximum satisfies

ÖF ÖF ÖF
t „

UOL1 UOL2 Ö0L3

In G we have

ÖF sina2 sina3 ol1 cos olx — sinaj F (cot ax — ax *)
Öclx a2 a3 af

and, as F 4= 0, (6) implies

cotaj — af1 cota2 — a2-1 cota3 — a^1 (7)

For / cota — a_1 we obtain /' — sin_2a + a~2 < 0; / is therefore a decreasing function

of ol (we have 0 > / > — oo); hence (7) implies

aj a2 a3 nß) (8)

in this point we have F — k.
_

We must verify whether larger values appear on the boundary of G. Between
P2 and P3 yields

sina2 sina3
F _ t ag _j_ a3 ~ n

a2a3

and by an argumentation analogous to the former, but now with two factors instead
of three, it follows that for the maximum on P2P% we have a2 a3 n\2 and F 4/n2,

that is less than k. Hence F < k on G, which concludes the proof.

O. Bottema, Delft
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Aufgaben

Aufgabe 733. Let n be a positive integer > 2. Let L be a line which intersects
the (n — l)-dimensional hyperplanes containing the (n — l)-dimensional faces of a

given w-dimensional simplex of vertices A( (i= 1, w-f 1) in the uniquely
determined points Br Prove that the n-dimensional volume of the convex hüll of the

midpoints of A{B{ is zero. This extends the known results for n 2, 3 for which the
midpoints are collinear and coplanar, respectively.

M.S. Klamkin, Dearborn, Michigan, USA
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